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Abstract—A method for online estimation of the volatility
when observing a stock price is proposed. This is based on mod-
eling the volatility dynamics as a stochastic differential equation
that is constructed using a technique from the control theory [1].
Identification of the model parameters using the observations is
proposed afterwards [2]. It is based on some stochastic calculus.
Volatility estimation is then reformulated as a filtering problem.
An alternative filter instead of the optimal one is proposed since
the latter is not computationally feasible. It is based on samples
(or particles) drawn by discretization of the stochastic volatility
model. Besides, the main feature that makes online particle filter-
ing possible is analytic resolution of the Fokker-Planck equation
for the current return. To the best of our knowledge, such tech-
nique for modeling together with online filtering of the volatility
are quiet novel. The method is implemented on real data: the
Heng Seng index price; this shows a period of relatively high
volatility that corresponds obviously to the Asiatic crisis of Oc-
tober 1997.

Keywords: stochastic volatility, stochastic differential equations,
Fokker-Planck equation, particle filtering.

1 Introduction

Let S = (S t)t∈R+ be an R+-valued semimartingale based on a
filtered probability space (Ω,F , (Ft)t∈R+ ,P) which is assumed
to be continuous. The process S is interpreted to model the
price of a stock. A basic problem arising in Mathematical
Finance is to estimate the price volatility, i.e. the square of the
parameter σ in the following stochastic differential equation

dS t = μS t dt + σS t dWt

where W = (Wt)t∈R+ is a Wiener process. It turns out that the
assumption of a constant volatility does not hold in practice.
Even to the most casual observer of the market, it should be
clear that volatility is a random function of time which we
denote σ2t . Itô’s formula for the return yt = log(S t/S 0) yields

dyt =
(
μ − σ

2
t
2

)
dt + σt dWt y0 = 0 (1)

The main objective is to estimate in discrete real-time one par-
ticular sample path of the volatility process using one observed
sample path of the return. As regards the drift μ, it is constant
but unknown. Under the so-called risk-neutral measure, the
drift is a riskless rate which is well known; actually one finds
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that μ does not cancel out, for instance, when calculating con-
ditional expectations in a filtering problem. For this argument
no change of measure is required, we work directly in the orig-
inal measure P, and μ has to be estimated from the observed
sample path of the return as well.

2 A model for the stochastic volatility

Let (zt)t∈R+ be an arbitrary R-valued process; at the moment,
this is not the unknown process σ2t of instantaneous volatility.
Let us assume prior information about the process zt: wide
sense stationarity and a parametric model for its covariance
function

γ(τ) = D exp(−α|τ|) τ ∈ R
for some constants D, α > 0. Then the spectral density of zt is
given by the formula

Γ(ω) =
1
2π

∫
R

γ(τ) exp(− jωτ)dτ = 1
2π

2Dα
ω2 + α2

where j =
√
−1. The spectral density Γ(ω) may be rewritten

as

Γ(ω) =
1
2π

∣∣∣∣∣H( jω)F( jω)

∣∣∣∣∣
2
ω ∈ R

where H( jω) =
√
2Dα and F( jω) = jω + α. Notice now that

Φ(s) =
H(s)
F(s)

s ∈ C

represents the transfer function of some temporally homoge-
neous linear filter; this filter is furthermore stable as the root
of F(s) is in the left half-plane of the complex variable s. Re-
calling that 1/2π is the spectral density of a white noise with
unit intensity, we come to the conclusion that

zt − E [zt]

may be considered as the response of the filter whose transfer
function is Φ(s), to a zero-mean white noise with unit inten-
sity. The differential equation describing such a filter is

u̇(t) + αu(t) =
√
2Dαw(t)

where w(t) and u(t) are respectively the input and the output
of the filter. Setting m = E [zt] and zt − m = u(t), the process
zt solves the following SDE

dzt = −α(zt − m) dt +
√
2Dα dWt
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Let the R-valued process (z̃t)t∈R+ solve the SDE

dz̃t = −αz̃t dt +
√
2Dα dWt t > 0

with given initial condition z̃0. z̃t is wide sense stationary with
zero mean and correlation function

rz̃(τ) = E [z̃(t)z̃(t − τ)] = D exp(−α|τ|)

Consider now the process |z̃t |, written xt. Then xt is a solution
of

dxt = −αxt dt +
√
2Dα dWt t > 0 (2)

with reflection on the boundary {0} of its state space R+. Start-
ing from any fixed point strictly greater than zero, xt reaches
this boundary by a predictable stopping time with finite ex-
pectation because of the negative sign of the drift. The ini-
tial condition x0 is a random variable with known distribution
since x0 = |z̃0|. It is worthwhile to note the ergodicity of the
Markovian process xt, with stationary distribution density

p(x) =
2√
2πD

exp
{
− x

2

2D

}
x ∈ R+

(see pages 55-57 of [3]). This is beyond our expectation in
view of the required wide sense stationarity. It follows that for
each x ∈ R+, for any bounded continuous function f on R+

lim
t→∞

Ex
[
f (xt)

]
=

∫
R+

f (x)p(x) dx

and in particular

lim
t→∞

Ex [xt] =
2D√
2πD

Obviously, the second order moment for xt coincides with that
of z̃t, namely

E

[
x2t

]
= E

[
z̃2t

]
= D

Let us compute rx(τ), the correlation function of xt, for τ � 0

E [x(t)x(t − τ)]
= E [ |z̃(t)z̃(t − τ)| ]
= E [z̃(t)z̃(t − τ)]P {even passage number by 0}
−E [z̃(t)z̃(t − τ)]P {odd passage number by 0}

= C exp(−α|τ|)

for some constant 0 < C < D. Note the discontinuity of rx(τ)
at τ = 0. We shall freely call the process xt or equivalently
the SDE (2) our stochastic volatility model. We just have to
denote the Wiener process in (2) differently, say W̃ , since it is
independent of the Wiener process in (1). It should be noted
that this type of correlation function:

rx(τ) =
{
C exp(−α|τ|) τ � 0
D τ = 0 α > 0 0 < C < D

includes short-term or middle-term memory in the volatility.

3 Filtering

Now we consider the filtering problem associated to the cou-
ple (xt, yt): we have noisy nonlinear observations of xt, the
R-valued discrete-time process of returns (yn)n=1,2,... indexed
at irregularly spaced instants t1, t2, .... The observation times
are assumed to be rigourously determined. The observations
process is related to the state process (xt)t∈R+ via the condi-
tional distribution

P {yn ∈ Γ|y1, ..., yn−1, (xt : 0 ≤ t ≤ tn)} n ≥ 1

for Γ a Borel-measurable set from R. For homogeneity of no-
tation we set t0 = 0 so that yn=0 = yt=t0 = 0. Now look at
the distribution above and recall that yn = y(tn) and that the
process yt solves the SDE

dyt =
(
μ − xt

2

)
dt +

√
xt dWt y0 = 0 (3)

This is (1) where σt is denoted
√xt. For t ≥ tn−1

yt = yn−1 +
∫ t

tn−1

(
μ − xs

2

)
ds +

∫ t

tn−1

√
xs dWs (4)

and thus

P {yn ∈ Γ|y1, ..., yn−1, (xt : 0 ≤ t ≤ tn)} =
P {yn ∈ Γ|yn−1, (xt : tn−1 ≤ t ≤ tn)}

Given a sample path of (xt)tn−1≤t≤tn and the observation yn−1,
(yt)tn−1≤t≤tn is a Markov process with state space R satisfy-
ing (4). This leads to the central concept of this section:
the Fokker-Planck equation [4][5][6][7]. The domain of the
Fokker-Planck operator:

LFP p(y, t) =
( xt
2
− μ

)
∂p
∂y
(y, t) +

xt
2
∂2p
∂y2
(y, t),

is the set of distribution densities on (R,B(R)) underP. Given
a sample path of (xt)tn−1≤t≤tn and the observation yn−1, the distri-
bution density p(y, t) of yt solves the Fokker-Planck equation

∂p
∂t
(y, t) = LFPp(y, t) tn−1 < t ≤ tn (5)

with the initial condition p(y, tn−1) = δ(y − yn−1). The formal
solution of the above partial differential equation is

p(y, t) = exp {(t − tn−1)LFP} p(y, tn−1)

Since LFP is a sum of two non commuting operators, the ex-
ponential operator exp {(t − tn−1)LFP} cannot be expressed as
simple products of terms involving each of these. Neverthe-
less, the solution of the Fokker-Planck equation is obtained
using the Trotter product formula [8]. For two arbitrary oper-
ators A and B

exp {t(A + B)} = lim
n→∞

(
exp

{ t
n
A
}
exp

{ t
n
B
})n
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Then the solution of (5) is the limit as n→ ∞ of(
exp

{
ρ(t − tn−1)

n
d
dy

}
exp

{
�(t − tn−1)

n
d2

dy2

})n
δ(y − yn−1)

where
ρ =

xt
2
− μ � =

xt
2

For algebraic manipulations we use the integral representation
of the delta function and write the solution of (5) as

p(y, t) = lim
n→∞
Θn

1
2π

∫ +∞

−∞
exp{− jzy} exp{ jzyn−1} dz

where

Θ = exp
{
ρ(t − tn−1)

n
d
dy

}
exp

{
�(t − tn−1)

n
d2

dy2

}

We claim that

exp
{
�(t − tn−1)

n
d2

dy2

}
exp{− jzy} = exp

{
−�(t − tn−1)

n
z2 − jzy

}

exp
{
ρ(t − tn−1)

n
d
dy

}
exp{− jzy} = exp

{
−ρ(t − tn−1)

n
jz − jzy

}

Therefore

Θ exp{− jzy} = exp
{
−�(t − tn−1)

n
z2 − ρ(t − tn−1)

n
jz − jzy

}

Θn exp{− jzy} = exp
{
−�(t − tn−1)z2 − ρ(t − tn−1) jz − jzy

}
and thus

p(y, t) =
1
2π

∫ +∞

−∞
exp{−�(t − tn−1)z2

+ jz
[−y + yn−1 − ρ(t − tn−1)]} dz

Let Z be a Gaussian random variable and ψ(u), u ∈ R, be its
characteristic function:

ψ(u) = E[exp{ juZ}]

= (2πVar[Z])−
1
2

∫ +∞

−∞
exp{ juz} exp

{
− (z − E[Z])

2

2Var[Z]

}
dz

= exp
{
juE[Z] − u

2

2
Var[Z]

}

Then

p(y, t) =
1

2
√
π�(t − tn−1)

ψ (−y + yn−1 − ρ(t − tn−1))

with
E[Z] = 0 Var[Z] =

1
2�(t − tn−1)

and hence we obtain for tn−1 ≤ t ≤ tn

p(y, t) =
1√

2πxt(t − tn−1)

× exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩−
[−y + yn−1 +

(
μ − xt

2

)
(t − tn−1)]2

2xt(t − tn−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭

3.1 Conditional density characterization:
the optimal filter

The optimal estimate—in a sense of the mean square—of
f (xt) given the observations y1,...,yn−1 up to time t is the con-
ditional expectation

E
[
f (xt)|y1, ..., yn−1

]
tn−1 ≤ t < tn n ≥ 1

for all reasonable functions f on R+. We assume that
P {xt ≤ x|y1, ..., yn−1} possesses a density with respect to the
Lebesgue measure λ on R+:

Πxt |y1,...,yn−1(x) =
dP {xt ≤ x|y1, ..., yn−1}

λ(dx)

Now look at the SDE (2), the Fokker-Planck operator for xt is

LFP p(x) = αp(x) + α(x − m)p′(x) + Dαp′′(x)
The domain of this operator is the set of distribution densities
p(x) on (R+,B(R+)), under P, satisfying

mp(0) − Dp′(0) = 0
This is due to the reflection of the process xt on the boundary
{0} of its state space R+.

It follows that the posterior distribution density Πxt |y1,...,yn−1(x)
for tn−1 ≤ t < tn, n ≥ 1, solves the Fokker-Planck equation

∂p
∂t
(x, t) = LFPp(x, t) tn−1 < t < tn

i.e.
∂p
∂t
(x, t) = αp(x, t) + α(x − m)∂p

∂x
(x, t) + Dα

∂2p
∂x2

(x, t) (6)

with the initial condition

p(x, tn−1) = Πx(tn−1)|y1,...,yn−1(x) (7)

and the boundary condition

mp(0, t) − D∂p
∂x
(0, t) = 0 (8)

This is a static relation for x = 0, i.e., it holds for any
t ∈ [tn−1, tn[.

At each observation instant tn, n ≥ 1, Π x(tn)|y1,...,yn(x) solves the
Bayes rule

Π x(tn)|y1,...,yn(x) ∝ Πx(t−n )|y1,...,yn−1(x)Πyn|y1,...,yn−1,x(tn)=x(yn) (9)

where

Πyn |y1,...,yn−1,x(tn)=x(yn) =
1√

2πx(tn − tn−1)

× exp
⎧⎪⎪⎪⎨⎪⎪⎪⎩−

[
−yn + yn−1 + (μ − x

2 )(tn − tn−1)
]2

2x(tn − tn−1)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
and Πx(t−n )|y1,...,yn−1(x) is the solution of (6-8) as t ↑ tn.
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4 Identification

It follows from (3) that the variation process [y]t of yt is given
by

[y]t =
∫ t

0
xs ds

thus

[y]tn − [y]tn−1 =
∫ tn

tn−1
xs ds n = 1, 2, ...

On the other hand, so long as every duration between two
successive observations is small, the following approximation
holds

[y]tn ≈
n∑
i=1
(yi − yi−1)2

Thus ∫ tn

tn−1
xs ds ≈ (yn − yn−1)2

i.e., the couple of series below coincide approximatively

S =
{∫ tn

tn−1
xs ds

}
n=1,2,...

S ′ =
{
(yn − yn−1)2

}
n=1,2,...

and so do their first and second order moments. The following
is the computation of the mean and the correlation function for
the series S of aggregations of the instantaneous volatility on
the observation intervals. To do this we need to have tn−tn−1 =
δ for each n = 1, 2, ... and as mentioned above δ must be small
(we set δ = 1 time unit). Then

E

[∫ tn

tn−1
xs ds

]
=
2D δ√
2πD

and for k = 1, 2, ...

E

[∫ tn

tn−1
xu du ,

∫ tn−k

tn−k−1
xv dv

]
=

∫ tn

tn−1

∫ tn−k

tn−k−1
rx(u − v) du dv

If we replace rx(u− v) by its expression, we obtain the follow-
ing formula for k = 1, 2, ...

E

[∫ tn

tn−1
xu du ,

∫ tn−k

tn−k−1
xv dv

]
=

C
α2

(
exp{−αδ(k − 1)} − 2 exp{−αδk} + exp{−αδ(k + 1)})

(10)

It follows thatC and αmay be obtained by least squares of the
difference between the correlation function of S ′, estimated
from the observations, and the correlation function given by
formula (10).

The following gives an approximation for the drift parameter
μ in (1). We have

yn − yn−1 =
∫ tn

tn−1

(
μ − xs

2

)
ds +

∫ tn

tn−1

√
xs dWs

Then

E
[
yn − yn−1

]
= μ δ − 1

2
E

[∫ tn

tn−1
xs ds

]

= μ δ − D δ√
2πD

and thus
μ =

1
δ
E

[
yn − yn−1

]
+

D√
2πD

The Hang Seng index price of the market of Hong Kong is
observed during 3191 successive trading days from 1995 to
2007. This is plotted in Figure 1. Figure 2 shows the daily
returns

yn − yn−1 = log
(
S tn
S tn−1

)
n = 1, ..., 3190

The empirical mean of S ′ yields an approximation for the
second order momentD of 1.0977e−007. This approximation
together with the empirical mean of the daily returns yield an
approximation for the drift μ of 5.4008e−004. The constantC
and the rate α that give a good fitting between the correlation
function of S and its approximation are 3.5926e − 007 and
0.0857 respectively. The model for the stochastic volatility of
the stock is thus calibrated, and we now go back to filtering.
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Figure 1: The observed sample path for the daily price of the
Hang Seng index.
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Figure 2: The observed sample path for the daily return.

5 A Monte-Carlo particle filter

The true filter (6-9) which is optimal in a mean square sense
involves a resolution of the Fokker-Planck equation. Both an-
alytic and numerical solutions for this partial differential equa-
tion are computationally intractable. This drives us to an al-
ternative Monte-Carlo filter [9]. We wish to approximate the
posterior distribution as a weighted sum of randomDirac mea-
sures: for Γ a Borel-measurable set from R+

P {xt ∈ Γ|y1, ..., yn−1} ≈
K∑
k=1
wk εξk (Γ) tn−1 ≤ t < tn n ≥ 1

where the particles ξk are independent identically distributed
random variables with “the same” law as xt; these particles
are indeed samples drawn from the Euler discretization of
the SDE (2). Here we use the well known Euler scheme
since there isn’t a significant gain with more sophisticated dis-
cretization schemes. Then, for any function f on R+

E
[
f (xt)|y1, ..., yn−1

] ≈
K∑
k=1
wk f (ξk) tn−1 ≤ t < tn n ≥ 1

The weights {wk}k=1,...,K are updated only as and when an ob-
servation yn proceeds, each one according to the likelihood of
its corresponding particle, i.e., at each observation time tn

wk =
Πyn|y1,...,yn−1,x(tn)=ξk (yn)∑K
�=1Πyn |y1,...,yn−1,x(tn)=ξ� (yn)

where {ξk}k=1,...,K are samples with the same law as x(tn).

Besides sampling, there may be (importance) resampling at
each observation time: the set of particles is updated for re-
moving particles with small weights and duplicating those

with important weights. We simulate K new iid random vari-
ables according to the distribution

K∑
k=1
wk εξk

Obviously, the new particles have new weights and thus give
a new approximation for the posterior distribution. On the
other hand, these new particles are used to initialize the Euler
discretization scheme for the next sampling.

The following is the remainder of implementation details of
the Monte-Carlo particle filter.

• Number of particles: K = 1000
• Time step of the Euler discretization: 0.01 time unit
• In practice the distribution for the initial volatility x0 is
not available, here we take a uniform distribution on [ε, 1]
(ε > 0 must be small); its density satisfies the imposed
condition (8).

The sample path of the square root volatility—in percent—is
displayed in Figure 3. This sample path exhibits relatively
high volatilities that are clustered together round the 697th
trading day; this corresponds to the Asian financial crisis of
October 1997.
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Figure 3: The estimated sample path for the volatility of the
Hang Seng index.
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6 Conclusion

Probabilistic management of uncertainty in dynamical sys-
tems can be illustrated with a financial engineering applica-
tion: volatility estimation. We treat volatility as a stochastic
process and construct a filter that is recursive and pathwise in
observations. These two aspects are designated with the term
online, or real-time, filtering. The filter output is one particu-
lar sample path of the volatility process. The main feature that
makes online particle filtering possible is analytic resolution of
a Fokker-Planck equation. Our method does not require data
transformation, such as removing seasonality. The conformity
between the implementation result—within a low simulation
cost—and some practical issues prove the performance of the
method to my satisfaction.
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