
 

 
Abstract— An analytical solution for non-orthogonal 

stagnation point for the steady flow of a viscous and 
incompressible fluid is presented. The governing nonlinear 
partial differential equations for the flow field are reduced to 
ordinary differential equations by using similarity 
transformations existed in the literature and are solved 
analytically by means of the Homotopy Analysis Method 
(HAM). The comparison of results from this paper and those 
published in the literature confirms the precise accuracy of the 
HAM. The resulting analytical equation from HAM is valid for 
entire physical domain and effective parameters. 
 

Index Terms— Homotopy Analysis Method (HAM), Non-
orthogonal, Stagnation flow, Stretching sheet, Analytical 
solution 
 

I.   INTRODUCTION 

TAGNATION flow, fluid motion near the stagnation 
region, exists on all solid bodies moving in a fluid. 

Problems such as the extrusion of polymers in melt-spinning 
processes, glass blowing, the continuous casting of metals, 
and the spinning of fibers all involve some aspect of flow 
over a stretching sheet or cylindrical fiber [1]. 

Hiemenz was first to study two-dimensional stagnation 
flow using a similarity transform to reduce the Navier–
Stokes equations to non-linear ordinary differential equation 
[2]. Chiam [3] studied stagnation point flow over stretching 
sheet. He considered various aspects of this problem such as 
normal or oblique two-dimensional and axisymmetric flows. 
Heat transfer of normal stagnation flow on a stretching sheet 
was later discussed by Mahapatra and Gupta [4]. Kimiaeifar 
et al. [5] investigated the steady flow of the third grade fluid 
in a porous half space. Kimiaeifar et al [6], studied two-
dimensional stagnation flow towards a shrinking sheet. 
Recently, Lok et al. [7] modeled the stagnation flow 
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impinging on stretching sheet at some angle of incidence, by 
using numerical methods. 

Analytical methods were used to study the viscous flow 
near a stagnation point. Xu et al. [8] studied the unsteady 
boundary layer flows of non-Newtonian fluids near a 
forward stagnation point. Hayat et al. [9], [10] investigated 
the MHD stagnation-point flow of an upper-convected 
Maxwell fluid over a stretching surface and MHD flow of a 
micropolar fluid near a stagnation-point towards a non-
linear stretching surface. El-Ajou et al. [11] studied the 
construction of analytical solutions to fractional differential 
equations. Dommairy and N. Nadim [12] applied HAM and 
HPM in non–linear heat transfer equation. Fakhrai et al. 
[13] presented an analytical solution of BBMB equations. 
Recently Rahimpour et al. [14] studied the axisymmetric 
stagnation flow towards a shrinking sheet. 

Nonlinear equations arose in many scientific problems 
and it is a challenging area for the researchers who want to 
solve these equations. There are some analytical solutions 
for a few numbers of nonlinear equations which are not 
applicable to the real world situations. Therefore, the only 
way to solving such nonlinear equations is numerical 
methods which among them we can address perturbation 
methods [15]. Stability and convergence are one of the most 
important issues with the numerical methods which should 
be taken into account to avoid divergence or inappropriate 
results. In the perturbation method, a small parameter is 
inserted in the equation and finding this small parameter and 
exerting it into the equations are deficiencies of this method. 

One of the semi-exact methods which does not need 
small/large parameters is the Homotopy Analysis Method 
(HAM), first proposed by Liao in 1992 [16], [17]. In this 
method the convergence region can be adjusted and 
controlled by an auxiliary parameter which is one of the 
important advantages of this method compare to other 
perturbation methods. It should be emphasized that the 
Homotopy Perturbation Method (HPM), introduced in 1998, 
is only a special case of HAM [18]–[21]. 

Up to now, no investigation has been made which 
provides an analytical solution for the non-orthogonal 
stagnation flow towards a stretching sheet. In this study, 
HAM is applied to find an analytical solution of nonlinear 
ordinary differential equations arising from the similarity 
solution, and the results were compared with those obtained 
in [7]. 
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II.   FORMULATIONS 

Considering stagnation point flow over a stretching 
surface in the x -axis direction in a two dimensional 
Cartesian coordinate ( ,x y ). The fluid domain is 0y   and 

the flow with the velocity ( , )e e eV u v  and different angle of 

incidence   impinges on the wall as shown schematically in 

Fig. 1, where eu  and ev  are velocity components at infinity. 

The governing equations for the steady two-dimensional 
incompressible flow are:  
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x y
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where u  and v  are the velocity components along the x  
and y  directions, respectively,   is the density, p  is the 

pressure and   is the fluid kinematic viscosity. Considering 
no Slip wall boundary condition on the wall, 
 

, 0, 0,w wu cx v at y    (4) 

 
where c is the stretching rate. Velocity components at 
infinity are as follow:  
 

( sin ) ( cos ) ,eu a x b y    (5) 

 
( sin ) , ,ev a y at y    (6) 

 
where a and b are positive constants and   is a positive 

parameter. It is worth mentioning that the external flow is a 
combination of a linear shear flow (shear stress b) parallel to 
the stream wise direction and a potential stagnation flow 
characterized by the constant a. Given the similarity 
transforms from [7]: 
 

0.5 0.5( ) , ( ) , .
c c

x x y y


  
    (7) 

 
Near the stretching surface the scaled stream function is 

assumed in the form: 
 

( ) ( ).x f y g y    (8) 

 

 
Fig. 1.  The non-orthogonal stagnation flow on a stretching sheet 

 
 

Finally the Navier–Stokes equations are reduced to: 
 

2 2 2sin 0,f ff f         (9) 

 
cos 0,g fg f g k         (10) 

 
where a c   and k b c  are positive constants. The 

boundary conditions are defined as: 
 
(0) 0, (0) 1, ( ) sin ,f f f        (11) 

 
(0) (0) 0, ( ) cos ,g g g k       (12) 

also ( ) sinf y      and ( ) cosg yk     can be 

obtained, where   is a real constant and could be obtained 
by solving Eq. (9).  By using ( ) ( )cosg y kh y   , Eq. (10) 

reduces to [7]: 
 

0.h fh f h         (13) 

 
The boundary conditions for above equation are: 
 

(0) (0) 0, ( ) 1.h h h      (14) 

 
The dimensionless skin friction is [7]: 
 

2

2
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 (15) 

 
The location of the stagnation point, sx , is the place that 

the scaled streamlines 0   and the curve 0u  cross the 

wall at the stagnation point where w  approaches zero, thus: 

 

.
)0(

)0(cos

f

hk
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


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III.   APPLICATIONS 

The governing equations for the non-orthogonal 
stagnation point flow towards a stretching sheet are 
expressed by Eq. (9) and Eq. (13). Nonlinear operators are 
defined as: 
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where [0,1]q  is the embedding parameter and it should be 

mentioned that the embedding parameter increases from 0 to 
1, ( , )U y q  and ( , )Y y q  vary from the initial guess, 0 ( )U y  

and 0 ( )Y y , to the exact solution, ( )U y  and ( )Y y therefore it 

is obtained: 
 

),()1,(,)()0,( 0 yUyfyUyf   (19) 

 
).()1,(,)()0,( 0 yYyhyYyh   (20) 

 
Expanding ( , )f y q  and ( , )h y q   in Taylor series with 

respect to q leads to: 
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Homotopy analysis method can be expressed by many 

different base functions [16]; according to the governing 
equations, it is straightforward to use a base function in the 
form of: 
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that pb  and pd  are the coefficients should be determined. 

When the base function is selected, the auxiliary functions 
( )fH y , ( )hH y , initial approximations 0 ( )U y , 0 ( )Y y  and 

the auxiliary linear operators fL  and hL  must be chosen in 

such a way that the corresponding high-order deformation 
equations have solutions with the functional form similar to 
the base functions. This method is known as the rule of 
solution expression [17].  

The linear operators fL  and hL  are chosen as: 
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with the property:  
 

1 2 3[ ] 0,y
fL c c y c e    (29) 

 

,0][ 2
654  ycyccLh  (30) 

 
where c1 to c6 are the integral constants. According to the 
rule of solution expression and the initial conditions, the 
initial approximations, 0U  and 0Y  as well as the integral 

constants, c1 to c6 are formed as: 
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The zeroth order deformation equation for ( )f y  is: 
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where 0 is a nonzero auxiliary parameter and according 
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to the rule of solution expression and from Eq. (33), the 
auxiliary function ( )fH y can be chosen as follows: 

 

( ) .p ry
fH y y e  (35) 

 
Differentiating Eq. (33), m times, with respect to the 

embedding parameter q and then setting 0q   in the final 

expression and dividing it by m!, it is reduced to: 
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Eq. (36) is the mth order deformation equation for ( )f y , 

where: 
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and 
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The rate of convergence can be increased when suitable 

values are selected for r and p. According to the rule of 
solution expression the suitable values for r and p are 
{ 0, 1}p r  . Consequently, the corresponding auxiliary 

function was determined as ( ) y
fH y e . As a result of this 

selection, the solution’s series ( )U y , is developed up to 

18th order of approximation, so ( )f y  is obtained as 

follows: 
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The zeroth order deformation equation for ( )h y  is: 
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Auxiliary function and mth order deformation equation for 

1m   are: 
 
( ) 1,hH y   (43) 
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Since f and h are coupled in Eq. (13), the order of 

approximation for ( )f y  in this equation is limited to 8.  

Eq. (44) is the mth order deformation equation for ( )h y , 

where: 
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By developing the solution’s series, ( )Y y , up to 10th 

order of approximation, ( )h y  is obtained: 
 

10
2

0 1
0

2 5 2

2 5 6 2 2

10 12 2

10 12 6

1
( ) ( ) ( ) ( )

2

0.3743967885 sin( )cos ( )

4.820986454 10 cos ( )

3.647607224 10

3.647607224 10 .

m
m

y

y

y

y

h y Y y Y y Y y y

e y

e y

e

e

  

 








 

 

 

     



 

 

 

 







 

 (48) 

 

IAENG International Journal of Applied Mathematics, 41:2, IJAM_41_2_02

(Advance online publication: 24 May 2011)

 
______________________________________________________________________________________ 



 

IV.   CONVERGENCE OF HAM SOLUTION 

The analytical solution should converge. The 
convergence and accuracy of the solution series should be 
controlled, therefore it should be noted that the auxiliary 
parameter  , as pointed out by Liao [17]. In order to define 
a region where the solution series is independent on  , a 
multiple of  -curves are plotted. The region where the 
distribution of f  , f  , f  and h , h , h  versus   is a 

horizontal line is known as the convergence region for the 
corresponding function. The common region among the f  

and its derivatives, h  and its derivative are known as the 
overall convergence region. 

To study the influence of   on the convergence of 
solution, the  -curve of (0)f  , (1)f  , (2)f and (0)h , 

(1)h , (2)h  are plotted respectively by 18th order and 10th 

order  approximation of solution for some selected   and 
 , as shown in Fig. 2. Furthermore, increasing the order of 

approximation decreases the relative error, as shown in Fig. 
3. 

 

V.   RESULTS AND DISCUSSION 

After solving equations (9) and (13) with the boundary 
conditions described in equations (11) and (14) with the 
HAM for different values of   and   the following results 

obtained. Calculated values of (0)f  ,  and sx  are shown 

in Table 1, Table 2 and Table 3 for different values of   
and  , respectively. In these tables HAM results also are 

compared with the results of [7] and showed that HAM 
provides an analytical solution with high order of accuracy 
within a few numbers of iterations. 

As it can be seen from Table 1 results show that (0)f   

has a strong nonlinear behavior respect to  but increasing 

  lead to increscent of (0)f  . Unlike (0)f  ,   varies in a 

linear manner respect to   and   as it is presented in Table 

2. Based on this table we can see that   decreases when 
values of   and  increased. Results in the Table 3 show 

that sx  has a nonlinear variation respect to   and  . In the 

Fig. 4 variation of f   respect to y is presented for different 

values of   and  .  

According to this figure it can be seen when   increases, 
the boundary layer thickness decreases, as it is observed in 
[7]. The effects of   and   on scaled streamlines are 

shown in Fig. 5. As mentioned before, HAM can provide an 
analytical solution which is acceptable for all values of y 
and other effective parameter such as   and  . Eq. (49) 

presents an expression for ( , , )f y   with 10 orders of 

approximation: 
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Note that, as pointed in [18]–[20], the results given by the 

“Homotopy Perturbation Method” are exactly the same as 
those given by the HAM when 1   and ( ) 1H   , 

because the “Homotopy Perturbation Method” is only a 
special case of the HAM. The comparison between HAM 
and HPM for (0)f   is shown in Fig. 6. The figure shows 

that for 3   and / 6  , the prediction of two methods 

are identical, and when   and  increase ( 3   and 

/ 6  ); the deviation between two methods becomes 

more significant, because the HPM solution gets divergent. 
 
 

VI.   CONCLUSIONS 

The nonlinear differential equations resulting from 
similarity solution of non-orthogonal stagnation point flow 
towards a stretching sheet is studied using the Homotopy 
Analysis Method. The comparison with numerical results 
and convergence study shows that using approximations of 
small orders, results in satisfactory accuracy and increasing 
the order of approximation, the accuracy increases. After 
demonstrating the effectiveness of HAM, as a powerful 
analytical technique, the effects of different parameters such 
as   and  on the velocity distribution are presented. 

The proposed analytical approach has many applications, 
and thus may be applied in similar ways to other boundary-
layer flows to obtain accurate series solutions. 
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Fig. 2. The  -curves to indicate the convergence region: (a) 0.1  , 

/ 2  ; (b) 1.0  , / 3  ; (c) 3.0  , / 4  ; (d) 5.0  , 

/12  ; (e) 2.5  , / 4  ; (f) 4.0  , /12  . 
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Fig. 3. The effect of order of approximation on Relative Error. (Relative 
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Fig. 4. Function ( )f y , predicted by the HAM solution: (a) / 2  ; 

(b) / 3  ; (c) / 4  ; (d) /12   
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Fig. 5. The streamlines predicted by the HAM solution, 2.5  : (a) 

/15  ; (b) / 6  ; (c) / 3  ; (d) / 2  . 
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Fig. 6. Relative Error of 18th order HAM solution: (a) / 4  ; (b) 5  . 

Relative Error is defined as  (0) (0) (0)Numeric HAM Numericf f f   ). 
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TABLE I 
COMPARING THE PRESENT ANALYTICAL AND NUMERICAL RESULTS FOR (0)f   WITH THE NUMERICAL RESULTS OF [7], [4] AND [5] 

  )0(f   

 15/   12/   6/   4/   3/   2/   

      Present [7] [4] [5] 

0.1 -0.995598 -0.994472 -0.987580 -0.980613 -0.933641 -0.969336 -0.969388 -0.969400 -0.969400 
  -0.994348*  -0.980700* -0.933660*     

0.5 -0.967722 -0.956475 -0.885797 -0.806194 -0.734437 -0.667275 -0.667271 -0.667300 -0.667300 
  -0.956268*  -0.806205* -0.734444*     

1 -0.913276 -0.879695 -0.667264 -0.424228 -0.205018 — — — — 
  -0.879674*  -0.424315* -0.205025*     

2 -0.750707 -0.648648 0.000000 0.738433 1.400960 2.017491 2.017615 2.017500 2.017500 
  -0.648613*  0.738474* 1.401023*     

3 -0.528237 -0.331944 0.909530 2.313073 3.566574 4.729456 4.729694 4.729300 4.729600 
  -0.331937*  2.313144* 3.566614*     

4 -0.254722 0.056877 2.017503 4.221816 6.184068 8.001139 8.001379 — — 
  0.056886*  4.221839* 6.184095*     

5 0.063870 0.508974 3.296959 6.418007 9.187889 11.751991 11.753760 — — 
  0.508995*  6.418018* 9.189975*     

THE SUPERSCRIPT * IS FROM [7] 
 
 
 

TABLE II 
VARIATIONS OF   WITH RESPECT TO   AND   

    

 /15   /12   / 6   / 4   / 3   / 2   

0.1 0.948837 0.937121 0.885257 0.844550 0.815224 0.791705 
 0.948840* 0.937146* 0.885260* 0.844538* 0.815253*  

0.5 0.784950 0.743188 0.577234 0.462835 0.386766 0.328594 
 0.784941* 0.743196* 0.577249* 0.462841* 0.386747*  
1 0.630245 0.566690 0.328612 0.174330 0.074789 — 
 0.630258* 0.566681* 0.328601* 0.174313* 0.074780*  
2 0.402481 0.314049 — -0.194558 -0.318151 -0.410406 
 0.402497* 0.314069* — -0.194572* -0.318141*  
3 0.232485 0.129225 -0.229744 -0.449356 -0.588801 -0.693056 
 0.232477* 0.129230* -0.229705* -0.449360* -0.588790*  
4 0.095224 -0.018534 -0.410433 -0.649838 -0.802213 -0.916502 
 0.095215* -0.018542* -0.410425* -0.649826* -0.802232*  
5 -0.020777 -0.142647 -0.561671 -0.818124 -0.981979 -1.105170 
 -0.02076* -0.142771* -0.56166* -0.818131* -0.981994*  

THE SUPERSCRIPT * IS FROM [7] 
 

TABLE III 

VARIATIONS OF THE LOCATION OF STAGNATION POINT, sx , WITH RESPECT TO   AND   

  sx  

  15/   12/   6/   4/   3/   

0.1 -0.024495 0.013777 0.096788 0.129686 0.116341 
  0.013796* 0.096778* 0.129673* 0.116440* 

0.5 -0.734288 0.337793 0.531590 0.581741 0.499358 
  0.337787* 0.531582* 0.581737* 0.499344* 
1 1.326771 0.610011 1.015793 1.493927 2.337632 
  0.609998* 1.015784* 1.493930* 2.337573* 
2 0.937517 1.183010 — -1.043772 -0.405385 
  1.183009* — -1.043765* -0.405374* 
3 1.585532 2.693435 -1.051013 -0.359658 -0.169953 
  2.693444* -1.051062* -0.359664* -0.169948* 
4 3.634407 -17.143788 -0.500180 -0.205309 -0.101474 
  -17.143792* -0.500169* -0.205311* -0.101470* 
5 -15.479858 -2.027413 -0.316717 -0.138553 -0.069771 
    -2.027498* -0.31673* -0.138567* -0.069767* 

THE SUPERSCRIPT * IS FROM [7] 
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