Cordial and 3-equitable Labeling for Some Wheel Related Graphs

S K Vaidya , N A Dani , K K Kanani , P L Vihol

Abstract—We present here cordial and 3-equitable labeling for the graphs obtained by joining apex vertices of two wheels to a new vertex. We extend these results for k copies of wheels.

Index Terms—Cordial graph, Cordial labeling, 3-equitable graph, 3-equitable labeling

AMS Subject classification number(2000): 05C78.

I. INTRODUCTION

W E begin with simple, finite and undirected graph G = (V, E). In the present work $W_n = C_n + K_1$ $(n \ge 3)$ denotes the wheel and in W_n vertices correspond to C_n are called rim vertices and vertex which corresponds to K_1 is called an apex vertex. For all other terminology and notations we follow Harary [7]. We will give brief summary of definitions which are useful for the present investigations.

Definition 1.1 Consider two wheels $W_n^{(1)}$ and $W_n^{(2)}$ then $G = \langle W_n^{(1)} : W_n^{(2)} \rangle$ is the graph obtained by joining apex vertices of wheels to a new vertex x.

Note that G has 2n+3 vertices and 4n+2 edges.

Note that G has k(n+2)-1 vertices and 2k(n+1)-2 edges.

Definition 1.3 If the vertices of the graph are assigned values subject to certain conditions then it is known as *graph labeling*.

According to Hegde [8] most interesting graph labeling problems have following three important characteristics.

- 1) a set of numbers from which the labels are chosen;
- 2) a rule that assigns a value to each edge;
- 3) a condition that these values must satisfy.

The recent survey on graph labeling can be found in Gallian [6]. Vast amount of literature is available on different types of graph labeling. According to Beineke and Hegde [2] graph labeling serves as a frontier between number theory and structure of graphs.

Labeled graph have variety of applications in coding theory, particularly for missile guidance codes, design of

S K Vaidya is with the Saurashtra University, Rajkot, 360005 IN-DIA(phone:+919825292539; e-mail: samirkvaidya@yahoo.co.in)

N A Dani is with Government Polytechnic, Junagadh, 362001 INDIA (e-mail: nilesh_a_d@yahoo.co.in)

K K Kanani is with L E College, Morbi, 363642 INDIA (e-mail: kananikkk@yahoo.co.in)

P L Vihol is with Government Polytechnic, Rajkot, 360002 INDIA (email: viholprakash@yahoo.com) good radar type codes and convolution codes with optimal autocorrelation properties. Labeled graph plays vital role in the study of X-Ray crystallography, communication network and to determine optimal circuit layouts. A detailed study on variety of applications of graph labeling is carried out in Bloom and Golomb [3].

Definition 1.4 Let G = (V, E) be a graph. A mapping $f: V(G) \rightarrow \{0,1\}$ is called *binary vertex labeling* of G and f(v) is called the *label* of the vertex v of G under f.

For an edge e = uv, the induced edge labeling $f^*: E(G) \to \{0, 1\}$ is given by $f^*(e)=|f(u) - f(v)|$. Let $v_f(0), v_f(1)$ be the number of vertices of G having labels 0 and 1 respectively under f and let $e_f(0), e_f(1)$ be the number of edges having labels 0 and 1 respectively under f^* .

Definition 1.5 A binary vertex labeling of a graph G is called a *cordial labeling* if $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$. A graph G is *cordial* if it admits cordial labeling.

The concept of cordial labeling was introduced by Cahit [4].

Many researchers have studied cordiality of graphs. e.g.Cahit [4] proved that tree is cordial. In the same paper he proved that K_n is cordial if and only if $n \leq 3$. Ho et al. [9] proved that unicyclic graph is cordial unless it is C_{4k+2} while Andar et al. [1] have discussed cordiality of multiple shells. Vaidya et al. [10], [11], [12] have also discussed the cordiality of various graphs.

Definition 1.6 A vertex labeling of a graph G is called a 3-equitable labeling if $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$. A graph G is 3-equitable if it admits 3-equitable labeling.

The concept of 3-equitable labeling was introduced by Cahit [5] and in the same paper he proved that Eulerian graphs with number of edges congruent to 3(mod6) are not 3-equitable. Youssef [17] proved that W_n is 3-equitable for all $n \ge 4$. Several results on 3-equitable labeling for some wheel related graphs in the context of vertex duplication are reported in Vaidya et al. [13].

In the present investigations we prove that graphs $\langle W_n^{(1)}: W_n^{(2)} \rangle$ and $\langle W_n^{(1)}: W_n^{(2)}: W_n^{(3)}: \ldots: W_n^{(k)} \rangle$ are cordial as well as 3-equitable.

II. MAIN RESULTS

Theorem-2.1 Graph $< W_n^{(1)} : W_n^{(2)} >$ is cordial.

Proof Let $v_1^{(1)}, v_2^{(1)}, v_3^{(1)}, \dots, v_n^{(1)}$ be the rim vertices $W_n^{(1)}$ and $v_1^{(2)}, v_2^{(2)}, v_3^{(2)}, \dots, v_n^{(2)}$ be the rim vertices $W_n^{(2)}$. Let c_1 and c_2 be the apex vertices of $W_n^{(1)}$ and $W_n^{(2)}$ respectively and they are adjacent to a new common vertex x. Let $G = \langle W_n^{(1)} : W_n^{(2)} \rangle$. We define binary vertex labeling $f: V(G) \to \{0, 1\}$ as follows.

For any $n \in N - \{1,2\}$ and $i = 1, 2, \ldots n$ where N is set of natural numbers.

In this case we define labeling as follows

 $f(v_i^{(1)}) = 1;$ $f(c_1) = 0;$ $f(v_i^{(2)}) = 0;$ $f(c_2) = 1;$ f(x) = 1;

Thus rim vertices of $W_n^{(1)}$ and $W_n^{(2)}$ are labeled with the sequences $1, 1, 1, \ldots, 1$ and $0, 0, \ldots, 0$ respectively. The common vertex x is labeled with 1 and apex vertices with 0 and 1 respectively.

The labeling pattern defined above covers all possible arrangement of vertices. The graph G satisfies the vertex condition $v_f(0) + 1 = v_f(1)$ and edge condition $e_f(0) = e_f(1)$. i.e. G admits cordial labeling.

Illustration 2.2 Consider $G = \langle W_6^{(1)} : W_6^{(2)} \rangle$. Here n = 6. The cordial labeling is as shown in Figure 1.

Theorem 2.3 Graph $\langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} : \ldots : W_n^{(k)} \rangle$ is cordial.

Proof Let $W_n^{(j)}$ be k copies of wheel W_n , $v_i^{(j)}$ be the rim vertices of $W_n^{(j)}$ and c_j be the apex vertex of $W_n^{(j)}$ (here i = 1, 2, ..., n and j = 1, 2, ..., k).Let $x_1, x_2 ..., x_{k-1}$ be the vertices such that c_{p-1} and c_p are adjacent to x_{p-1} where $2 \leq p \leq k$. Consider $G = \langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} : ... : W_n^{(k)} >$. To define binary vertex labeling $f : V(G) \to \{0,1\}$ we consider following cases.

Case 1: $n \in N - \{1, 2\}$ and even k where $k \in N - \{1, 2\}$. In this case we define labeling function f as For $i = 1, 2, \dots n$ and $j = 1, 2, \dots k$ $f(v_i^{(j)}) = 0$; if j even. = 1; if j odd. $f(c_j) = 1$; if j even. = 0; if j odd. $f(x_j) = 1$; if j even, $j \neq k$. = 0; if j odd, $j \neq k$.

Case 2: $n \in N - \{1, 2\}$ and odd k where $k \in N - \{1, 2\}$. In this case we define labeling function f for first k - 1 wheels as

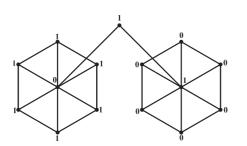


Fig. 1. Cordial labeling of graph G.

For
$$i = 1, 2, ... n$$
 and $j = 1, 2, ... k - 1$
 $f(v_i^{(j)}) = 0$; if j even.
 $= 1$; if j odd.
 $f(c_j) = 1$; if j even.
 $= 0$; if j odd.
 $f(x_j) = 1$; if j even.
 $= 0$; if j odd.

To define labeling function f for k^{th} copy of wheel we consider following subcases

Subcase 1: If $n \equiv 3(mod4)$. For $1 \le i \le n - 1$ $f(v_i^{(k)}) = 0$; if $i \equiv 0, 1(mod4)$. = 1; if $i \equiv 2, 3(mod4)$. $f(v_n^{(k)}) = 0$; $f(c_k) = 1$;

Subcase 2: If
$$n \equiv 0, 2 \pmod{4}$$
.

 $f(v_i^{(k)}) = 0; \text{ if } i \equiv 0, 1(mod4).$ = 1; if $i \equiv 2, 3(mod4).$ $f(c_k) = 0; n \equiv 0(mod4)$ $f(c_k) = 1; n \equiv 2(mod4)$

Subcase 3: If $n \equiv 1 \pmod{4}$. $f(v_i^{(k)}) = 0$; if $i \equiv 0, 3 \pmod{4}$. = 1; if $i \equiv 1, 2 \pmod{4}$. $f(c_k) = 0$;

The labeling pattern defined above exhaust all the possibilities and in each one the graph G under consideration satisfies the conditions $|v_f(0) - v_f(1)| \le 1$ and $|e_f(0) - e_f(1)| \le 1$ as shown in Table 1. i.e. G admits cordial labeling.

(In Table 1 n = 4a + b and $a \in N \cup \{0\}$)

Let us understand the labeling pattern with some examples given below.

Illustrations 2.4

Example 1: Consider $G = \langle W_7^{(1)} : W_7^{(2)} : W_7^{(3)} : W_7^{(4)} \rangle$. Here n = 7 and k = 4 i.e k is even. The cordial labeling is as shown in Figure 2.

Example 2: Consider $G = \langle W_5^{(1)} : W_5^{(2)} : W_5^{(3)} \rangle$. Here n = 5 i.e $n \equiv 1 \pmod{4}$ and k = 3 i.e k is odd. The cordial labeling is as shown in Figure 3.

Theorem 2.5 Graph $\langle W_n^{(1)} : W_n^{(2)} \rangle$ is 3-equitable.

Proof Let $v_1^{(1)}, v_2^{(1)}, v_3^{(1)}, \dots v_n^{(1)}$ be the rim vertices $W_n^{(1)}$ and $v_1^{(2)}, v_2^{(2)}, v_3^{(2)}, \dots v_n^{(2)}$ be the rim vertices $W_n^{(2)}$.

TABLE I VERTEX AND EDGE CONDITIONS FOR f

k	b	Vertex Condition	Edge Condition
even	0,1,2,3	$v_f(0) = v_f(1) + 1$	$e_{f}(0) = e_{f}(1)$
	0	$v_f(0) = v_f(1) + 1$	$e_f(0) = e_f(1)$
odd	1,3	$v_f(0) = v_f(1)$	$e_{f}(0) = e_{f}(1)$
	2	$v_f(0) + 1 = v_f(1)$	$e_{f}(0) = e_{f}(1)$

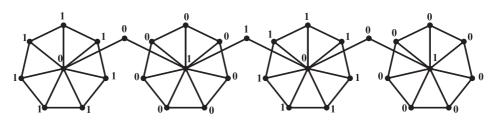


Fig. 2. Cordial labeling of graph G.



Fig. 3. Cordial labeling of graph G.

Let c_1 and c_2 be the apex vertices of $W_n^{(1)}$ and $W_n^{(2)}$ respectively and they are adjacent to a new common vertex x. Let $G = \langle W_n^{(1)} : W_n^{(2)} \rangle$. To define vertex labeling $f: V(G) \to \{0, 1, 2\}$ we consider the following cases.

Case 1:
$$n \equiv 0 \pmod{6}$$

In this case we define labeling f as:
 $f(v_i^{(1)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 1; i \equiv 2, 3 \pmod{6}$
 $= 2; i \equiv 0, 5 \pmod{6}, 1 \le i \le n$
 $f(c_1) = 2;$
 $f(v_i^{(2)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 2; i \equiv 2, 3 \pmod{6}$
 $= 1; i \ge 0, 5 \pmod{6}, 1 \le i \le n - 3$
 $= 1; i \ge n - 2$
 $f(c_2) = 0;$
 $f(x) = 0;$
Case 2: $n \equiv 1 \pmod{6}$
In this case we define labeling f as:
 $f(v_i^{(1)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 1; i \equiv 2, 3 \pmod{6}$
 $= 2; i \equiv 0, 5 \pmod{6}, 1 \le i \le n$
 $f(c_1) = 2;$
 $f(v_i^{(2)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 1; i \equiv 2, 3 \pmod{6}$
 $= 2; i \equiv 0, 5 \pmod{6}, 1 \le i \le n$
 $f(c_2) = 2;$
 $f(x) = 1;$
Case 3: $n \equiv 2 \pmod{6}$
In this case we define labeling f as:
 $f(v_i^{(1)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 1; i \equiv 0, 5 \pmod{6}$
 $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n - 2$
 $= 1; i \ge n - 1$
 $f(c_1) = 0;$
 $f(v_i^{(2)}) = 0; i \equiv 1, 4 \pmod{6}$
 $= 1; i \equiv 0, 5 \pmod{6}$
 $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n - 2$

$$= 2; i \ge n - 1$$

 $f(c_2) = 0;$
 $f(x) = 1;$

Case 4: $n \equiv 3 \pmod{6}$ Subcase 1: $n \neq 3$ In this case we define labeling f as: $f(v_i^{(1)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 0, 5(mod6)$ $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n$ $f(c_1) = 0;$ $f(v_i^{(2)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 2, 3 \pmod{6}$ = 2; $i \equiv 0, 5 \pmod{6}, 1 \le i \le n-3$ $= 1; i \ge n - 2$ $f(c_2) = 0;$ f(x) = 2;Subcase 2: n = 3 $f(v_1^{(1)}) = f(v_1^{(2)}) = f(c_2) = 0;$ $f(v_2^{(1)}) = f(v_3^{(1)}) = f(c_1) = 1;$ $f(v_2^{(2)}) = f(v_3^{(2)}) = f(x) = 2;$ Case 5: $n \equiv 4 \pmod{6}$ In this case we define labeling f as: $f(v_i^{(1)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 0, 5(mod6)$ $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n - 3$ = 1; i = n - 2, n - 1= 0; i = n $f(c_1) = 2;$ $f(v_i^{(2)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 0, 5 \pmod{6}$ $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n$ $f(c_2) = 2; f(x) = 1.$ Case 6: $n \equiv 5 \pmod{6}$ In this case we define labeling f as: $f(v_i^{(1)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 2, 3(mod6)$ = 2; $i \equiv 0, 5 \pmod{6}, 1 \le i \le n-5$ = 1; i = n - 4, n - 3= 2; i = n - 2, n= 0; i = n - 1 $f(c_1) = 2;$ $f(v_i^{(2)}) = 0; i \equiv 1, 4(mod6)$ $= 1; i \equiv 0, 5 \pmod{6}$ $= 2; i \equiv 2, 3 \pmod{6}, 1 \le i \le n - 5$ = 0; i = n - 4, n - 1

$$= 1; i = n - 3, n - 2$$

= 2; i = n
(c₂) = 0;
f(x) = 0;

f

The labeling pattern defined above covers all the possible arrangement of vertices and in each case the resulting labeling satisfies the conditions $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$ as shown in Table 2. i.e. G admits 3-equitable labeling.

(In Table 2 n = 6a + b and $a \in N \cup \{0\}$)

Let us understand the labeling pattern defined in Theorem 2.5 by means of following Illustration 2.6.

Illustration 2.6 Consider a graph $G = \langle W_5^{(1)} : W_5^{(2)} \rangle$ Here n = 5 i.e $n \equiv 5 \pmod{6}$. The corresponding 3-equitable labeling is shown in Figure 4.

Theorem 2.7 Graph $\langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} : \ldots : W_n^{(k)} \rangle$ is 3-equitable.

Proof Let $W_n^{(j)}$ be k copies of wheel W_n , $v_i^{(j)}$ be the rim vertices of $W_n^{(j)}$ where i = 1, 2, ..., n and $j = 1, 2, \dots k$. Let c_j be the apex vertex of $W_n^{(j)}$. Consider $G = \langle W_n^{(1)} : W_n^{(2)} : W_n^{(3)} : \dots : W_n^{(k)} \rangle$ and vertices $x_1, x_2, \ldots x_{k-1}$ as stated in Theorem 2.3. To define vertex labeling $f: V(G) \to \{0, 1, 2\}$ we consider following cases.

Case 1: For $n \equiv 0 \pmod{6}$. In this case we define labeling function f as follows Subcase 1: For $k \equiv 0 \pmod{3}$. For $i = 1.2(mod^3)$

For
$$j \equiv 1, 2(mod3)$$

 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$.
 $= 1$; if $i \equiv 0, 5(mod6)$.
 $= 2$; if $i \equiv 2, 3(mod6)$, $i \le n - 3$.
 $f(v_i^{(j)}) = 1$; if $i \ge n - 2$.
 $f(c_j) = 0$.
 $f(x_j) = 2$; if $j \equiv 1(mod3)$.
 $= 0$; if $j \equiv 2(mod3)$.
For $j \equiv 0(mod3)$
 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$.

TABLE II VERTEX AND EDGE CONDITIONS FOR f

b	Vertex Condition	Edge Condition
0	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$
1,4	$v_f(0) = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
2	$v_f(0)+1=v_f(1)=v_f(2)+1$	$e_f(0)+1=e_f(1)=e_f(2)+1$
3	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)$
5	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0)+1=e_f(1)=e_f(2)+1$

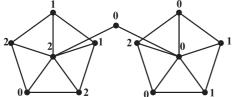


Fig. 4. 3-equitable labeling of graph G.

 $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ $= 2; \text{ if } i \equiv 2, 3 \pmod{6}.$ $f(c_i) = 2.$ $f(x_j) = 0, \ j \neq k.$

Subcase 2: For $k \equiv 1 \pmod{3}$.

 $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 (mod 6).$ = 2; if $i \equiv 2, 3(mod6)$. $f(c_1) = 2.$ $f(x_1) = 0.$

For remaining vertices take j = k - 1 and label them as in subcase 1.

Subcase 3: For $k \equiv 2 \pmod{3}$. $f(w^{(1)}) = 0$ if i = 1 $4(mod_{6})$

$$f(v_i^{(2)}) = 0, \text{ if } i \equiv 1, 4(mod 0).$$

= 1; if $i \equiv 0, 5(mod 6).$
= 2; if $i \equiv 2, 3(mod 6).$
 $f(c_1) = 0.$
 $f(x_1) = 2.$
 $f(v_i^{(2)}) = 0; \text{ if } i \equiv 1, 4(mod 6).$
= 1; if $i \equiv 0, 5(mod 6).$
= 2; if $i \equiv 2, 3(mod 6), i \leq n - 3.$
 $f(v_i^{(2)}) = 1; \text{ if } i \geq n - 2.$
 $f(c_2) = 0.$
 $f(x_2) = 0.$

For remaining vertices take j = k - 2 and label them as in subcase 1.

Case 2: For $n \equiv 1 \pmod{6}$.

In this case we define labeling function f as follows 1. For la

Subcase 1: For
$$k \equiv 0 \pmod{3}$$
.
 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4 \pmod{6}$.
 $= 1$; if $i \equiv 0, 5 \pmod{6}$.
 $= 2$; if $i \equiv 2, 3 \pmod{6}$, $i \le n - 1$.
 $f(v_n^{(j)}) = 0$; if $j \equiv 1 \pmod{3}$.
 $f(v_n^{(j)}) = 1$; if $j \equiv 0, 2 \pmod{3}$.
 $f(c_j) = 2$; if $j \equiv 1 \pmod{3}$.
 $f(c_j) = 0$; if $j \equiv 0, 2 \pmod{3}$.
 $f(x_j) = 1$; if $j \equiv 1 \pmod{3}$.
 $= 2$; if $j \equiv 0, 2 \pmod{3}$.
 $f(x_j) = 1$; if $i \equiv 1, 4 \pmod{3}$.
 $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4 \pmod{6}$.
 $= 1$; if $i \equiv 0, 5 \pmod{6}$.
 $= 2$; if $i \equiv 2, 3 \pmod{6}$, $i \le n - 1$.
 $f(v_n^{(1)}) = 1$;

 $f(c_1) = 2.$

 $f(x_1) = 0.$

For remaining vertices take j = k - 1 and label them as in subcase 1.

Subcase 3: For $k \equiv 2 \pmod{3}$.

For j = 1, 2

$$f(v_i^{(j)}) = 0; \text{ if } i \equiv 1, 4(mod6).$$

= 1; if $i \equiv 0, 5(mod6).$
= 2; if $i \equiv 2, 3(mod6), i \leq n - 1.$
 $f(v_n^{(j)}) = 1;$
 $f(c_1) = 0.$
 $f(c_2) = 2.$

$$f(x_1) = 2$$

 $f(x_2) = 0$

$$J(x_2) = 0$$

For remaining vertices take j = k - 2 and label them as in subcase 1.

Case 3: For $n \equiv 2(mod6)$. In this case we define labeling function f as follows **Subcase 1:** For $k \equiv 0 \pmod{3}$. For $j \equiv 1, 2 \pmod{3}$ $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 4$. $f(v_{n-3}^{(j)}) = 2.$ $f(v_i^{(j)}) = 1$; if $i \ge n - 2$. $f(c_j) = 0$; if $j \equiv 1 \pmod{3}$. $f(c_j) = 2$; if $j \equiv 2 \pmod{3}$. $f(x_i) = 0.$ For $j \equiv 0 \pmod{3}$ $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 2, 3 (mod 6).$ = 2; if $i \equiv 0, 5 \pmod{6}, i \le n - 2$. $f(v_i^{(j)}) = 1$; if $i \ge n - 1$. $f(c_i) = 2.$ $f(x_j) = 0, \ j \neq k.$ Subcase 2: For $k \equiv 1 \pmod{3}$. $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ = 2; if $i \equiv 2, 3 \pmod{6}, i \le n - 2$. $f(v_{n-1}^{(1)}) = 2.$ $f(v_n^{(1)}) = 0.$ $f(c_1) = 0.$ $f(x_1) = 1.$ For remaining vertices take j = k - 1 and label them as in subcase 1. Subcase 3: For $k \equiv 2 \pmod{3}$. For j = 1, 2 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 4$. $f(v_{n-3}^{(j)}) = 2;$ $f(v_i^{(j)}) = 1$; if $i \ge n - 2$. $f(c_j) = 0.$ $f(x_1) = 1.$ $f(x_2) = 0.$ For remaining vertices take j = k - 2 and label them as in subcase 1. Case 4: For $n \equiv 3(mod6)$. In this case we define labeling function f as follows Subcase 1: For $k \equiv 0 \pmod{3}$. $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 (mod 6).$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 3$. If $j \equiv 1 \pmod{3}$ $f(v_i^{(j)}) = 1$; if $i \ge n - 2$. $f(c_i) = 0.$ $f(x_j) = 1.$ If $j \equiv 2 \pmod{3}$ $f(v_{n-2}^{(j)}) = 0.$ $f(v_{n-1}^{(j)}) = 2.$ $f(v_n^{(j)}) = 1.$ $f(c_i) = 0.$ $f(x_i) = 2.$ If $j \equiv 0 \pmod{3}$ $f(v_i^{(j)}) = 0; if j = n - 1, n - 2.$

$$f(v_n^{(j)}) = 2.$$

 $f(c_j) = 2.$
 $f(x_j) = 2, \ j \neq$

k.

Subcase 2: For $k \equiv 1 \pmod{3}$. $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 2, 3 \pmod{6}.$ = 2; if $i \equiv 0, 5 \pmod{6}, i \le n - 3$. $f(v_i^{(1)}) = 2$; if i > n-2. $f(c_1) = 0.$ $f(x_1) = 1.$ For remaining vertices take j = k - 1 and label them as in subcase 1. Subcase 3: For $k \equiv 2 \pmod{3}$. For j = 1, 2 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 (mod 6).$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 3$. $f(v_i^{(1)}) = 1$; if i = n - 1, n - 2. $f(v_n^{(1)}) = 0.$ $f(v_i^{(2)}) = 2; \text{ if } i \ge n-2.$ $f(c_j) = 0.$ $f(x_1) = 1.$ $f(x_2) = 2.$ For n = 3 label rim vertices of $W_n^{(1)}$ by 0, 1, 0 and apex vertex by 1. For remaining vertices take j = k - 2 and label them as in subcase 1. **Case 5:** For $n \equiv 4 \pmod{6}$. In this case we define labeling function f as follows Subcase 1: For $k \equiv 0 \pmod{3}$. For $j \equiv 0, 1, 2 \pmod{3}$ $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 (mod 6).$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 4$. $f(v_{n-3}^{(j)}) = 0; \text{ if } j \equiv 0, 1(mod3).$ $f(v_{n-3}^{(j)}) = 2; \text{ if } j \equiv 2(mod3).$ $f(v_{i}^{(j)}) = 1; \text{ if } j \equiv 1, 2(mod3), i \ge n-2.$ $f(v_i^{(j)}) = 2$; if $j \equiv 0 \pmod{3}$, $i \ge n-2$. $f(c_j) = 2, \ j \equiv 1, 2 \pmod{3}.$ $f(c_i) = 0, \ j \equiv 0 \pmod{3}.$ $f(x_j) = 0, \ j \neq k.$ Subcase 2: For $k \equiv 1 \pmod{3}$. $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ $= 2; \text{ if } i \equiv 2, 3 \pmod{6}.$ $f(c_1) = 0.$ $f(x_1) = 1.$ For remaining vertices take j = k - 1 and label them as in subcase 1. Subcase 3: For $k \equiv 2 \pmod{3}$. $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 2, 3 \pmod{6}.$ -2 if i = 0.5(mod6)

$$f(v_i^{(2)}) = 0; \text{ if } i \equiv 0, 5(mod 0).$$

= 1; if $i \equiv 1, 4(mod 6).$
= 1; if $i \equiv 0, 5(mod 6).$
= 2; if $i \equiv 2, 3(mod 6).$
 $f(c_1) = 2.$

(Advance online publication: 24 May 2011)

 $f(c_2) = 0.$ $f(x_1) = 1.$

 $f(x_2) = 2$. For remaining vertices take j = k - 2 and label them as in subcase 1.

Case 6: For $n \equiv 5 \pmod{6}$. In this case we define labeling function f as follows Subcase 1: For $k \equiv 0 \pmod{3}$. For $j \equiv 1, 2 \pmod{3}$ $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 2, 3 \pmod{6}.$ = 2; if $i \equiv 0, 5 \pmod{6}, i \leq n - 2$. $f(v_{n-1}^{(j)}) = 1.$ $f(v_n^{(j)}) = 2$; if $j \equiv 1 \pmod{3}$. $f(v_n^{(j)}) = 0$; if $j \equiv 2 \pmod{3}$. $f(c_j) = 2$; if $j \equiv 1 \pmod{3}$. $f(c_j) = 0$; if $j \equiv 2 \pmod{3}$. $f(x_j) = 1$; if $j \equiv 1 \pmod{3}$. $f(x_i) = 2$; if $j \equiv 2 \pmod{3}$. For $j \equiv 0 \pmod{3}$ $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 \pmod{6}.$ = 2; if $i \equiv 2, 3 \pmod{6}$ $i \leq n - 1$. $f(v_n^{(j)}) = 2.$ $f(c_i) = 0.$ $f(x_j) = 2, \ j \neq k.$ Subcase 2: For $k \equiv 1 \pmod{3}$. $f(v_i^{(1)}) = 0$; if $i \equiv 1, 4(mod6)$. $= 1; \text{ if } i \equiv 0, 5 (mod 6).$ = 2; if $i \equiv 2, 3 \pmod{6}, i \leq n - 2$. $f(v_i^{(1)}) = 1$; if $i \ge n - 1$. $f(c_1) = 0.$ $f(x_1) = 2.$ For remaining vertices take i = k - 1 and label them as

in subcase 1. **Subcase 3:** For $k \equiv 2 \pmod{3}$. For j = 1, 2 $f(v_i^{(j)}) = 0$; if $i \equiv 1, 4 \pmod{6}$. = 1; if $i \equiv 0, 5 \pmod{6}$. = 2; if $i \equiv 2, 3 \pmod{6}$, $i \le n-2$. $f(v_i^{(j)}) = 1, i \ge n-1$. $f(c_1) = 0$. $f(c_2) = 2$. $f(x_j) = 0$.

For remaining vertices take j = k - 2 and label them as in subcase 1.

The labeling pattern defined above covers all possible arrangement of vertices. In each case, the graph G under consideration satisfies the conditions $|v_f(i) - v_f(j)| \leq 1$ and $|e_f(i) - e_f(j)| \leq 1$ for all $0 \leq i, j \leq 2$ as shown in Table 3. i.e. G admits 3-equitable labeling.

(In Table 3 n = 6a + b and k = 3c + d where $a \in N \cup \{0\}, c \in N$)

The labeling pattern defined above is demonstrated by means of following Illustration 2.8.

Illustration 2.8 Consider a graph $G = \langle W_6^{(1)} : W_6^{(2)} : W_6^{(3)} : W_6^{(4)} \rangle$. Here n = 6 and k = 4. The corresponding 3-equitable labeling is as shown in Figure 5.

TABLE IIIVERTEX AND EDGE CONDITIONS FOR f

b	d	Vertex Condition	Edge Condition
0	0	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0)+1=v_f(1)+1=v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
	2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) = e_f(2) + 1$
1	0	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) + 1 = e_f(1) = e_f(2)$
	2	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0) = e_f(1) = e_f(2)$
2	0	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	2	$v_f(0)+1=v_f(1)=v_f(2)+1$	$e_f(0)+1=e_f(1)=e_f(2)+1$
3	0	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0)+1=v_f(1)+1=v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
	2	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2)$
4	0	$v_f(0) + 1 = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0) = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) + 1 = e_f(2)$
	2	$v_f(0) = v_f(1) + 1 = v_f(2)$	$e_f(0) = e_f(1) = e_f(2)$
5	0	$v_f(0) = v_f(1) = v_f(2) + 1$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	1	$v_f(0) = v_f(1) = v_f(2)$	$e_f(0)+1=e_f(1)=e_f(2)+1$
	2	$v_f(0) = v_f(1) + 1 = v_f(2) + 1$	$e_f(0)+1=e_f(1)=e_f(2)+1$

III. CONCLUDING REMARKS

Cordial and 3-equitable labeling of some star and shell related graphs are reported in Vaidya et al. [14], [15] while the present work corresponds to cordial and 3-equitable labeling of some wheel related graphs. Here we provide cordial and 3-equitable labeling for the larger graphs constructed from the standard graph.

Further scope of research

- Similar investigations can be carried out in the context of different graph labeling techniques and for various standard graphs.
- Cordial labeling in the context of arbitrary super subdivision of graphs is discussed in Vaidya and Kanani [16]. In likeway all the results reported here can be discussed in the context of arbitrary super subdivision of graphs.

REFERENCES

- [1] M Andar, S Boxwala and N B Limaye: "A Note on cordial labeling of multiple shells", *Trends Math.*, pp. 77-80, 2002.
- [2] L W Beineke and S M Hegde, "Strongly Multiplicative graphs", Discuss.*Math. Graph Theory*, 21, pp.63-75, 2001. (http://www.discuss.wmie.uz.zgora.pl/gt/index.php)
- [3] G S Bloom and S W Golomb, "Application of numbered undirected graphs", *Proceedings of IEEE*, 65(4), pp. 562-570, 1977. (http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=31252)
- [4] I Cahit, Cordial Graphs: "A weaker version of graceful and harmonious Graphs", Ars Combinatoria, 23, pp. 201-207, 1987.
- [5] I Cahit, "On cordial and 3-equitable labelings of graphs", Util. Math., 37, pp. 189-198, 1990.
- [6] J A Gallian, A dynamic survey of graph labeling, *The Electronics Journal of Combinatorics*, 17 #DS6, 2010.
- (http://www.combinatorics.org/Surveys/index.html)
- [7] F Harary, *Graph theory*, Addison Wesley, Reading, Massachusetts, 1972.
 [8] S M Hegde, "On Multiplicative Labelings of a Graph", *Labeling of*
- [8] S M Hegde, "On Multiplicative Labelings of a Graph", *Labeling of Discrete Structures and applications*, Narosa Publishing House, New Delhi, pp. 83-96, 2008.

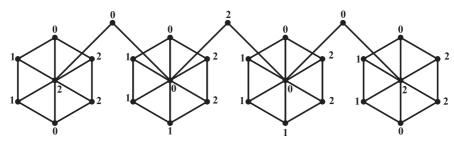


Fig. 5. 3-equitable labeling of graph G.

- [9] Y S Ho, S M Lee and S C Shee, "Cordial labeling of unicyclic graphs and generalized Petersen graphs", *Congress. Numer.*,68, pp. 109-122, 1989.
- [10] S K Vaidya, G V Ghodasara, Sweta Srivastav, V J Kaneria, "Cordial labeling for two cycle related graphs", *The Mathematics Student, J. of Indian Mathematical Society*. **76**, pp. 237-246, 2007.
- [11] S K Vaidya, G V Ghodasara, Sweta Srivastav, V J Kaneria, "Some new cordial graphs", Int. J. of scientific comp. 2(1), pp. 81-92, 2008.
- [12] S K Vaidya, Sweta Srivastav, G V Ghodasara, V J Kaneria, "Cordial labeling for cycle with one chord and its related graphs", *Indian J. of Math. and Math.Sci* 4(2), pp. 145-156, 2008.
- [13] S K Vaidya, N A Dani, K K Kanani, P L Vihol, "Some wheel related 3-Equitable Graphs in the context of vertex duplication", *Advance Appl. in Discrete Math.* 4(1), pp. 71-85, 2009. (www.pphmj.com/journals/aadm.html)
- [14] S K Vaidya, N A Dani, K K Kanani, P L Vihol, "Cordial and 3-Equitable labeling for some star related graphs", *Int. Math. Forum* 4(31), pp. 1543-1553, 2009. (www.m-hikari.com/imf.html)
- [15] S K Vaidya, N A Dani, K K Kanani, P L Vihol, "Cordial and 3-Equitable labeling for some shell related graphs", J. Sci. Res. 1(3), pp. 438-449, 2009.

(www.banglajol.info/index.php/JSR)

- [16] S K Vaidya, K K Kanani, "Some new results on cordial labeling in the context of abritray supersubdivision of graph", *Applied Math. Sciences* 4(47), pp. 2323-2329, 2010.
- (www.m-hikari.com/ams/index.html)
 [17] M. Z. Youssef, "A necessary condition on k-equitable labelings", *Util. Math.*, 64, pp. 193-195, 2003.