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Abstract—It is often demonstrated that Brouwer’s fixed
point theorem can not be constructively proved. Therefore,
Kakutani’s fixed point theorem, the Fan-Glicksberg fixed point
theorem and the existence of a pure strategy Nash equilibrium
in a strategic game with continuous (infinite) strategies and
quasi-concave payoff functions also can not be constructively
proved. On the other hand, however, Sperner’s lemma which
is used to prove Brouwer’s fixed point theorem can be con-
structively proved. Some authors have presented a construc-
tive (or an approximate) version of Brouwer’s theorem using
Sperner’s lemma. Thus, Brouwer’s fixed point theorem can be
constructively proved in its constructive version. It seems that
constructive versions of Kakutani’s fixed point theorem and
the Fan-Glicksberg fixed point theorem can be constructively
proved using that of Brouwer’s theorem. Then, can we prove a
constructive version of the Fan-Glicksberg fixed point theorem
directly by Sperner’s lemma? We present such a proof, and
we will show the existence of an approximate pure strategy
Nash equilibrium in a strategic game with continuous strategies
and quasi-concave payoff functions. We follow the Bishop style
constructive mathematics.

Index Terms—constructive version of the Fan-Glicksberg
fixed point theorem, approximate pure strategy Nash equi-
librium, continuous strategy, quasi-concave payoff function,
Sperner’s lemma.

I. INTRODUCTION

IT is often demonstrated that Brouwer’s fixed point
theorem can not be constructively proved. Therefore,

Kakutani’s fixed point theorem, the Fan-Glicksberg fixed
point theorem and the existence of a pure strategy Nash
equilibrium in a strategic game with continuous (infinite)
strategies and quasi-concave payoff functions also can not be
constructively proved. On the other hand, however, Sperner’s
lemma which is used to prove Brouwer’s fixed point theorem
can be constructively proved. Some authors have presented
a constructive (or an approximate) version of Brouwer’s
theorem using Sperner’s lemma. Thus, Brouwer’s fixed point
theorem can be constructively proved in its constructive
version. See [4] and [9]. It seems that constructive versions
of Kakutani’s fixed point theorem and the Fan-Glicksberg
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fixed point theorem can be constructively proved using that
of Brouwer’s theorem.

Then, can we prove a constructive version of the Fan-
Glicksberg fixed point theorem directly by Sperner’s lemma?

We present such a proof, and we will show the existence of
an approximate pure strategy Nash equilibrium in a strategic
game with continuous strategies and quasi-concave payoff
functions.

Let (pi)i∈I be a family of semi-norms on a locally convex
space where I is an index set, for example, the set of
positive integers, and F be a finitely enumerable subset
of I . A constructive version of the Fan-Glicksberg fixed
point theorem states that for any compact and convex val-
ued multi-function (multi-valued function or correspondence)
with closed graph from a compact and convex set in a
locally convex space to the set of its inhabited (nonempty)
subsets, there exists an approximate fixed point. We consider
a uniform version of the property of closed graph for multi-
functions, and call such a multi-function a multi-function
with uniformly closed graph, or say that a multi-function
uniformly has a closed graph. An approximate fixed point x
of a multi-function Φ for each ε > 0 is a point such that∑

i∈F pi(x − Φ(x)) < ε is satisfied for each F ⊂ I , where
pi(x − Φ(x)) = infy∈Φ(x) pi(x − y). An approximate pure
strategy Nash equilibrium is a state where strategies chosen
by all players are best responses each other within the range
of ε. We call such strategies approximate best responses.

In the next section we prove Sperner’s lemma. Our proof
is a standard constructive proof. In Section 3 we prove
a constructive version of the Fan-Glicksberg fixed point
theorem by Sperner’s lemma. In Section 4 we will show
the existence of an approximate pure strategy Nash equi-
librium in a strategic game with continuous strategies and
quasi-concave payoff functions. We follow the Bishop style
constructive mathematics according to [1], [2] and [3].

II. SPERNER’S LEMMA

To prove Sperner’s lemma we use the following simple
result in graph theory, Handshaking lemma1. A graph refers
to a collection of vertices and a collection of edges that
connect pairs of vertices. Each graph may be undirected or
directed. Fig. 1 is an example of an undirected graph. The
degree of a vertex of a graph is defined to be the number of

1For another constructive proof of Sperner’s lemma, see [7].
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Fig. 1. Example of graph

edges incident to the vertex, with loops counted twice. Each
vertex has odd degree or even degree. Let v denote a vertex
and V denote the set of all vertices.

Lemma 1 (Handshaking lemma): Every undirected graph
contains an even number of vertices of odd degree. That is,
the number of vertices that have an odd number of incident
edges must be even.

It is a simple lemma. But for completeness of arguments
we provide a proof.

Proof: Prove this lemma by double counting. Let d(v)
be the degree of vertex v. The number of vertex-edge
incidences in the graph may be counted in two different
ways: by summing the degrees of the vertices, or by counting
two incidences for every edge. Therefore,∑

v∈V

d(v) = 2e,

where e is the number of edges in the graph. The sum of
the degrees of the vertices is therefore an even number. It
could happen if and only if an even number of the vertices
had odd degree.

Let ∆ denote an n-dimensional simplex. n is a positive
integer at least 2. For example, a 2-dimensional simplex is
a triangle. Let partition or triangulate the simplex. Fig. 2 is
an example of partition (triangulation) of a 2-dimensional
simplex. In a 2-dimensional case we divide each side of ∆
in m equal segments, and draw the lines parallel to the sides
of ∆. Then, the 2-dimensional simplex is partitioned into m2

triangles. We consider partition of ∆ inductively for cases of
higher dimension. In a 3 dimensional case each face of ∆
is an 2-dimensional simplex, and so it is partitioned into m2

triangles in the way above mentioned, and draw the planes
parallel to the faces of ∆. Then, the 3-dimensional simplex
is partitioned into m3 trigonal pyramids. And so on for cases
of higher dimension.

Let K denote the set of small n-dimensional simplices
of ∆ constructed by partition. The vertices of these small
simplices of K are labeled with the numbers 0, 1, 2, . . . , n
subject to the following rule.

1) The vertices of ∆ are respectively labeled with 0
to n. We label a point (1, 0, . . . , 0) with 0, a point
(0, 1, 0, . . . , 0) with 1, a point (0, 0, 1 . . . , 0) with 2,
. . . , a point (0, . . . , 0, 1) with n. That is, a vertex
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Fig. 2. Partition and labeling of 2-dimensional simplex

whose k-th coordinate (k = 0, 1, . . . , n) is 1 and all
other coordinates are 0 is labeled with k.

2) If a vertex of simplices of K is contained in an n− 1-
dimensional face of ∆, then that vertex is labeled with
some number which is the same as the number of a
vertex of that face.

3) If a vertex of simplices of K is contained in an n −
2-dimensional face of ∆, then that vertex is labeled
with some number which is the same as the number
of a vertex of that face. And so on for cases of lower
dimension.

4) A vertex contained in inside of ∆ is labeled with
arbitrary number among 0, 1, . . . , n.

A small simplex of K which is labeled with the numbers
0, 1, . . . , n is called a fully labeled simplex. Now let us prove
Sperner’s lemma.

Lemma 2 (Sperner’s lemma): If we label the vertices of
K following above rules 1) ∼ 4), then there are an odd
number of fully labeled simplices. Thus, there exists at least
one fully labeled simplex.

Proof: Our proof is standard. But again for completeness
of arguments we provide a proof in Appendix A.

Since n and partition of ∆ are finite, the number of small
simplices constructed by partition is also finite. Thus, we can
constructively find a fully labeled n-dimensional simplex of
K through finite steps.

III. CONSTRUCTIVE VERSION OF THE FAN-GLICKSBERG

FIXED POINT THEOREM

In this section we will prove a constructive version of the
Fan-Glicksberg fixed point theorem using Sperner’s lemma.
The classical Fan-Glicksberg theorem ([5] and [6]) is stated
as follows.

Theorem 1 (The Fan-Glicksberg fixed point theorem):
Let X be a compact and convex subset of a locally
convex space E, and Φ be a compact and convex valued
multi-function with closed graph from X to the set of its
inhabited subsets. Then, Φ has a fixed point.
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A locally convex space consists of a vector space E and
a family (pi)i∈I of semi-norms on X , where I is an index
set, for example, a set of positive integers. For each finitely
enumerable subset F of I we define a basic neighborhood
of a set S as follows2;

V (S, F, ε) = {y ∈ X|
∑
i∈F

pi(y − z) < ε for some z ∈ S}.

The closure of V (S, F, ε) is denoted by V (S, F, ε), and it is
represented as follows;

V (S, F, ε) = {y ∈ X|
∑
i∈F

pi(y − z) ≤ ε for some z ∈ S}.

We call it a closed basic neighborhood of S. Compactness of
a set in a locally convex space in constructive mathematics
means total boundedness with completeness. According to
[3] we define total boundedness of a set in a locally convex
space as follows.

Definition 1: (Total boundedness of a set in a locally
convex space)

Let X be a subset of E, F be a finitely enumerable subset
of I , and ε > 0. By an ε-approximation to X relative to F
we mean a subset T of X such that for each x ∈ X there
exists y ∈ T with

∑
i∈F pi(x− y) < ε.

X is totally bounded relative to F if for each ε > 0 there
exists a finitely enumerable ε-approximation to X relative to
F . It is totally bounded if it is totally bounded relative to
each finitely enumerable subset of I .

An approximate fixed point of a multi-function is defined
as follows;

Definition 2: (Approximate fixed point of a multi-function
in a locally convex space) For each ε > 0 x∗ is an
approximate fixed point of a multi-function Φ from X to
the set of its inhabited subsets if∑

i∈F

pi(x
∗ − Φ(x∗)) < ε,

for each finitely enumerable F ⊂ I , where pi(x
∗−Φ(x∗)) =

infy∈Φ(x∗) pi(x
∗ − y).

A graph of a multi-function Φ from X to the set of its
inhabited subsets is

G(Φ) = ∪x∈X{x} × Φ(x).

If G(Φ) is a closed set, we say that Φ has a closed graph. It
implies the following fact.

Consider sequences (x(n))n≥1 and (y(n))n≥1

such that y(n) ∈ Φ(x(n)). If x(n) −→ x and
y(n) −→ y, then y ∈ Φ(x).

According to [3] this means

If for each basic neighborhood U(x, F, ε) of x
there exists n0 such that x(n) ∈ U(x, F, ε) when
n ≥ n0, then for the union of basic neighborhoods
∪y∈Φ(x)V (y,G, ε) of points in Φ(x) there exists
n′
0 such that y(n) ∈ ∪y∈Φ(x)V (y,G, ε) when

n ≥ n′
0.

If X is a metric space, the semi-norm in the definition of
a basic neighborhood is replaced by the metric. n0 and n′

0

depend on x and ε. Further we consider a uniform version

2A set F is finitely enumerable if there exists a natural number N and a
mapping of the set {1, 2, . . . , N} onto F .

of this property for multi-functions, and call such a multi-
function a multi-function with uniformly closed graph, or say
that a multi-function uniformly has a closed graph. It means
that n0 and n′

0 depend on only ε not on x.
If X is totally bounded relative to each finitely enu-

merable subset of I , there exists a finitely enumerable τ -
approximation {x0, x1, . . . , xm} to X relative to each finitely
enumerable F ⊂ I , that is, for each x ∈ X we have∑

i∈F pi(x − xi) < τ for at least one xi, i = 0, 1, . . . ,m
for each F . Let

Φτ (x) = V (Φ(x), F, τ),

where V (Φ(x), F, τ) is a closed basic neighborhood of Φ(x).
If Φ uniformly has a closed graph, Φτ also uniformly has a
closed graph. Now let

XV =

{
n∑

i=0

αixi|xi ∈ X,
n∑

i=0

αi = 1, αi ≥ 0

}
. (1)

This is the convex-hull of {x0, x1, . . . , xm}. If X is convex
and compact, for x ∈ X we have

Φ(x) ⊂ X ⊂ V (XV , F, τ).

Thus,
Φ(x) ∩ V (XV , F, τ) ̸= ∅,

and so
Φτ (x) ∩XV ̸= ∅.

Let
ΦXV

(x) = Φτ (x) ∩XV for x ∈ XV .

Then, it is a compact and convex valued multi-function
with uniformly closed graph from XV to the set of its
inhabited subsets. If the dimension of XV is n, XV

is homeomorphic to an n-dimensional simplex ∆ =
{(α0, α1, . . . , αn)|

∑n
i=0 αi = 1}. A multi-function with

uniformly closed graph from ∆ to the set of its inhabited
subsets corresponds one to one to a multi-function with
uniformly closed graph from XV to the set of its inhabited
subsets.

The contents of our constructive version of the Fan-
Glicksberg fixed point theorem are described in the following
theorem.

Theorem 2: (Constructive version of the Fan-Glicksberg
fixed point theorem) Let X be a compact (totally bounded
and complete) and convex subset of a locally convex space E,
and Φ be a compact and convex valued multi-function with
uniformly closed graph from X to the set of its inhabited
subsets. Then, Φ has an approximate fixed point.

Proof:

1) Let consider a compact and convex valued multi-
function Γ with uniformly closed graph from an n-
dimensional simplex ∆ to the set of its inhabited sub-
sets. We show that we can partition ∆ so that the con-
ditions of Sperner’s lemma are satisfied. We partition
∆ according to the method in the proof of Sperner’s
lemma, and label the vertices of simplices constructed
by partition of ∆. Consider a sequence (∆(m))m≥1 of
partitions of ∆. The larger m, the finer the partition
and the smaller the diameter of simplices constructed
by partition of ∆. Let x(m)0, x(m)1, . . . and x(m)n
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be the vertices of a simplex in ∆(m). The values of
Γ at theses vertices are Γ(x(m)0),Γ(x(m)1), . . . and
Γ(x(m)n). We can consider a sequence of vertices
including the vertices x(m)0, x(m)1, . . . and x(m)n of
the same simplex. Denote the sequence by (x(N))N≥1.
And consider a sequence of the values of Γ at these
vertices, and denote it by (Γ(x(N)))N≥1. By the
uniform version of the closed graph property of Γ,

Suppose x(N) −→ x, and let y(N) ∈ Γ(x(N)).
If there exists N0 such that |x(N)−x| < ε when
N ≥ N0, then there exists N ′

0 such that |y(N)−
Γ(x)| < ε (it means |y(N) − y| < ε for some
y ∈ Γ(x)) when N ≥ N ′

0.

Consider a simplex in a sufficiently fine partition of ∆.
Let x0 be a vertex of a small n-dimensional simplex
constructed by partition of ∆ which is labeled, for
example, with 0 by the labelling method which will be
explained below. We take a point φ(x) ∈ Γ(x) for all
other vertices of this simplex so that |φ(x0)−φ(x)| <
ε is satisfied3. It is important how to label the vertices
contained in the faces of ∆. We label a vertex x
according to the following rule,

If xk > φk or xk + τ > φk, we label x with k,

where τ is a positive number, and xk denotes the k-
th coordinate of x. If there are multiple k’s which
satisfy this condition, we label x conveniently for the
conditions for Sperner’s lemma to be satisfied. We do
not randomly label the vertices. For example, let x be
a point contained in an n − 1-dimensional face of ∆
such that xi = 0 for one i among 0, 1, 2, . . . , n (its
i-th coordinate is 0). With τ > 0, we have φi > 0
or φi < τ 4. When φi > 0, from

∑n
j=0 xj = 1,∑n

j=0 φj = 1 and xi = 0,

n∑
j=1,j ̸=i

xj >
n∑

j=1,j ̸=i

φj .

Then, for at least one j (denote it by k) we have xk >
φk, and we label x with k, where k is one of the
numbers which satisfy xk > φk. Since φi > xi, i
does not satisfy this condition. Assume φi < τ . xi = 0
implies

∑n
j=0,j ̸=i xj = 1. Since

∑n
j=0,j ̸=i φj ≤ 1, we

obtain
n∑

j=0,j ̸=i

xj ≥
n∑

j=0,j ̸=i

φj .

Then, for a positive number τ we have
n∑

j=0,j ̸=i

(xj + τ) >
n∑

j=0,j ̸=i

φj .

There is at least one j(̸= i) which satisfies xj+τ > φj .
Denote it by k, and we label x with k. k is one of
the numbers other than i such that xk + τ > φk is
satisfied. i itself satisfies this condition (xi + τ > φi).

3There may exist a case such that we can not take a point φ(x) for some
vertex x so that |φ(x0)−φ(x)| < ε is satisfied. See 3) of this proof about
such a case.

4In constructive mathematics for any real number x we can not prove that
x ≥ 0 or x < 0, that x > 0 or x = 0 or x < 0. But for any distinct real
numbers x, y and z such that x > z we can prove that x > y or y > z.

But, since there is a number other than i which satisfies
this condition, we can select a number other than i. We
have proved that we can label the vertices contained in
an n − 1-dimensional face of ∆ such that xi = 1 for
one i among 0, 1, 2, . . . , n with the numbers other than
i. By similar procedures we can show that we can label
the vertices contained in an n− 2-dimensional face of
∆ such that xi = 0 for two i’s among 0, 1, 2, . . . , n
with the numbers other than those i’s, and so on.

Consider the case where xi = xi+1 = 0. We see
that when φi > 0 or φi+1 > 0,

n∑
j=0,j ̸=i,i+1

xj >
n∑

j=0,j ̸=i,i+1

φj ,

and so for at least one j(denote it by k) we have
xk > φk, and we label x with k. On the other
hand, when φi < τ and φi+1 < τ , we have

n∑
j=0,j ̸=i,i+1

xj ≥
n∑

j=0,j ̸=i,i+1

φj .

Then, for a positive number τ we have

n∑
j=0,j ̸=i,i+1

(xj + τ) >
n∑

j=0,j ̸=i,i+1

φj .

Thus, there is at least one j(̸= i, i + 1) which
satisfies xj + τ > φj . Denote it by k, and we
label x with k.
Next consider the case where xi = 0 for all i
other than n. If for some i φi > 0, then we have
xn > φn, and label x with n. On the other hand,
if φj < τ for all j ̸= n, then we obtain xn ≥ φn.
It implies xn + τ > φn. Thus, we can label x
with n.

Therefore, the conditions for Sperner’s lemma are
satisfied, and there exists an odd number of fully
labeled simplices in K.

2) Consider a fully labeled simplex constructed by a
sufficiently fine partition of ∆. Denote vertices of
the fully labeled simplex by x0, x1, . . . , xn. We
name these vertices so that x0, x1, . . . , xn are labeled,
respectively, with 0, 1, . . . , n. Then, from 1) of this
proof |xj − x0| < ε and |φ(xj) − φ(x0)| < ε for
each j ̸= 0. The i-th components of x0 and φ(x0) are
denoted by x0

i and φ(x0)i, and so on. Suppose τ > 0.
About x0, from the labeling rules we have x0

0 + τ >
φ(x0)0. About x1, also from the labeling rules we have
x1
1 + τ > φ(x1)1 which implies x1

1 > φ(x1)1 − τ .
|φ(x0)−φ(x1)| < ε means φ(x1)1 > φ(x0)1 − ε. On
the other hand, |x0 − x1| < ε means x0

1 > x1
1 − ε.

Thus, from

x0
1 > x1

1 − ε, x1
1 > φ(x1)1 − τ, φ(x1)1 > φ(x0)1 − ε

we obtain

x0
1 > φ(x0)1 − 2ε− τ > φ(x0)1 − 2ε− τ

By similar arguments, for each i other than 0,

x0
i > φ(x0)i − 2ε− τ. (2)
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Fig. 3. A multi-function in 1-dimensional case

For i = 0 we have x0
0 + τ > φ(x0)0. Then,

x0
0 > φ(x0)0 − τ (3)

Adding (2) and (3) side by side except for some i
(denote it by k) other than 0,

n∑
j=0,j ̸=k

x0
j >

n∑
j=0,j ̸=k

φ(x0)j − 2(n− 1)ε− nτ.

From
∑n

j=0 x
0
j = 1,

∑n
j=0 φ(x

0)j = 1 we have 1 −
x0
k > 1−φ(x0)k − 2(n− 1)ε−nτ , which is rewritten

as
x0
k < φ(x0)k + 2(n− 1)ε+ nτ.

Since (2) implies x0
k > φ(x0)k − 2ε− τ , we have

φ(x0)k − 2ε− τ < x0
k < φ(x0)k + 2(n− 1)ε+ nτ.

Thus,
|x0

k − φ(x0)k| < 2(n− 1)ε+ nτ (4)

is derived. On the other hand, adding (2) from 1 to n
yields

n∑
j=1

x0
j >

n∑
j=1

φ(x0)j − 2nε− nτ.

From
∑n

j=0 x
0
j = 1,

∑n
j=0 φ(x

0)j = 1 we have

1− x0
0 > 1− φ(x0)0 − 2nε− nτ. (5)

Then, from (3) and (5) we get

|x0
0 − φ(x0)0| < 2nε+ nτ. (6)

Since n is finite, redefining 2nε+nτ as ε, (4) and (6)
yield

|x0
i − φ(x0)i| < ε for all i. (7)

Note that φ(x0) ∈ Γ(x0). Let ∆ be XV and Γ be
ΦXV

. Then,

x0 ∈ V (Φ(x0), F, ε+ τ).

Thus, x0 is an approximate fixed point of Φ.

3) There may exist a case such that we can not take a
point φ(x) for some vertex x so that |φ(x0)−φ(x)| <
ε is satisfied. An example in a 1-dimensional case
is a multi-function from [0, 1] to [0, 1] depicted in
Fig. 3. The coordinates of the points 0 and 1 are,
respectively, (0, 1) and (1, 0). And coordinates of other
points in [0, 1] are similar. Even if |x0 − x1| < ε for
any ε < 0, |φ(x0) − φ(x1)| > 0. x0 and x1 are,
respectively, numbered with 0 and 1. We consider finer
and finer partition of ∆, and sequences (x0(n))n≥1

and (x1(n))n≥1 such that x0(n) is labeled with 0,
x1(n) is labeled with 1, x0(n) −→ x∗, x1(n) −→ x∗

and |φ(x0(n)) − φ(x1(n))| > 0. By the uniform
version of the closed graph property of Γ there are
points φ0(x∗) and φ1(x∗) such that φ0(x∗) ∈ Γ(x∗),
φ1(x∗) ∈ Γ(x∗) and

x∗
0 > φ0(x∗)0 − τ and x∗

1 > φ1(x∗)1 − τ.

Since x∗
0 + x∗

1 = 1 and φ1(x∗)0 + φ1(x∗)1 = 1, the
latter implies

x∗
0 < φ1(x∗)0 + τ.

Thus,

φ0(x∗)0 − τ < x∗
0 < φ1(x∗)0 + τ.

Define a point in Γ(x∗) by

φ∗(x∗) = αφ0(x∗) + (1− α)φ1(x∗), 0 ≤ α ≤ 1.

By the convexity of Γ(x∗), φ∗(x∗) ∈ Γ(x∗).
Let

α =
φ1(x∗)0 + τ − x∗

0

[φ1(x∗)0 + τ − x∗
0] + [x∗

0 − φ0(x∗)0 + τ ]

=
φ1(x∗)0 + τ − x∗

0

φ1(x∗)0 − φ0(x∗)0 + 2τ
,

and

1− α =
x∗
0 − φ0(x∗)0 + τ

φ1(x∗)0 − φ0(x∗)0 + 2τ
.

Then,

φ∗(x∗)0 =
φ0(x∗)0(τ − x∗

0) + φ1(x∗)0(τ + x∗
0)

φ1(x∗)0 − φ0(x∗)0 + 2τ
.

And so we have

x∗
0 − φ∗(x∗)0 =

τ [2x∗
0 − φ0(x∗)0 − φ1(x∗)0]

φ1(x∗)0 − φ0(x∗)0 + 2τ
.

Since τ is arbitrary, for any ε > 0 we obtain

|x∗
0 − φ∗(x∗)0| < ε.

Similarly

|x∗
1 − φ∗(x∗)1| < ε

is derived. A case of higher dimension is similar.

We have completed the proof.

IAENG International Journal of Applied Mathematics, 41:2, IJAM_41_2_08

(Advance online publication: 24 May 2011)

 
______________________________________________________________________________________ 



IV. APPROXIMATE PURE STRATEGY NASH EQUILIBRIUM

OF A STRATEGIC GAME WITH CONTINUOUS STRATEGIES

AND QUASI-CONCAVE PAYOFF FUNCTIONS

In this section, using the constructive version of the
Fan-Glicksberg fixed point theorem proved in the previous
section, we will prove the existence of an approximate
pure strategy Nash equilibrium in a strategic game with
continuous (infinite) strategies and quasi-concave payoff
functions. Consider a strategic game such that there are m
players with an infinite number of pure strategies for each
player. The set of pure strategies of player i is denoted
by Si, i = 1, 2, . . . ,m. Si is a compact and convex subset
of a locally convex space. Let S = Πm

i=1Si be the set of
profiles of strategies of all players. Denote a pure strategy
of player i by si, a profile of strategies of all players by
s = (s1, s2, . . . , sm), and a profile of strategies of players
other than i by s−i. There exists a family (pj)j∈I of semi-
norms on Si for each i, and we define the semi-norm on S
by the sum of the semi-norms on Si over all i.

The payoff function of player i is denoted by πi(si, s−i).
πi(si, s−i) is uniformly continuous and quasi-concave. We
define, constructively, quasi-concavity of payoff functions
with respect to si as follows;

Definition 3 (Quasi-concavity): πi(si, s−i) is quasi-
concave if for any si, s

′
i ∈ Si, δ > 0 we have

πi(λsi + (1− λ)s′i, s−i) > min(πi(si, s−i), πi(s
′
i, s−i))− δ.

Each player chooses one of strategies si satisfying the
following condition.

πi(si, s−i) > πi(s
′
i, s−i)− ε for all s′i ∈ Si.

ε is a positive number. We call such a strategy si an
approximate best response of player i to s−i, and denote the
set of approximate best responses of player i by ABRi(s−i).

Since πi(si, s−i) is uniformly continuous and Si is
totally bounded, there exists supπi(si, s−i). Thus,
for some s∗i ∈ Si and ε

2 , we have πi(s
∗
i , s−i) >

supπi(si, s−i)− ε
2 . From total boundedness of Si,

for any δ and each F ⊂ I there exists a finitely
enumerable δ-approximation {t1, t2, . . . , tm} to Si

such that for any t ∈ Si

∑
j∈F pj(ti − t) < δ for

at least one ti. Uniform continuity of πi(si, s−i)
implies that there exists some δ > 0 such that
when

∑
j∈F pj(ti−s∗i ) < δ we have |πi(ti, s−i)−

πi(s
∗
i , s−i)| < ε

2 . Therefore, we can construc-
tively find at least one ti such that πi(ti, s−i) >
supπi(si, s−i)− ε for each F ⊂ I .

A set of approximate best responses of all players at a
profile s is a multi-function from S = (S1, S2, . . . .Sm) to
the set of its inhabited subsets, and it is denoted by

ABR(s) = (ABR1(s−1), ABR2(s−2), . . . , ABRm(s−m)).

An approximate Nash equilibrium is a state where all players
choose their approximate best responses each other, that is,
an approximate fixed point of ABR(s) is an approximate
Nash equilibrium. Now we show that ABR(s) satisfies the
conditions for the constructive version of the Fan-Glicksberg
fixed point theorem.

1) ABR(s) is convex.

Let s, s′ ∈ ABR(s). Denote s = (s1, s2, . . . , sn) and
s′ = (s′1, s

′
2, . . . , s

′
n). By the quasi-concavity of payoff

functions we have, for each player i

πi(λsi + (1− λ)s′i, s−i) > πi(si, s−i)− δ,

or

πi(λsi + (1− λ)s′i, s−i) > πi(s
′
i, s−i)− δ.

Since si, s′i ∈ ABRi(s−i), we have

πi(λsi + (1− λ)s′i, s−i) >πi(s
′′
i , s−i)− δ − ε

for all s′′i ∈ Si.

Thus, λsi +(1−λ)s′i is an approximate best response
of player i to s−i, and ABR(s) is a convex set.

2) ABR(s) uniformly has a closed graph. Consider a
sequence of profiles of strategies of players other
than i (s−i(m))m≥1 and a sequence of strate-
gies of player i (si(m))m≥1 such that si(m) ∈
ABRi(s−i(m)). Let s−i(m) −→ s−i and si(m) −→
si. By the uniform continuity of πi(si, s−i), for
m ≥ M with some natural number M we
have πi(si, s−i(m)) > πi(si(m), s−i(m)) − ε and
πi(si, s−i) > πi(si, s−i(m))− ε. Thus,

πi(si, s−i) > πi(si(m), s−i(m))− 2ε.

Since si(m) ∈ ABRi(s−i(m)), πi(si(m), s−i(m)) >
πi(s

′
i, s−i(m)) − ε for all s′i ∈ Si, and again by the

uniform continuity of πi(si, s−i), πi(s
′
i, s−i(m)) >

πi(s
′
i, s−i)− ε. Then

πi(si, s−i) > πi(s
′
i, s−i)− 4ε for all s′i ∈ Si.

Therefore, si ∈ ABRi(s−i). This holds for all i,
and so ABR(s) uniformly has a closed graph. The
conditions for the constructive version of the Fan-
Glicksberg fixed point theorem are satisfied.

There exists a point s∗ such that for any δ and each F ∈ I ,∑
j∈F

pj(s− s∗) < δ for some s ∈ ABR(s∗).

This means∑
j∈F

pj(si − s∗i ) < δ for some si ∈ ABRi(s
∗
−i). (8)

Since πi(si, s−i) is uniformly continuous with respect to si,
(8) implies

πi(s
∗
i , s

∗
−i) > πi(s

′
i, s

∗
−i)− τ − ε for all s′i ∈ Si,

for τ > 0 and ε > 0. The value of τ is determined
corresponding to the value of δ. Then, s∗i is an approximate
best response of player i to s∗−i, and we have completed the
proof of the existence of an approximate pure strategy Nash
equilibrium.

V. CONCLUDING REMARKS

In this paper we have presented a proof of a constructive
version of the Fan-Glicksberg fixed point theorem for multi-
functions in a locally convex space using Sperner’s lemma,
and applied it to a proof of the existence of a Nash equilib-
rium in a strategic game with continuous strategies and quasi-
concave payoff functions. We are studying some related
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Fig. 4. Sperner’s lemma

problems such as the existence of an approximate equilibrium
of a competitive economy with multi-valued demand and
supply functions, and the existence of an approximate core
in a NTU (non-transferable utility) game. A related paper
is [8] in which a constructive version of Tychonoff’s fixed
point theorem for single-valued functions in a locally convex
space has been proved.

APPENDIX A
PROOF OF SPERNER’S LEMMA

We prove this lemma by induction about the dimension of
∆. When n = 0, we have only one point with the number 0.
It is the unique 0-dimensional simplex. Therefore the lemma
is trivial. When n = 1, a partitioned 1-dimensional simplex
is a segmented line. The endpoints of the line are labeled
distinctly, with 0 and 1. Hence in moving from endpoint 0
to endpoint 1 the labeling must switch an odd number of
times, that is, an odd number of edges labeled with 0 an 1
may be located in this way.

Next consider the case of 2 dimension. Assume that we
have partitioned a 2-dimensional simplex (triangle) ∆ as
explained above. Consider the face of ∆ labeled with 0 and
15. It is the base of the triangle in Fig. 4. Now we introduce a
dual graph that has its nodes in each small triangle of K plus
one extra node outside the face of ∆ labeled with 0 and 1
(putting a dot in each small triangle, and one dot outside ∆).
We define edges of the graph that connect two nodes if they
share a side labeled with 0 and 1. See Fig. 4. White circles are
nodes of the graph, and thick lines are its edges. Since from
the result of 1-dimensional case there are an odd number of
faces of K labeled with 0 and 1 contained in the face of ∆
labeled with 0 and 1, there are an odd number of edges which
connect the outside node and inside nodes. Thus, the outside
node has odd degree. Since by the Handshaking lemma there

5We call edges of triangle ∆ faces to distinguish between them and edges
of a dual graph which we will consider later.

are an even number of nodes which have odd degree, we
have at least one node inside the triangle which has odd
degree. Each node of our graph except for the outside node
is contained in one of small triangles of K. Therefore, if a
small triangle of K has one face labeled with 0 and 1, the
degree of the node in that triangle is 1; if a small triangle
of K has two such faces, the degree of the node in that
triangle is 2, and if a small triangle of K has no such face,
the degree of the node in that triangle is 0. Thus, if the
degree of a node is odd, it must be 1, and then the small
triangle which contains this node is labeled with 0, 1 and 2
(fully labeled). In Fig. 4 triangles which contain one of the
nodes A, B, C are fully labeled triangles. Now assume that
the theorem holds for dimensions up to n− 1. Assume that
we have partitioned an n-dimensional simplex ∆. Consider
the fully labeled face of ∆ which is a fully labeled n − 1-
dimensional simplex. Again we introduce a dual graph that
has its nodes in small n-dimensional simplices of K plus
one extra node outside the fully labeled face of ∆ (putting a
dot in each small n-dimensional simplex, and one dot outside
∆). We define the edges of the graph that connect two nodes
if they share a face labeled with 0, 1, . . . , n−1. Since from
the result of n−1-dimensional case there are an odd number
of fully labeled faces of small simplices of K contained in
the n − 1-dimensional fully labeled face of ∆, there are an
odd number of edges which connect the outside node and
inside nodes. Thus, the outside node has odd degree. Since,
by the Handshaking lemma there are an even number of
nodes which have odd degree, we have at least one node
inside the simplex which has odd degree. Each node of our
graph except for the outside node are contained in one of
small n-dimensional simplices of K. Therefore, if a small
simplex of K has one fully labeled face, the degree of the
node in that simplex is 1; if a small simplex of K has two
such faces, the degree of the node in that simplex is 2, and
if a small simplex of K has no such face, the degree of the
node in that simplex is 0. Thus, if the degree of a node is
odd, it must be 1, and then the small simplex which contains
this node is fully labeled.

If the number (label) of a vertex other than vertices
labeled with 0, 1, . . . , n− 1 of an n-dimensional
simplex which contains a fully labeled n − 1-
dimensional face is n, then this n-dimensional
simplex has one such face, and this simplex is a
fully labeled n-dimensional simplex. On the other
hand, if the number of that vertex is other than n,
then the n-dimensional simplex has two such faces.

We have completed the proof of Sperner’s lemma.
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