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Abstract—In this paper, a special SEIR epidemic model
with nonlinear incidence rates is considered. By analyzing the
associated characteristic transcendental equation, it is found
that Hopf bifurcation occurs when these delays pass through
a sequence of critical value. Some explicit formulae for deter-
mining the stability and the direction of the Hopf bifurcation
periodic solutions bifurcating from Hopf bifurcations are ob-
tained by using the normal form theory and center manifold
theory. Some numerical simulation for justifying the theoretical
analysis are also presented. Finally, biological explanations and
main conclusions are given.

Index Terms—SEIR epidemic model; stability; Hopf bifurca-
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I. INTRODUCTION

IN

recent years, great attention has been paid to the dynamics
properties (including stable, unstable, persistent and oscilla-
tory behavior ) of the epidemic models which have significant
biological background. Many excellent and interesting results
have been obtained [5-13]. It is well known that epidemic
models are investigated on the transmission dynamics of
infectious diseases in host population. In this paper, we
assume that disease spreads in a single host population
through direct contact of hosts and a host stays in a latent
period before becoming infectious after the initial infection.
An infectious host may die from disease or recover with
acquired immunity to the disease at the infectious stage.
The host population is partitioned into four classes: the
susceptible, exposed (latent), infectious, and recovered with
sizes denoted by S,E, I, and R, respectively. The host total
population N = S + E + I + R. Then, we consider the
following differential equations:





Ṡ(t) = µ− µS − αIpSq,

Ė(t) = αIpSq − (ε + µ)E,

İ(t) = εE − (γ + µ)I,

Ṙ(t) = γI − µR,

(1)

where p, q, α, µ, ε and γ are positive parameters. For the
meaning of the parameters p, q, α, µ, ε and γ, one can see
Sun et al.[5].

Considering the biological meaning of system (1), we can
easily obtain that the feasible region for system (1) is R4

+.
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Adding the all the equations of (1), we get

Ṡ + Ė + İ + Ṙ = −µ(S + E + I + R− 1),

which has the following implication: the three-dimensional
simplex

Σ = {(S,E, I, R) ∈ R4
+ : S + E + I + R = 1}

is positively invariant. On the simplex Σ,

R(t) = 1− S(t)− E(t)− I(t).

According the above discussion and under the assumption
p = 1, Sun et al.[5] obtained the following three-dimensional
system 




Ṡ(t) = µ− µS − αISq,

Ė(t) = αISq − (ε + µ)E,

İ(t) = εE − (γ + µ)I
(2)

and investigated the global stability of (2).
In order to reflect the dynamical behaviors of the models

depending on the past information, it is more reasonable to
incorporate time delays into the system. Based on this idea
and under the assumption p = q = 1, in this paper, we
consider the following delay differential equation:





Ṡ(t) = µ− µS − αIS,

Ė(t) = αIS − (ε + µ)E(t− τ),
İ(t) = εE(t− τ)− (γ + µ)I.

(3)

The dynamics of system (3) with delays could be more
complicated and interesting. To obtain a deep and clear
understanding of dynamics of SEIR epidemic model with
nonlinear incidence rates, in this paper, we study the stability,
the local Hopf bifurcation for system (3).

The remainder of the paper is organized as follows.
In Section 2, we investigate the stability of the positive
equilibrium and the occurrence of local Hopf bifurcations.
In Section 3, the direction and stability of the local Hopf
bifurcation are established. In Section 4, numerical simula-
tions are carried out to illustrate the validity of the main
results. Biological explanations and some main conclusions
are drawn in Section 5.

II. STABILITY OF THE POSITIVE EQUILIBRIUM AND
LOCAL HOPF BIFURCATIONS

In this section, we shall study the stability of the positive
equilibrium and the existence of local Hopf bifurcations. One
can see that if the following condition

(H1) αεµ > µ(ε + µ)(γ + µ)
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holds, then Eq. (3) has an unique positive equilibrium
E0(S∗, E∗, I∗), where

S∗ =
µ

µ + αI∗
, E∗ =

γ + µ

ε
I∗, I∗ =

αεµ− µ(ε + µ)(γ + µ)
α(ε + µ)(γ + µ)

.

(4)
Let E = (S∗, E∗, I∗) be the arbitrary equilibrium point, and
set x(t) = S(t) − S∗, y(t) = E(t) − E∗, z(t) = I(t) − I∗,
then (4) becomes




ẋ(t) = −(µ + αI∗)x(t) + αS∗z(t)− αx(t)z(t),
ẏ(t) = αI∗x(t) + αS∗z(t)− (ε + µ)y(t− τ) + αx(t)z(t),
ż(t) = −(γ + µ)z(t) + εy(t− τ).

(5)
The linearization of Eq. (5) at (0, 0, 0) is





ẋ(t) = −(µ + αI∗)x(t) + αS∗z(t),
ẏ(t) = αI∗x(t) + αS∗z(t)− (ε + µ)y(t− τ),
ż(t) = −(γ + µ)z(t) + εy(t− τ).

(6)

whose characteristic equation is

λ3 + p1λ
2 + p2λ + (q1λ

2 + q2λ + q3)e−λτ = 0, (7)

where

p1 = 2µ + γ + αI∗,

p2 = (µ + αI∗)(γ + µ),
q1 = γ + µ,

q2 = (2µ + γ + αI∗)(ε + µ)− εαS∗,

q3 = (µ + αI∗)(ε + µ)(γ + µ)− α2εS∗I∗

−(µ + αI∗)εαS∗.

In order to investigate the distribution of roots of the tran-
scendental equation 7), the following Lemma is useful.

Lemma 1 [2] For the transcendental equation

P (λ, e−λτ1 , · · · , e−λτm) =

λn + p
(0)
1 λn−1 + · · ·+ p

(0)
n−1λ + p(0)

n

+
[
p
(1)
1 λn−1 + · · ·+ p

(1)
n−1λ + p(1)

n

]
e−λτ1 + · · ·

+
[
p
(m)
1 λn−1 + · · ·+ p

(m)
n−1λ + p(m)

n

]
e−λτm = 0,

as (τ1, τ2, τ3, · · · , τm) vary, the sum of orders of the zeros
of P (λ, e−λτ1 , · · · , e−λτm) in the open right half plane can
change, and only a zero appears on or crosses the imaginary
axis.

For τ = 0, (7) becomes

λ3 + (p1 + q1)λ2 + (p2 + q2)λ + q3 = 0. (8)

A set of necessary and sufficient conditions that all roots
of (8) have a negative real part is given by the well-known
Routh-Hurwitz criteria in the following form:

(H2) (p1 + q1)(p2 + q2)− q3 > 0, q3 > 0.

For ω > 0, iω is a root of (7) if and only if

−iω3−p1ω
2+ip2ω+(−q1ω

2+iq2ω+q3)(cos ωτ−i sinωτ) = 0.

Separating the real and imaginary parts, we get
{

(q3 − q1ω
2) cos ωτ + q2ω sinωτ = p1ω

2,
q2ω cos ωτ − (q3 − q1ω

2) sin ωτ = ω3 − p2ω.
(9)

which leads to

q2
2ω2 + (q3 − q1ω

2)2 = p2
1ω

4 + (ω3 − p2ω)2,

namely,

ω6+(p2
1−2p2+2q1q3−q2

1)ω4+(p2
2−q2

2)ω2−q2
3 = 0. (10)

Let z = ω2, then (10) become

z3 + r1z
2 + r2z + r3 = 0, (11)

where

r1 = p2
1 − 2p2 + 2q1q3 − q2

1 , r2 = p2
2 − q2

2 , r3 = −q2
3 .

Denote
h(z) = z3 + r1z

2 + r2z + r3. (12)

Since limz→+∞ h(z) = +∞ and r3 < 0, we can conclude
that Eq. (11) has at least one positive root. Without loss
of generality, we assume that (11) has three positive roots,
defined by z1, z2, z3, respectively. Then Eq. (10) has three
positive roots

ω1 =
√

z1, ω2 =
√

z2, ω3 =
√

z3.

By (9), we have

cos ωkτ =
p1ω

2(q3 − q1ω
2) + (ω3 − p2ω)q2ω

(q3 − q1ω2)2 + (q2ω)2
.

Thus, if we denote

τ
(j)
k =

1
ωk

{
arccos

[
p1ω

2(q3 − q1ω
2) + (ω3 − p2ω)q2ω

(q3 − q1ω2)2 + (q2ω)2

]
+2jπ

}
,

(13)
where k = 1, 2, 3; j = 0, 1, · · · , then ±iωk is a pair of purely
imaginary roots of Eq. (7) with τ

(j)
k . Define

τ0 = τ
(0)
k0

= min
k∈{1,2,3}

{τ (0)
k }, ω0 = ωk0 . (14)

The above analysis leads to the following result:

Lemma 2 If (H1) and (H2) hold, then all roots of (7) have
a negative real part when τ ∈ [0, τ0) and (7) admits a pair of
purely imaginary roots ±ωk when τ = τ

(j)
k (k = 1, 2, 3; j =

0, 1, 2, · · ·).
In the sequel, we assume that

(H3) [(4p2 + q2)− 2p1(p1 + q1)]2 < 12p2(p2 + q2).

Let λ(τ) = α(τ)+ iω(τ) be a root of (7) near τ = τ
(j)
k , and

α(τ (j)
k ) = 0, and ω(τ (j)

k ) = ω0. Due to functional differential
equation theory, for every τ

(j)
k , k = 1, 2, 3; j = 0, 1, 2, · · · ,

there exists ε > 0 such that λ(τ) is continuously differen-
tiable in τ for |τ − τ

(j)
k | < ε. Substituting λ(τ) into the left

hand of (7) and taking derivative with respect to τ , we have
(

dλ

dτ

)−1

=
(3λ2 + 2p1λ + p2)eλτ

λ(q1λ2 + q2λ + q3)
+

q1λ + q2

λ(q1λ2 + q2λ + q3)
− τ

λ
.

Thus, Re
(

dλ
dτ

)−1 |λ=iωk
=

(p2 + q2 − 3ω2
k)ωk[(q3 − q1ω

2
k) sin ωkτ

(j)
k − q2ωk cos ωkτ

(j)
k ]

M2 + N2

+
2(p1 + q1)ω2

k[(q3 − q1ω
2
k) cos ωkτ

(j)
k + q2ωk sinωkτ

(j)
k ]

M2 + N2
,
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where

M = [ω0(q3 − q1ω
2
k) sin ωkτ

(j)
k − q2ω

2
k cos ωkτ

(j)
k ]2

N = [ω0(q3 − q1ω
2
k) cos ωkτ

(j)
k + q2ω

2
k sinωkτ

(j)
k ]2.

Together with (9), it follows that Re
(

dλ
dτ

)−1

τ=τ
(j)
k

=

ω2
k{3ω4

k − [4p2 + q2 − 2p1(p1 + q1)]ω2
k + p2(p2 + q2)}

M2 + N2

By the assumption (H3), so we have

signRe
(

dλ

dτ

)

τ=τ
(j)
k

= signRe
(

dλ

dτ

)−1

τ=τ
(j)
k

> 0.

According to above analysis and the results of Kuang [3]
and Hale[4], we have

Theorem 1 If (H1), (H2) and (H3) hold, then the equilib-
rium E0 of system (3) is asymptotically stable for τ ∈ [0, τ0)
and unstable for τ ≥ τ0, system (3) undergoes a Hopf
bifurcation at the equilibrium E0 when τ = τ

(j)
k , k =

1, 2, 3; j = 0, 1, 2, · · ·.
Proof The proof of the stability of the equilibrium E0 can
be obtained by Lemma 2. When τ = τ

(j)
k , k = 1, 2, 3; j =

0, 1, 2, · · ·. (7) has a simple purely imaginary roots λ =
±ωki, and all roots λj 6= λ, λ satisfy λj 6= imωk for any
integer m, since there is no other purely imaginary roots
except for λ = ±iωk. Furthermore, Re(λ

′
(τ (j)

k )) > 0, k =
1, 2, 3; j = 0, 1, 2, · · ·. Due to the Hopf bifurcation theorem
[4], we complete the proof.

III. DIRECTION AND STABILITY OF THE HOPF
BIFURCATION

In the previous section, we obtained conditions for Hopf
bifurcation to occur when τ = τ

(j)
k , k = 1, 2, 3; j =

0, 1, 2, · · · . In this section, we shall derived the explicit
formulae determining the direction, stability, and period of
these periodic solutions bifurcating from the positive equi-
librium E0(S∗, E∗, I∗) at these critical value of τ , by using
techniques from normal form and center manifold theory
[1]. Throughout this section, we always assume that system
(3) undergoes Hopf bifurcation at the positive equilibrium
E0(S∗, E∗, I∗) for τ = τ

(j)
k , k = 1, 2, 3; j = 0, 1, 2, · · · .,

and then ±iω0 are corresponding purely imaginary roots
of the characteristic equation at the positive equilibrium
E0(S∗, E∗, I∗).

For convenience, let x̄(t) = x(τt), ȳ(t) = y(τt), z̄(t) =
z(τt) and τ = τ

(j)
k + µ, where τ

(j)
k is defined by (2.10) and

µ ∈ R, drop the bar for the simplification of notations, then
system (5) can be written as an FDE in C = C([−1, 0]), R3)
as

u̇(t) = Lµ(ut) + F (µ, ut), (15)

where u(t) = (x(t), y(t), z(t))T ∈ C and ut(θ) = u(t+θ) =
(x(t + θ), y(t + θ), z(t + θ))T ∈ C, and Lµ : C → R, F :
R× C → R are given by Lµφ =

(τ (j)
k + µ)



−(µ + α)I∗ 0 αS∗

αI∗ 0 αS∗

0 0 −(γ + µ)







φ1(0)
φ2(0)
φ3(0)




+(τ (j)
k + µ)




0 0 0
0 −(ε + µ) 0
0 ε 0







φ1(−1)
φ2(−1)
φ3(−1)


 (16)

and

f(µ, φ) = (τ (j)
k + µ)



−αφ1(0)φ3(−1)
αφ1(0)φ3(−1)

0


 , (17)

respectively, where φ(θ) = (φ1(θ), φ2(θ), φ3(θ))T ∈ C.

From the discussion in Section 2, we know that if µ = 0,
then system (15) undergoes a Hopf bifurcation at the positive
equilibrium E0(S∗, E∗, I∗) and the associated characteristic
equation of system (15) has a pair of simple imaginary roots
±ω0τ

(j)
k .

By the representation theorem, there is a matrix function
with bounded variation components η(θ, µ), θ ∈ [−1, 0] such
that

Lµφ =
∫ 0

−1

dη(θ, µ)φ(θ), for φ ∈ C. (18)

In fact, we can choose η(θ, µ) =

(τ (j)
k + µ)



−(µ + αI∗ 0 0

αI∗ −(ε + µ) 0
0 ε 0


 δ(θ)

−(τ (j)
k + µ)



−0 0 −αS∗

0 0 αS∗

0 0 −(γ + µ)


 δ(θ + 1), (19)

where δ is the Dirac delta function.
For φ ∈ C([−1, 0], R3), define

A(µ)φ =

{
dφ(θ)

dθ , −1 ≤ θ < 0,∫ 0

−1
dη(s, µ)φ(s), θ = 0

(20)

and

Rφ =
{

0, −1 ≤ θ < 0,
f(µ, φ), θ = 0.

(21)

Then (15) is equivalent to the abstract differential equation

u̇t = A(µ)ut + R(µ)ut, (22)

where ut(θ) = u(t + θ), θ ∈ [−1, 0].
For ψ ∈ C([0, 1], (R3)∗), define

A∗ψ(s) =

{
−dψ(s)

ds , s ∈ (0, 1],∫ 0

−1
dηT (t, 0)ψ(−t), s = 0.

For φ ∈ C([−1, 0], R3) and ψ ∈ C([0, 1], (R3)∗), define
the bilinear form

< ψ, φ >= ψ(0)φ(0)−
∫ 0

−1

∫ θ

ξ=0

ψT (ξ − θ)dη(θ)φ(ξ)dξ,

where η(θ) = η(θ, 0), the A = A(0) and A∗ are ad-
joint operators. By the discussions in Section 2, we know
that ±iω0τ

(j)
k are eigenvalues of A(0), and they are also

eigenvalues of A∗ corresponding to iω0τ
(j)
k and −iω0τ

(j)
k

respectively. By direct computation, we can obtain

q(θ) = (1, a1, a2)T eiω0τ
(j)
k

θ, q∗(s) = D(1, a∗1, a
∗
2)e

iω0τ
(j)
k

s,
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D = 1
B , where

a1 =
(iω0 + γ + µ)(iω0 + µ + αI∗)

αεS∗eiω0τ
(j)
k

,

a2 =
iω0 + µ + αI∗

αS∗
, a∗1 =

−iω0 + µ + αI∗

αI∗
,

a∗2 =
αS∗(−iω0 + 2αI∗ + µ)

αI∗(−iω0 + γ + µ)
,

B = 1+ ā1a
∗
1 + ā2a

∗
2 + a∗1ā1(ε+µ)eiω0τ

(j)
k + ā1a

∗
2εe

iω0τ
(j)
k .

Furthermore, < q∗(s), q(θ) >= 1 and < q∗(s), q̄(θ) >= 0.

Next, we use the same notations as those in Hassard [1]
and we first compute the coordinates to describe the center
manifold C0 at µ = 0. Let ut be the solution of Eq. (15)
when µ = 0.

Define

z(t) =< q∗, ut >,W (t, θ) = ut(θ)− 2Re{z(t)q(θ)}. (23)

on the center manifold C0, and we have

W (t, θ) = W (z(t), z̄(t), θ), (24)

where

W (z(t), z̄(t), θ) = W20
z2

2
+ W11zz̄ + W02

z̄2

2
+ · · · , (25)

and z and z̄ are local coordinates for center manifold C0 in
the direction of q∗ and q̄∗. Noting that W is also real if ut is
real, we consider only real solutions. For solutions ut ∈ C0

of (15),

ż(t) = iω0τ
(j)
k z + q̄∗(θ)f(0,W (z, z̄, θ) + 2Re{zq(θ)}

= iω0τ
(j)
k z + q̄∗(0)f0.

That is
ż(t) = iω0τ

(j)
k z + g(z, z̄),

where

g(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z2z̄

2
+ · · · .

Hence, we have g(z, z̄) = q̄∗(0)f0(z, z̄) = f(0, ut) =

D̄τ
(j)
k α(1 + ā∗1)a2z

2 + 2D̄τ
(j)
k α(1 + ā∗1)Re{a2}zz̄

+D̄τ
(j)
k α(1 + ā∗1)ā

2
2z̄

2 + D̄τ
(j)
k α(1 + ā∗1)

×
[
1
2
W

(1)
20 (0)ā2 +

1
2
W

(3)
20 (0) + W

(1)
11 (0)a2 + W

(3)
11 (0)

]

×z2z̄ + h.o.t.

Then we obtain

g20 = 2D̄τ
(j)
k α(1 + ā∗1)a2,

g11 = 2D̄τ
(j)
k α(1 + ā∗1)Re{a2},

g02 = 2D̄τ
(j)
k α(1 + ā∗1)ā

2
2,

g21 = 2D̄τ
(j)
k α(1 + ā∗1)

[
1
2
W

(1)
20 (0)ā2 +

1
2
W

(3)
20 (0)

+W
(1)
11 (0)a2 + W

(3)
11 (0)

]
.

For unknown W
(1)
20 (0),W (3)

20 (0),W (1)
11 (0),W (3)

11 (0) in g21,
we still need to compute them.
Form (22), (23), we have

W
′

=
{

AW − 2Re{q̄∗(0)f̄ q(θ)}, −1 ≤ θ < 0,
AW − 2Re{q̄∗(0)f̄ q(θ)}+ f̄ , θ = 0

= AW + H(z, z̄, θ), (26)

where

H(z, z̄, θ) = H20(θ)
z2

2
+H11(θ)zz̄+H02(θ)

z̄2

2
+· · · . (27)

Comparing the coefficients, we obtain

(AW − 2iτ
(j)
k ω0)W20 = −H20(θ), (28)

AW11(θ) = −H11(θ). (29)

We know that for θ ∈ [−1, 0),

H(z, z̄, θ) = −q̄∗(0)f0q(θ)− q∗(0)f̄0q̄(θ)
= −g(z, z̄)q(θ)− ḡ(z, z̄)q̄(θ). (30)

Comparing the coefficients of (30) with (27) gives that

H20(θ) = −g20q(θ)− ḡ02q̄(θ). (31)

H11(θ) = −g11q(θ)− ḡ11q̄(θ). (32)

From (3.14),(3.17) and the definition of A , we get

Ẇ20(θ) = 2iω0τ
(j)
k W20(θ) + g20q(θ) + ¯g02q̄(θ). (33)

Noting that q(θ) = q(0)eiω0τ
(j)
k

θ, we have

W20(θ) =
ig20

ω0τ
(j)
k

q(0)eiω0τ
(j)
k

θ +
iḡ02

3ω0τ
(j)
k

q̄(0)e−iω0τ
(j)
k

θ

+E1e
2iω0τ

(j)
k

θ, (34)

where E1 = (E(1)
1 , E

(2)
1 , E

(3)
1 ) ∈ R3 is a constant vector.

Similarly, from (29), (32) and the definition of A, we have

Ẇ11(θ) = g11q(θ) + ¯g11q̄(θ), (35)

W11(θ) = − ig11

ω0τ
(j)
k

q(0)eiω0τ
(j)
k

θ+
iḡ11

ω0τ
(j)
k

q̄(0)e−iω0τ
(j)
k

θ+E2.

(36)
where E2 = (E(1)

2 , E
(2)
2 , E

(3)
2 ) ∈ R3 is a constant vector

In what follows, we shall seek appropriate E1,E2 in (34),
(36), respectively. It follows from the definition of A and
(31), (32) that

∫ 0

−1

dη(θ)W20(θ) = 2iω0τ
(j)
k W20(0)−H20(0) (37)

and ∫ 0

−1

dη(θ)W11(θ) = −H11(0), (38)

where η(θ) = η(0, θ).
From (28), we have

H20(0) = −g20q(0)− ¯g02q̄(0) + 2τ
(j)
k




−αa2

αā∗1a2

0


 , (39)

H11(0) = −g11q(0)− ¯g11(0)q̄(0)+2τ
(j)
k




−αRe{a2}
αā∗1Re{a2}

0


 .

(40)
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Noting that
(

iω0τ
(j)
k I −

∫ 0

−1

eiω0τ
(j)
k

θdη(θ)
)

q(0) = 0,

(
−iω0τ

(j)
k I −

∫ 0

−1

e−iω0τ
(j)
k

θdη(θ)
)

q̄(0) = 0

and substituting (34) and (39) into (37), we have

(2iω0τ
(j)
k I −

∫ 0

−1

e2iω0τ
(j)
k

θdη(θ))E1 = 2τ
(j)
k




−αa2

αā∗1a2

0


 .

That is


l1 0 −αS∗

−αI∗ l2 0
0 −εe−2iω0τ

(j)
k l3


 E1 = 2




−αa2

αā∗1a2

0


 ,

where l1 = 2iω0 + µ + αI∗, l2 = 2iω0 + (ε + µ)e−2iω0τ
(j)
k ,

l3 = 2iω0 + γ + µ. It follows that

E
(1)
1 =

∆11

∆1
, E

(2)
1 =

∆12

∆1
, E

(3)
1 =

∆13

∆1
, (41)

where

∆1 = det




l1 0 −αS∗

−αI∗ l2 0
0 −εe−2iω0τ

(j)
k l3


 ,

∆11 = 2 det




−αa2 0 −αS∗

αa∗1a2 l2 0
0 −εe−2iω0τ

(j)
k l3


 ,

∆12 = 2 det




l1 −αa2 −αS∗

−αI∗ αa∗1a2 0
0 0 l3


 ,

∆13 = 2 det




l1 0 −αa2

−αI∗ l2 αa∗1a2

0 −εe−2iω0τ
(j)
k 0


 .

Similarly, substituting (35) and (40) into (38), we have
∫ 0

−1

dη(θ))E2 = 2τ
(j)
k




−αRe{a2}
αā∗1Re{a2}

0


 .

That is


µ + αI∗ 0 −αS∗

−αI∗ ε + µ −αS∗

0 −ε γ + µ


 E2 = 2




−αRe{a2}
αā∗1Re{a2}

0


 .

It follows that

E
(1)
2 =

∆21

∆2
, E

(2)
2 =

∆22

∆2
, E

(3)
2 =

∆23

∆2
, (42)

where

∆2 = det




µ + αI∗ 0 −αS∗

−αI∗ −(ε + µ) −αS∗

0 −ε −(γ + µ)


 ,

∆21 = 2 det




−αRe{a2} 0 −αS∗

αā∗1Re{a2} ε + µ −αS∗

0 −ε γ + µ


 ,

∆22 = 2 det




µ + αI∗ −αRea2 −αS∗

−αI∗ −αā∗1Rea2 −αS∗

0 0 −(γ + µ)


 ,

∆23 = 2 det




µ + αI∗ 0 −αRea2

−αI∗ −(ε + µ) −αā∗1Rea2

0 −ε 0


 .

From (34),(36),(41),(42), we can calculate g21 and derive the
following values:

c1(0) =
i

2ω0τ
(j)
k

(
g20g11 − 2|g11|2 − |g02|2

3

)
+

g21

2
,

µ2 = − Re{c1(0)}
Re{λ′(τ (j)

k )}
,

β2 = 2Re(c1(0)),

T2 = − Im{c1(0)}+ µ2Im{λ′(τ (j)
k )}

ω0τ
(j)
k

.

These formulaes give a description of the Hopf bifurcation
periodic solutions of (15) at τ = τ

(j)
k , (k = 1, 2, 3; j =

0, 2, 3, · · ·) on the center manifold. From the discussion
above, we have the following result:

Theorem 2 The periodic solution is supercritical (subcriti-
cal) if µ2 > 0 (µ2 < 0); the bifurcating periodic solutions
are orbitally asymptotically stable with asymptotical phase
(unstable) if β2 < 0 (β2 > 0); the periodic of the bifurcating
periodic solutions increase (decrease) if T2 > 0 (T2 < 0).

Remark 1 A τT -periodic solution of (15) is a T -periodic
solution of (5).

IV. NUMERICAL EXAMPLES

In this section, we present some numerical results of
system (3) to verify the analytical predictions obtained in
the previous section. From section 3, we may determine
the direction of a Hopf bifurcation and the stability of the
bifurcation periodic solutions. Let us consider the following
system:





Ṡ(t) = 0.2− 0.2S − 2IS,

Ė(t) = 2IS − 0.5E(t− τ),
İ(t) = 0.3E(t− τ)− 0.4I,

(43)

which has a positive equilibrium E0(S∗, E∗, I∗) ≈
( 1
3 , 4

15 , 1
5 ) and satisfies the conditions indicated in Theorem

1. When τ = 0, the positive equilibrium E0 = ( 1
3 , 4

15 , 1
5 )

is asymptotically stable. Take j = 0 for example, by some
complicated computation by means of Matlab 7.0, we get
ω0 ≈ 0.4112, τ0 ≈ 5.67, λ

′
(τ0) ≈ 0.4209 − 5.1315i. Thus

we can calculate the following values:

c1(0) ≈ −0.7802− 4.0452i, µ2 ≈ 0.4122, β2 ≈ −2.3552,

T2 ≈ 6.3235. Furthermore, it follows that µ2 > 0 and
β2 < 0. Thus, the positive equilibrium E0 = ( 1

3 , 4
15 , 1

5 )
is stable when τ < τ0 as is illustrated by the computer
simulations ( see Figs.1-7 ). When τ passes through the
critical value τ0, the positive equilibrium E0 = ( 1

3 , 4
15 , 1

5 )
loses its stability and a Hopf bifurcation occurs, i.e., a
family of periodic solutions bifurcations from the positive
equilibrium E0 = ( 1

3 , 4
15 , 1

5 ). Since µ2 > 0 and β2 < 0,
the direction of the Hopf bifurcation is τ > τ0, and these
bifurcating periodic solutions from E0 = ( 1

3 , 4
15 , 1

5 ) at τ0 are
stable, which are depicted in Figs.8-14.
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Fig. 1. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 2. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 3. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 4. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 5. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 6. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 7. Behavior and phase portrait of system (43) with τ = 5.5 < τ0 ≈
5.67. The positive equilibrium E0 = ( 1

3
, 4
15

, 1
5
) is asymptotically stable.

The initial value is (0.4,0.35,0.14).
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Fig. 8. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).
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Fig. 9. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).
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Fig. 10. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).
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Fig. 11. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).
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Fig. 12. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).
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Fig. 13. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).

0.25
0.3

0.35
0.4

0.45

0.2

0.25

0.3

0.35

0.16

0.18

0.2

0.22

0.24

0.26

S(t)

Fig.14

E(t)

I(
t)

Fig. 14. Behavior and phase portrait of system (43) with τ = 5.8 >
τ0 ≈ 5.67. Hopf bifurcation occurs from the positive equilibrium E0 =
( 1
3
, 4
15

, 1
5
). The initial value is (0.4,0.35,0.14).

V. BIOLOGICAL EXPLANATIONS AND CONCLUSIONS

1 Biological explanations
From the analysis in Section 2, we know that if the

conditions (H1), (H2) and (H3) hold, then the positive
equilibrium E0(S∗, E∗, I∗) of system (3) is asymptotically
stable when τ ∈ [0, τ0), and unstable when τ > τ0. This
shows that, in this case, the susceptible, exposed (latent),
infectious host populations will tend to stabilization, that
is, the susceptible host populations will tend to S∗, the
exposed (latent) host populations will tend to E∗ and the
infectious host populations will tend to I∗, and this fact is not
influenced by the delay τ ∈ [0, τ0). When τ crosses through
the critical value τ0, the positive equilibrium E0(S∗, E∗, I∗)
of system (3) loses stability and a Hopf bifurcation occurs. If
the periodic solution bifurcating from the Hopf bifurcation is
stable, then this shows that the susceptible, exposed (latent),
infectious host populations may coexist and keep in an oscil-
latory mode. From discussion in Section 2, we know that the
positive equilibrium E0(S∗, E∗, I∗) is always unstable when
τ > τ0. Therefore, if the above bifurcating periodic solution
is unstable, then it is at least semi-stable (stable inside and
unstable outside) and hence the susceptible, exposed (latent),
infectious host populations may keep in an oscillatory mode
near the positive equilibrium E0(S∗, E∗, I∗).

2 Conclusions
In this paper, we have investigated local stability of the

positive equilibrium E0(S∗, E∗, I∗) and local Hopf bifur-
cation in a special SEIR epidemic model with nonlinear
incidence rates. we have showed that if the conditions (H1),
(H2) and (H3) hold, the positive equilibrium E0(S∗, E∗, I∗)
of system (3) is asymptotically stable for all τ ∈ [0, τ0)
and unstable for τ > τ0. We have also showed that, if the
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conditions (H1), (H2) and (H3) hold, as the delay τ increases,
the equilibrium loses its stability and a sequence of Hopf
bifurcations occur at the positive equilibrium E0(S∗, E∗, I∗),
i.e., a family of periodic orbits bifurcates from the the
positive equilibrium E0(S∗, E∗, I∗). At last, the direction of
Hopf bifurcation and the stability of the bifurcating periodic
orbits are discussed by applying the normal form theory and
the center manifold theorem. A numerical example verifying
our theoretical results is also correct.
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