TAENG International Journal of Applied Mathematics, 41:3, [JAM 41 3 09

Nonparametric ldentification of Static and
Dynamic Production Functions

Gennady Koshkin, and Anna Kitayeva

Abstract—A class of semi-recursive kernel plug-in estimators If g;(y) =1, then
of functions depending on multivariate density functionals
and their derivatives is considered. The approach enables to o o
estimate the static production function, marginal productivity ai(z) = /f(x7y)dy =r(2),
and marginal rate of technical substitution of inputs. The ) ) )
piecewise smoothed approximations of these estimators arewherep (-) is the marginal p.d.f. of the random variablg
proposed. The main parts of the asymptotic mean square and f(y|z) = f(z,y)/p (z) is the conditional p.d.f.
errors (AMSEs) of the estimators are found. The results are  Here are the well known examples of such functions:
generalized to the dynamic production functions with the lagged . . L L
values of the inputs and output, the conditional initial moments

Index Terms—Kernel recursive estimator, mean square con- ﬂm(x) = /ymf(y|x)dy, H(a1>a2) = a1/a2, m>1,
vergence, piecewise smooth approximation, production func-
tion. m

any)=y" g(y) =1

I. INTRODUCTION u1(z) = r(x) is the regression function of the outpybf a

HIS paper is based on the results published in trdochastic object to relative to the inputs(r(z) minimi_zes
Proceedings of the World Congress on Engineeriﬁae mean square error (MSE) of the outputs of an object and

2011, that was held in Imperial College London, Londor? model); .

U.K., July 6-8, 2011 [1]. — the conditional central moments
Numerous statistical problems (such as identification, clas- _ m .
sification, filtering, prediction, etc.) is connected to estima- Vin(2) = /(y —r(@)" f(ylz)dy, 91(y) =y,

tion of certain characteristics of the following expressions: ) .
92(0) =y s gm W) =Y", gmr1(y) =15

J(x)=H ({ai(x)h {al(.lj)(x)}, i=1,s, j= 1,m) = Va(x) = D(x) is the conditional variance or the scedastic
curve [2], o(z) = +/D(z) is the conditional standard
: deviation, andD(z),o(z) specify errors of the regressive
=H (G(QTL a(lj)(m)) . M) modelr(z);

Herez € R™, H(-):R™s _ Rl is a given function, Cu;et[]ze] conditional coefficient of skewness or the clitic

a(Oj)(x) :a(gc) = (al(x),...,as(x)), E((Y—T((E)”l’)g i

i (15) i Ar(z) = 5z i =aifar, gi(y) =y,

a9 (z) = (al D(z),..., a %;)) , [D(Y[2)]

H(a1,as,a3,a4) = (bs — 3bsby + 2b3)/(bs — b3)*/%;

a;(z) =/gi(y)f(x,y)dy, i=1,s,

Slj) (1’) _ 8@2(1')

— the curtic curve [2]

a L i=Ts, j=Tm, E((Y —r(x))'])
whereg, ..., g, are the known Borel functions/ = /, — the sensitivity functions
. 4
f(-,-) is an unknown probability density function (p.d.f.) for Ti(x) = 8’“(3”)7 a@) =1, gay) =y,
the observed random vectaf = (X,Y) € R™ 1. O
Remark. Note that in (1) some variables of functidf(-) (15) (15)
may be omitted (for example, all derivatives). H (al’a%agm)’aéu‘)) _m ala3 _ bém;
a9 a2
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Il. PROBLEM STATEMENT numerator and denominator when new observations became

In the solution of various problems of identification, recur@vailable. Ifgi(y) = y (s = 2), we obtain semi-recursive
rent procedures find wide application, which has a numbgg'nel estimators of the regression line [7]- [9]. Weak and
of advantage in comparison with common procedures. Assgong_umversal consistency of such estimates was investi-
rule, they are easily realized on computers, thus economizi#gted in [10]- [14]. _ _ _
their memory, afford the result at each step of working of 'O €stimate (1) we use the following semi-recursive plug-
the algorithm, and the coming of new measurements dd8sStatistic
not lead to cqmbgrsome recc_)mputations, so this provides thejn(x) — g ({agj)(x)} =
data processing in the real-time mode.

Take the following expression as an estimator of thelug-in estimatorsh, (z) are often used for estimating of
functional a(z) = al®)(z) (r = 0) and its derivatives ratios. There is a possible instability 6f(z), and may be

T,m, r:O,l). (4)

al)(z) (r =1) at a pointz: estimators (4) too, related to a proximity of the denominator
_ 1 s g(Y)) e X to zero. Crarar considered such a problem first (see [15] for
a9 (z) = gmer(”) ( ‘) (2) details). Here this problem has been solved by make using
niS hy hi of the piecewise smooth approximation [16]
Here Z; = (X;,Y;), i = 1,n, is the (m + 1)-dimensional ~ J n(2)
random sample from p.d.ff(-,-), (h;) is a sequence of In() = (1 + 6p|J n(z)|7)P’ ®)

positive bandwidths tending to 0 as— oo,
wherer >0, p>0, pr>1, (§,) | 0asn— oco.

K(OJ)U :Ku: KU»L'
(u) =K(u) = [T K(u) lII. M EAN SQUARE ERRORS

is a m-dimensional multiplicative function which does not Denote:

need to possess the properties of p.d.f., L dK (u)
sup= sup , KW (u)= )
(15) aK(U) x r€ERm™ du
J

T; :/qu(u)du, ji=1,2,....

af (@) = (af (@), ... al) (@) - . —
’ o We will introduce auxiliary definitions.

Note that (2) can be computed recursively by Definition 1. A function H(:) : R®* — R! belongs to
‘ , the classN,(t) (H(-) € N,(t)) if it is continuously
al ) (z) = o) (z)— differentiable up to the orderat the point € R*. A function

H(-) e N,,(R) if itis continuously differentiable up to the
! [afff)l(a:) - Q(TYL)K(”') <x_X”ﬂ . (3) orderv for anyz € R®.
n hn This definition is related to the required smoothness
This property is particularly useful when the sample size gonditions for the functiond in (1). The following three
large since (3) can be easily updated with each additiorg#finitions impose conditions on the estimation procedure.
observation. Definition 2. A Borel function K(-) € A", (A©) = A)

In the case, when if /|K(T)(u)|du < 00, and/K(u) du = 1.
m=1, s=1, gy) =1, H(am)=ai, Definition 3. A Borel function & (-) € A, (AL = A4,)
we obtain the recursive kernel estimator jofz) that was if K() € A, T; =0, = 1,...,v =1, T, # 0,
introduced by Wolverton and Wagner in [4] and apparently |,» K (v)|du < co, and K (u) = K (—u).
independently by Yamato [5], and has been thorough . - .
The parameters in Definition 3 specifies the rate of

examined in [6]. : .
. . . - convergence in the mean square sense of the estimators (4)
The semi-recursive kernel estimators of conditional func-

n

tionals and (5).
Definition 4. A sequencegh,, if
bx) = (b1(x). .. bucs (), quencetfn) & Him + 1 +4)
(7 + 1/ (b7 749)) |0, (6)
bi(x) = ai(x px:/giyfyfcdy 1
(1) = ai(@)/p (=) = [ 5iw)f(w]2) LS = S+ o). -
at a pointz are designed afy,(z) = 1) =1
n where A is a real numberS) is a constant independent on
ZQ(Z)K(J:_XZ'> _ n;r,q= 0,1
by (z) = =X & hi _an(z) al™ (x) The condition (6) is a common condition for the con-
n) =T r— X\ palz) al% ()" vergence in the mean square sense of kernel estimators.
Z th< - ) The condition (7) is related to the recurrent structure of
=1 ‘ the estimators and is fulfilled, for example; = O (i=%),

Such estimators are called semi-recursive because they 8an « < 1 (it is this form that optimal bandwidths,, have
be updated sequentially by adding extra terms to both tf&), in which case the constast, can be defined according
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to the Euler—Macloren formula. In particular, for apyt —1
we obtain

3P =P (p + 1) + o(nP ),
j=1

Definition 5. Let ¢,,, X1, ..
tn(Xq,. ..
to the classM () if for any possible values(y, . .

., X,, are vectors, and,, =

., X, the

sequenceg|H ()|} is dominated by a sequence of numbers
(Cod})), (dn) T o0 asn — 00,0 < v < o0, (p is a

constant.

For the necessity of introduction of majorizing sequenc
in finding the AMSEs of unstable estimators, it was Ceam

, Xn). A sequence of function§H (¢,)} belongs

(r,q)
t

x [5—<m+2max(r, ) ks S2wi D w(th p2v

O 1 h21/ %
" ez | ]

It is important that we do not need condition 6) of
Theorem 1 when piecewise smooth approximation (5) is

+

Theorem 2 (AMSE of the piecewise smooth approxima-
tion J, . (z)). Suppose that conditions 1)-5) of Theorem 1
hold and restriction 6) is replaced by

) J(xz) = H(A(x)) #0 or 7 >4, 7is a positive integer.

Then asn — oo

who first pointed to it in the book [15], in which he strictly

formulated and proved the theorem on the mean and variance

of the function of sample moments.
Put forr,q=0,1; t,p=1,s; j=1,m:

A= Az) = {am‘)(x)} . Hyj, = OH(A) /9",
1 ({al? (0)}) = HA): @t @) = [ 19°)I . 0)dy
at,p(®) = / 9t (Y)gp (v) f(2,y) dy;
oly(@) = [ lov g )] Fla)
Lo = / KO (u) KD (u) du;

m—1

BnY = [0 ( Lo o>) ar.p (2);

w,

m v (rj)
o T 0% @)
Wyl p

=1

dxy
the set
{0} ifVYy r=0;
Q= {1} ifVj r=1;
{0,1} ifdj r=0Ar=1.

Theorem 1 (AMSE of the estimatot/ ,,(z)). If for
t)p:m7 j:17m7 TEQ.
1) the functionsas , () € No(R), sup a;% (z) < oo,

supa’t(z) < oo, supait(x) < oo;
x €T

2) the kernel functiorf () € A sup

K™ (2) ‘ <

o0, it @ = {0,1} then K™ () € Np(R), if 1 € Q then
| l‘im K(u) =0;
3) a'() € M), suwpldV@)] < o,
9val? ()
up | ———t—— o q=T1m;
blip 011024 ... 0z <00, Ltheeonq 1

4) the sequencéh,,) € H(m + 2max(r));

5) H(:) € Na(A);

6) {H(An)} € M(v), 0<vy=<1/4

Then AMSE of the estimatoy ,,(z) asn — oo

()= > 3 HyjpHprgx

t,p=1j,k=1r q€Q

u2(J) ~ u?(J ().

The proofs are given in [17].

IV. NONPARAMETRIC SEMFRECURSIVE IDENTIFICATION
OF THE STATIC PRODUCTION FUNCTION AND ITS
CHARACTERISTICS

Apply the results to estimate the static production function
and its characteristics.

A. Estimation of the three-factor production function

Let r(z), z = (w1, 72, 23) € R3, be the regression model
of the three-factor production function,

a(z) = (a1(2), a2(2)), ar(z) = / yf (@ 9)dy,
as(z) = / Fa,y)dy = p ().

Herex; > 0 is the capital inputzs > 0 is the labor input,
x3 > 0 is the nature inputy > 0 is a product, and p.d.f.
flz,y) >0onlyif 21 >0, 2o >0, 3 > 0, y > 0. Then

- Y; x—X;

Jn(x) = T?L(fr) = 1 r— X, =
(05)
_ay, (@) _ an(2)
Sl (@) pale) ©

Let
K(u) = K(u1)K(u2)K(us), K() €A,

sup | K(u)| < oo, (hy) € H(3).

u€e R
To find the AMSE of the estimator,, (z), we use Theo-
rem 1. In view of 1)-4) conditions of the theorem functions
a;(z), ¢ = 1,2, and their derivatives are continuously
differentiable up to the order for any z € R3, and the

y*f(z,y)dy is bounded onR>. If p(z) > 0,

then condition 5) is fulfilled.

It seems impossible to find a majorizing sequeriég)
(condition 6) of Theorem 1), since the denominator in the
ratio (8) may be equal to zero [18], [19]. But it is shown in
these papers that we can find the majorizing sequence with

function
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~ = 0 underv = 2 according to Definition 5 if, for example, where

K(u) >0, andY < co. In this case as — oo n
( ) Z &K(lj) xr — Xi
) 2 LO.0p, ) . — h h;
u ({rn) = Z Hsz (Ssghn + SgwiQ(.dthn) + Tj (.’E) = | 2= — _
ip=1 nhn 1 xr — Xz
,P Z —K
h? hi
1 3/2 i=1
+O<{h3+hﬂ ) "y, X\ - Y X
n xr — . . €T
'K ¢ ZtR 1) L
where Z h? ( hi ) 2 hi ( hi >
_ 1=1 =1 , (10)
1 r(z) / : 1 (e-xA\]
H=——, Hy=-— ; Bii= ,y)dy, il z i
1 7 (@) 2 (@) 1,1 y f(z,y)dy Zlth< n )
By = Ba1 = /yf(:c,y)dy, By 5 = p(); KM (u) = KW (u)) K (ug) K (us),
e = L2 (5%1(96) 9%a1(z) 82a1(x)> KU (u) = K (ur) KO (ug) K (u),
12 — 5 )
2\ 02t O3 03 K3 (u) = K (u) K (u2) KD (u3).
_L 0%p(z) , 0%p(x)  9%p(x) Here the kerneK (-) satisfies such additional conditions:
w22 7 T 7 T 2 :
2 oxy 0x3 O0x3

. . , sup |[KW(u)| < oo, lim K(u)=0,
For v > 2 we can use the piecewise smooth approxima- we RL |u|—oc0

tion 7, (x): K9 e y(R), a=1,2;

Tn ()
14 0n | mm(@)] )7 functions a;(-), ao(-) and their derivatives up to the or-
i ( der (v + 1) need to be continuous and bounded R the
wherer >0, p>0, pr>1, 6,,, =0 (h2 +1/(nh3)), sequenceh,) c H(4).

?n(x) = (

(0n,) | 0 @asn — oc. The estimators (9) and (10) were used in identification of
In view of condition6*) of Theorem 2 it is enough to take CHARN (conditional heteroscedastic autoregressive nonlin-
event > 4, and asn — oo ear) type model on the data of "Gazprom” stock prices for
9 10,0 g, the period from January 15, 2008 till March 24, 2009 [21].
UQ(?") = Hin (S_Bh?)w) + Sg w,-ywp,,hi”) +
i,p=1 itn D. Estimation of the marginal rate of technical substitution

In turns, in economics, a number of other important char-
acteristics are defined in terms of the marginal productivity,
for example, the marginal rate of technical substitution of an

3/2 and elasticity coefficients
+ h?f] >

1

B. Estimation of the conditional variance input z; with an inputz;
Estimate the conditional variand@(z) by the following MPy(z)
istic: MRTS;;(z) = i =1,2,3, 0 # ],
statistic () NP () i, ] 15£ ]
Y2 (- X;
d LK ‘ (19)
L p3 ( hi ) I (1) i)y _ b1 _
Dn (x) _ lznl . < _ TZ (CC) (9) (ala az,aq ", 09 ) b(llj) y 91 (y) Y,
T — Xy
Z h*?K ( h; ) the elasticity coefficient of the outpyt by the jth variable
=1 factor
The estimator (9) is a semi-recursive counterpart of a widely MP;(z) or(z) x; dlnr(z)
used volatility function estimator [20]. The piecewise smooth Ej(z) = Iy = L= Ty,
S . ) . r(z) ozx; r(x) 0z
approximation of the estimatdp,, () can be written easily.
4 _ p(19)
Ha7a,a(1j),a(1j) =21z, =y.
C. Estimation of the marginal productivity functions (a1, 02,01 2 ) by 9@ =y
In economics, the marginal productivity functions are So, the plug-in estimator of th@/RT'S;;(x) takes the
defined by the formulas form T (2)
in\ L
MRTS;j n(z) = = .
MP](QJ‘) = TJ(Z‘) = 85;2:)’ _7 = 1,2,37 J Tj ((L’)
. S The piecewise smooth approximation of the
and a dominant sequence finding difficulties force us to Usg rT's;; () can be written easily. In view of condition 5)
the piecewise smooth approximati@h,, () of Theorem 1 the condition
~ Tin(z) Oay(z) /Op(x)
T'n = j 5 ——— ——
) = T D@ D7 00, o,

(Advance online publication: 24 August 2011)
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has to hold in addition to the previous restrictions. i &K (93 — Xi)
The class of functions (1) enable us to describe from p hi hi
unique positions the system of characteristics of production Tnrec(T) = =
. p s . 1 Tr — Xi
function: characteristics of the zero order (production func- Z h—K .
tions, average output of separate and general factors, profit); i=1 i

characteristics of the first order (marginal productivity of
factors, elasticities of output by factors, marginal rate of
technical substitution of a factor by another, elasticity of TABLE 1
the output by the scale) [23, pp. 47-49]. As regards the
characteristics of the second order, for example, elasticities

The results are given in Table 1.

Empirical MSEs

of factors substitution by Allen, Mikhalevskii, Mac-Fadden n 40 60 200 1000
(see [23, pp. 49-50]), the approaches to their investigation 5

are similar because they can be obtained by the iterated u’;’c"m 0.264 0.236  0.128 0.083
differentiation of characteristics of the first order. Unrec  0-243  0.207  0.065 0.038

V. SIMULATION
VI. NONPARAMETRIC SEMFRECURSIVE IDENTIFICATION

The methodology of the statistical experiment (the esti- OF THE DYNAMIC PRODUCTION EUNCTION
mation of the regression function) coincides with [22]. The

two-dimensional sampleX, Y1), . . ., (X,.,Y,) is generated Generalize the above results, given for independent ob-
with the p.d.f. servations (random samples), to time series. In [21] an

autoregressive heteroscedastic model satisfying geometric
f(z,y) = fyl=)p (2). ergodicity conditions is considered. The approach allows us
to estimate dynamic production functions with lagged values
of the inputs and output.
Suppose that a sequen€k;);—. . _1,0,12,.. IS generated
by a nonlinear homoscedastic ARX process of order s)

At each X;, the Y; are modeled as normally distributed . , 4 .
variables with the mean Vo= WViiny o Vi, Xo) + 6 = W) + &, (11)

The random variabl& uniformly distributed on the interval
[0,5], i.e.,
p(x)=1/5, x€][0,5].

r(X) = 10[1 + exp(—0.5X,)] where X; = (Xy4,..., X)) are exogenous variables,

and with the variance Ur = Vemiry o5 Yimiy, Xo), 1 <00 <2 < <,y

is the known subsequence of natural numbégs) is a

2(X;) =1 —0.5X,)]?%, . o o : :
o (Xi) = [1 4 exp(= 0.5X)] sequence of independent identically distributed (with density

ie., positive on R') random variables with zero mean, finite
9 variance, zero third, and finite fourth momentg(-) is
1 [y - r(@) e, an .
flylz) = exp 5 . an unknown non-periodic function bounded on compacts.
V2o (x) 20%(x) Assume that the process is strictly stationary.
In the estimators, we use the Epanechnikov kernel Criteria for geometric ergodicity of a nonlinear het-
9 eroscedastic autoregression and ARX models which in turn
3 (1 _ “>’ lu| < V5, imply «-mixing have been given by many authors (see, for
K(u)=14 45 5 example, [24]- [28]).
0, [ul > /5, Let Yi,...,Y, be observations generated by process (8).
and the bandwidtha,, = n—1/5, The conditional expectation
The empirical MSEs of estimates are: for common esti- U(z,2) = U(u) = E(V;|U; = u) = E(V;|w),
mates
L (z,z) = u € R™*, we estimate by the statistic, which
U2 com = *Z[Tn,com(l‘z) — ()] ?, is a semi-recursive counterpart of the Nadaraya—Watson
M estimator [18], [29] (similarly to (8)):
for recursive estimates i: Y, K (u _ Ut)
2 _ 1 _ 2 P hyts I
Up rec = m Z[Tn,'rec(xl) T(xl)] ) an,m-&-s (u) = — . (12)
=1 Z 1 K <U — Ut)
wherez; =1 x 0.5, m = 10, s hyte hy
" VK rz— X; Since the observations are dependent, investigation of the
Z i B estimators properties becomes much harder. For example, the
Tn,com(T) = 1_; , main part of the Nadaraya-Watson estimator's AMSE for
ZK (“L - Xi) strongly mixing (s.m.) sequences was found only in 1999
b, [30].
i=1

(Advance online publication: 24 August 2011)
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According to [21], if the observed sequence satisfies the 2000 2001 2002 2003 2004
s.m. condition with an s.m. coefficient() such that 0.039 0032 0041 0.051 0.056
* 5 0.029 0.035 0.033 0.031 0.036
/ T a(T)] 7 dr < 00 (13)
0

for some0 < § < 2, then Theorem 1 holds. Note that an s.m. TABLE 3
coefficie-nt with f[he geometric rate satisfies gondition (13). RAEs of Identification
We will examine the dependence of Russian Federation’s
Industrial Production Index (IPIy” on the dollar exchange Anpa  0.047
rate X, import X5, and direct investmentX; for the Arse  0.042
period from September 1994 till March 2004. The data are

available from: http://www.gks.ru and http://sophist.hse.ru/. The result of 1998 can be explained by 1998 Russian
Apply (12) under financial crisis ("Ruble crisis”) in August 1998.

Uy = (}/tflvX1t7X2t7X3t7X3(t—1))' (14) VIl. FORECASTING

The structure of data (14) provides the following estimator To predict the IPI we will apply (12) under
for Y, :
U = (Yie1, Xig—1), Xo@t—1), X3@—1), X3(t-2)).  (16)

Yo =Wy 5 (Y1, X1n, Xon, X3n, X3(n-1)) = The structure of data (16) provides the following forecast

_ for Y, :
K Kt .
Z Z (15) Y, = \Ijn,f) (Ynflvxl(nflﬁ XZ(n71)7X3(n71)aX3(n72)) =
t=2 t=2
n—1

K 'K
> o _ = Z Yot =t (17)

where H; = H hj:, and the five-dimensional kerné{; is H

5

j=1
defined by the formula
y where H;, = H hj¢, and the five-dimensional kerné{; is

_ =1
K, =K Yoo = Yir Yt ! HK Xit) « defined by the formula
h(m)t
X
Y,_1-Y; ne1) — Xi(t—
x x Kt:K< 1— tl)HK< J( 1) it 1))><
< K < 3(n—1) — S(t—l)) h(jy
i '
. . _ X3(n—2) — X3(t-2)
The kernel used is the Gaussian kernel and the bandwidths x K Fia .
hje = 0.17&jt‘1/9, Statistic (17) may be interpreted as the predicted value based

on the past information.

where;, j = 1,2,3,4,5 are the corresponding sample 14 find the AMSE of the estimatof¥,, 5 (u) we use
standard deV|at|ons the constant 0.17 is chosen subjectivglyegrem 2 [21].

To compare nonparametric algorithm (NPA) (15) and the gypnose that
least-squares estimator (LSE), we has calculated the relative

average error (RAEM and relative average annual errors _ _ ‘
(RAAES) A(t), t = 1995, .. .,2003, for both the approaches: K()e Ay, K= HK(U’)’ sup K (u)] < oo,

i=1 u€ R
At) = 1 Z AN
’ 124

5

113

1
A:m;

Y - Y;
Y;

the sequencé,,) € H(5), and\ = —5. Let functionsa; (u),
» 4 = 0,1, and their derivatives up to and including the order

be continuous and bounded B8, functions/ v f(u,y) dy

Y;( 2004 — Y;(2004)
004)

3

A(2004) _ 1 Z

i=1

w \

) and /y4f(u, y)dy be bounded onR? and, moreover,

. 2f(u,y) dy and 249 £ (u,y) dy be continuous at the
whereY; is the IPI true value, and; is its estimate. The y flu,y)dy “|y\ J(uy)dy
results are given in Tables 2 and 3. point u. Then conditions (1_).—(5) of Theorem 2 [21] hold;
we also suppose that condition (6) (Theorem 2 [21]) holds.
If p(u) > 0, then condition (7) (Theorem 2 [21]) holds too.

TABLE 2 If the random variableg’; are uniformly bounded, and
RAAEs of Identification we select a nonnegative kernel, then it is easy to show
that ¥,, 5 (u) are bounded forr = 2. By condition (8)
t 1995 1996 1997 1998 1999 (Theorem 2 [21]), this is equivalent to the existence of a
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problem (see the previous section).
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