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Abstract—A class of semi-recursive kernel plug-in estimators
of functions depending on multivariate density functionals
and their derivatives is considered. The approach enables to
estimate the static production function, marginal productivity
and marginal rate of technical substitution of inputs. The
piecewise smoothed approximations of these estimators are
proposed. The main parts of the asymptotic mean square
errors (AMSEs) of the estimators are found. The results are
generalized to the dynamic production functions with the lagged
values of the inputs and output.

Index Terms—Kernel recursive estimator, mean square con-
vergence, piecewise smooth approximation, production func-
tion.

I. I NTRODUCTION

T HIS paper is based on the results published in the
Proceedings of the World Congress on Engineering

2011, that was held in Imperial College London, London,
U.K., July 6-8, 2011 [1].

Numerous statistical problems (such as identification, clas-
sification, filtering, prediction, etc.) is connected to estima-
tion of certain characteristics of the following expressions:

J(x) = H
(
{ai(x)}, {a(1j)

i (x)}, i = 1, s, j = 1,m
)

=

= H
(
a(x), a(1j)(x)

)
. (1)

Herex ∈ Rm, H(·) : R(m+1)s → R1 is a given function,

a(0j)(x) = a(x) = (a1(x), . . . , as(x)) ,

a(1j)(x) =
(
a
(1j)
1 (x), . . . , a(1j)

s (x)
)

,

ai(x) =
∫

gi(y)f(x, y)dy, i = 1, s,

a
(1j)
i (x) =

∂ai(x)
∂xj

, i = 1, s, j = 1,m,

whereg1, . . . , gs are the known Borel functions,
∫
≡
∫
R1

,

f(·, ·) is an unknown probability density function (p.d.f.) for
the observed random vectorZ = (X, Y ) ∈ Rm+1.

Remark. Note that in (1) some variables of functionH(·)
may be omitted (for example, all derivatives).
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If gi(y) ≡ 1, then

ai(x) =
∫

f(x, y)dy = p (x),

wherep (·) is the marginal p.d.f. of the random variableX,
andf(y|x) = f(x, y)/p (x) is the conditional p.d.f.

Here are the well known examples of such functions:
— the conditional initial moments

µm(x) =
∫

ymf(y|x)dy, H(a1, a2) = a1/a2, m ≥ 1,

g1(y) = ym, g2(y) = 1;

µ1(x) = r(x) is the regression function of the outputy of a
stochastic object to relative to the inputsx (r(x) minimizes
the mean square error (MSE) of the outputs of an object and
a model);

— the conditional central moments

Vm(x) =
∫

(y − r(x))mf(y|x)dy, g1(y) = y,

g2(y) = y2, . . . , gm(y) = ym, gm+1(y) = 1;

V2(x) = D(x) is the conditional variance or the scedastic
curve [2], σ(x) =

√
D(x) is the conditional standard

deviation, andD(x), σ(x) specify errors of the regressive
modelr(x);

— the conditional coefficient of skewness or the clitic
curve [2]

β1(x) =
E((Y − r(x))|x)3

[D(Y |x)]3/2
, bi = ai/a1, gi(y) = yi−1,

H(a1, a2, a3, a4) = (b4 − 3b3b2 + 2b3
2)/(b3 − b2

2)
3/2;

— the curtic curve [2]

β2(x) =
E((Y − r(x))4|x)

[D(Y |x)]2
;

— the sensitivity functions

Tj(x) =
∂r(x)
∂xj

, g1(y) = 1, g2(y) = y,

H
(
a1, a2, a

(1j)
1 , a

(1j)
2

)
=

a
(1j)
1

a2
− a1a

(1j)
2

a2
2

= b
(1j)
2 ;

Tj(x) defines the degree of the relation between changes of
the inputxj and outputy of an object model. We note that
in [2] the useful possibility is pointed out for the application
of conditional cumulants or semi-invariantsκj , j ≥ 1,
instead of conditional moments; thus, for example, for the
clitic curve, the numerator of the ratioH is the conditional
semi-invariantκ3 [3].
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II. PROBLEM STATEMENT

In the solution of various problems of identification, recur-
rent procedures find wide application, which has a number
of advantage in comparison with common procedures. As a
rule, they are easily realized on computers, thus economizing
their memory, afford the result at each step of working of
the algorithm, and the coming of new measurements does
not lead to cumbersome recomputations, so this provides the
data processing in the real-time mode.

Take the following expression as an estimator of the
functional a(x) = a(0j)(x) (r = 0) and its derivatives
a(1j)(x) (r = 1) at a pointx:

a(rj)
n (x) =

1
n

n∑
i=1

g(Yi)
hm+r

i

K(rj)

(
x−Xi

hi

)
. (2)

Here Zi = (Xi, Yi), i = 1, n, is the (m + 1)-dimensional
random sample from p.d.f.f(·, ·), (hi) is a sequence of
positive bandwidths tending to 0 asi →∞,

K(0j)(u) = K(u) =
m∏

i=1

K(ui)

is a m-dimensional multiplicative function which does not
need to possess the properties of p.d.f.,

K(1j)(u) =
∂K(u)
∂uj

, g(y) = (g1(y), . . . , gs(y)) ,

a(rj)
n (x) =

(
a
(rj)
1n (x), . . . , a(rj)

sn (x)
)

.

Note that (2) can be computed recursively by

a(rj)
n (x) = a

(rj)
n−1(x)−

− 1
n

[
a
(rj)
n−1(x)− g(Yn)

hm+r
n

K(rj)

(
x−Xn

hn

)]
. (3)

This property is particularly useful when the sample size is
large since (3) can be easily updated with each additional
observation.

In the case, when

m = 1, s = 1, g(y) = 1, H(a1) = a1,

we obtain the recursive kernel estimator ofp (x) that was
introduced by Wolverton and Wagner in [4] and apparently
independently by Yamato [5], and has been thoroughly
examined in [6].

The semi-recursive kernel estimators of conditional func-
tionals

b(x) = (b1(x), . . . , bs−1(x)),

bi(x) = ai(x)/p (x) =
∫

gi(y)f(y|x)dy

at a pointx are designed as(gs(x) = 1)

bn(x) =

n∑
i=1

g(Yi)
hm

i

K
(

x−Xi

hi

)
n∑

i=1

1
hm

i

K
(

x−Xi

hi

) =
an(x)
p n(x)

=
a
(0j)
n (x)

a
(0j)
sn (x)

.

Such estimators are called semi-recursive because they can
be updated sequentially by adding extra terms to both the

numerator and denominator when new observations became
available. If g1(y) = y (s = 2), we obtain semi-recursive
kernel estimators of the regression line [7]– [9]. Weak and
strong universal consistency of such estimates was investi-
gated in [10]– [14].

To estimate (1) we use the following semi-recursive plug-
in statistic

J n(x) = H
({

a(rj)
n (x)

}
, j = 1,m, r = 0, 1

)
. (4)

Plug-in estimatorsbn(x) are often used for estimating of
ratios. There is a possible instability ofbn(x), and may be
estimators (4) too, related to a proximity of the denominator
to zero. Craḿer considered such a problem first (see [15] for
details). Here this problem has been solved by make using
of the piecewise smooth approximation [16]

J̃n(x) =
J n(x)

(1 + δn|J n(x)|τ )ρ
, (5)

whereτ > 0, ρ > 0, ρτ ≥ 1, (δn) ↓ 0 asn →∞.

III. M EAN SQUARE ERRORS

Denote:

sup
x

= sup
x∈Rm

, K(1)(u) =
dK(u)

du
,

Tj =
∫

ujK(u)du, j = 1, 2, . . . .

We will introduce auxiliary definitions.
Definition 1. A function H(·) : Rs → R1 belongs to

the classNν(t) (H(·) ∈ Nν(t)) if it is continuously
differentiable up to the orderν at the pointt ∈ Rs. A function
H(·) ∈ Nν(R) if it is continuously differentiable up to the
orderν for any z ∈ Rs.

This definition is related to the required smoothness
conditions for the functionH in (1). The following three
definitions impose conditions on the estimation procedure.

Definition 2. A Borel functionK(·) ∈ A(r), (A(0) = A)

if
∫
|K(r)(u)| du < ∞, and

∫
K(u) du = 1.

Definition 3. A Borel functionK(·) ∈ A(r)
ν , (A(0)

ν = Aν)
if K(·) ∈ A(r), Tj = 0, j = 1, . . . , ν − 1, Tν 6= 0,∫
|uνK(u)|du < ∞, andK(u) = K(−u).

The parameterν in Definition 3 specifies the rate of
convergence in the mean square sense of the estimators (4)
and (5).

Definition 4. A sequence(hn) ∈ H(m + r + q) if

(hn + 1/(nhm+r+q
n )) ↓ 0, (6)

1
n

n∑
i=1

hλ
i = Sλhλ

n + o(hλ
n), (7)

whereλ is a real number,Sλ is a constant independent on
n; r, q = 0, 1.

The condition (6) is a common condition for the con-
vergence in the mean square sense of kernel estimators.
The condition (7) is related to the recurrent structure of
the estimators and is fulfilled, for example,hi = O (i−α) ,
0 < α < 1 (it is this form that optimal bandwidthshn have
[8]), in which case the constantSλ can be defined according
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to the Euler–Macloren formula. In particular, for anyp 6= −1
we obtain

n∑
j=1

jp = np+1/(p + 1) + o(np+1).

Definition 5. Let tn, X1, . . . , Xn are vectors, andtn =
tn(X1, . . . , Xn). A sequence of functions{H(tn)} belongs
to the classM(γ) if for any possible valuesX1, . . . , Xn the
sequence{|H(tn)|} is dominated by a sequence of numbers
(C0d

γ
n) , (dn) ↑ ∞ as n → ∞, 0 ≤ γ < ∞, C0 is a

constant.
For the necessity of introduction of majorizing sequences

in finding the AMSEs of unstable estimators, it was Cramér
who first pointed to it in the book [15], in which he strictly
formulated and proved the theorem on the mean and variance
of the function of sample moments.

Put for r, q = 0, 1; t, p = 1, s; j = 1,m :

A = A(x) =
{

a(rj)(x)
}

; Htjr = ∂H(A)/∂a
(rj)
t ;

H
({

a(rj)
n (x)

})
= H(An); as+(x) =

∫
|gs(y)|f(x, y)dy;

at, p(x) =
∫

gt (y)gp (y) f(x, y) dy;

a1+
t, p(x) =

∫
|gt (y)gp (y)| f(x, y) dy;

L(r, q) =
∫

K(r)(u)K(q)(u) du;

B(r, q)
t, p = L(r, q)

(
L(0, 0)

)m−1

at, p (x);

ω
(rj)
iν =

Tν

ν!

m∑
l=1

∂ νa
(rj)
i (x)
∂xν

l

;

the set

Q =

 {0} if ∀j r = 0;
{1} if ∀j r = 1;
{0, 1} if ∃j r = 0

∧
r = 1.

Theorem 1 (AMSE of the estimatorJ n(x)). If for
t, p = 1, s, j = 1,m, r ∈ Q :

1) the functionsat, p (·) ∈ N0(R), sup
x

a1+
t, p (x) < ∞,

sup
x

a1+
t (x) < ∞, sup

x
a4+

t (x) < ∞;

2) the kernel functionK(·) ∈ A(max(r))
ν , sup

x

∣∣∣K(r)(x)
∣∣∣ <

∞, if Q = {0, 1} then K(r)(·) ∈ N0(R), if 1 ∈ Q then
lim

|u|→∞
K(u) = 0;

3) a
(rj)
t (·) ∈ Nν(R), sup

x
| a(rj)

t (x)| < ∞,

sup
x

∣∣∣∣∣ ∂ νa
(rj)
t (x)

∂xl∂xt . . . ∂xq

∣∣∣∣∣ < ∞, l, t, . . . , q = 1,m;

4) the sequence(hn) ∈ H(m + 2 max(r));
5) H(·) ∈ N2(A);
6) {H(An)} ∈ M(γ), 0 ≤ γ ≤ 1/4.
Then AMSE of the estimatorJ n(x) asn →∞

u2(J n) =
s∑

t, p=1

m∑
j, k=1

∑
r, q∈Q

HtjrHpkq×

×

[
S−(m+2 max(r, q))

B(r, q)
t, p

nhm+r+q
n

+ S2
ν ω

(rj)
tν ω(qk)

p ν h2ν
n

]
+

+ O

([
1

nh
m+2 max(r)
n

+ h2ν
n

] 3
2
)

.

It is important that we do not need condition 6) of
Theorem 1 when piecewise smooth approximation (5) is
used.

Theorem 2 (AMSE of the piecewise smooth approxima-
tion J̃n, ν(x)). Suppose that conditions 1)–5) of Theorem 1
hold and restriction 6) is replaced by
6∗) J(x) = H(A(x)) 6= 0 or τ ≥ 4, τ is a positive integer.

Then asn →∞

u2(J̃n) ∼ u2(J n(x)).

The proofs are given in [17].

IV. N ONPARAMETRIC SEMI-RECURSIVE IDENTIFICATION

OF THE STATIC PRODUCTION FUNCTION AND ITS

CHARACTERISTICS

Apply the results to estimate the static production function
and its characteristics.

A. Estimation of the three-factor production function

Let r(x), x = (x1, x2, x3) ∈ R3, be the regression model
of the three-factor production function,

a(x) = (a1(x), a2(x)), a1(x) =
∫

yf(x, y)dy,

a2(x) =
∫

f(x, y)dy = p (x).

Herex1 > 0 is the capital input,x2 > 0 is the labor input,
x3 > 0 is the nature input,y > 0 is a product, and p.d.f.
f(x, y) > 0 only if x1 > 0, x2 > 0, x3 > 0, y > 0. Then

Jn(x) = rn(x) =

n∑
i=1

Yi

h3
i

K
(

x−Xi

hi

)
n∑

i=1

1
h3

i

K
(

x−Xi

hi

) =

=
a
(0j)
1n (x)

a
(0j)
2n (x)

=
a1n(x)
p n(x)

. (8)

Let

K(u) = K(u1)K(u2)K(u3), K(·) ∈ Aν ,

sup
u∈R1

|K(u)| < ∞, (hn) ∈ H(3).

To find the AMSE of the estimatorrn(x), we use Theo-
rem 1. In view of 1)–4) conditions of the theorem functions
ai(z), i = 1, 2, and their derivatives are continuously
differentiable up to the orderν for any z ∈ R3, and the

function
∫

y4f(x, y)dy is bounded onR3. If p (x) > 0,

then condition 5) is fulfilled.
It seems impossible to find a majorizing sequence(dn)

(condition 6) of Theorem 1), since the denominator in the
ratio (8) may be equal to zero [18], [19]. But it is shown in
these papers that we can find the majorizing sequence with
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γ = 0 underν = 2 according to Definition 5 if, for example,
K(u) ≥ 0, andY < ∞. In this case asn →∞

u2(rn) =
2∑

i, p =1

HiHp

(
S−3

L(0, 0)Bi, p

nh3
n

+ S2
2ωi2ωp 2h

4
n

)
+

+ O

([
1

nh3
n

+ h4
n

]3/2
)

,

where

H1 =
1

p (x)
, H2 = − r(x)

p (x)
; B1,1 =

∫
y2f(x, y)dy,

B1, 2 = B2,1 =
∫

yf(x, y)dy, B2, 2 = p (x);

ω12 =
T2

2

(
∂ 2a1(x)

∂x2
1

+
∂ 2a1(x)

∂x2
2

+
∂ 2a1(x)

∂x2
3

)
,

ω22 =
T2

2

(
∂ 2p (x)

∂x2
1

+
∂ 2p (x)

∂x2
2

+
∂ 2p (x)

∂x2
3

)
.

For ν > 2 we can use the piecewise smooth approxima-
tion r̃n(x):

r̃n(x) =
rn(x)

(1 + δn, ν | rn(x)| τ )ρ
,

whereτ > 0, ρ > 0, ρτ ≥ 1, δn, ν = O
(
h2ν

n + 1/(nh3
n)
)
,

(δn, ν) ↓ 0 asn →∞.
In view of condition6∗) of Theorem 2 it is enough to take

evenτ ≥ 4, and asn →∞

u2(r̃n) =
2∑

i, p =1

HiHp

(
S−3

L(0, 0)Bi, p

nh3
n

+ S2
ν ωiνωpνh2ν

n

)
+

+ O

([
1

nh3
n

+ h2ν
n

]3/2
)

.

B. Estimation of the conditional variance

Estimate the conditional varianceD(x) by the following
statistic:

Dn (x) =

n∑
i=1

Y 2
i

h3
i

K
(

x−Xi

hi

)
n∑

i=1

1
h3

i

K
(

x−Xi

hi

) − r2
n (x). (9)

The estimator (9) is a semi-recursive counterpart of a widely
used volatility function estimator [20]. The piecewise smooth
approximation of the estimatorDn (x) can be written easily.

C. Estimation of the marginal productivity functions

In economics, the marginal productivity functions are
defined by the formulas

MPj(x) = Tj(x) =
∂r(x)
∂xj

, j = 1, 2, 3,

and a dominant sequence finding difficulties force us to use
the piecewise smooth approximatioñTjn(x) :

T̃jn(x) =
Tjn(x)

(1 + δn|Tjn(x)| τ )ρ
,

where

Tjn(x) =


n∑

i=1

Yi

h4
i

K(1j)

(
x−Xi

hi

)
n∑

i=1

1
h3

i

K
(

x−Xi

hi

) −

−

n∑
i=1

Yi

h3
i

K
(

x−Xi

hi

) n∑
i=1

Yi

h4
i

K(1j)

(
x−Xi

hi

)
[

n∑
i=1

1
h3

i

K
(

x−Xi

hi

)]2

 , (10)

K(11)(u) = K(1)(u1)K(u2)K(u3),

K(12)(u) = K(u1)K(1)(u2)K(u3),

K(13)(u) = K(u1)K(u2)K(1)(u3).

Here the kernelK(·) satisfies such additional conditions:

sup
u∈R1

|K(1)(u)| < ∞, lim
|u|→∞

K(u) = 0,

K(α)(·) ∈ N0(R), α = 1, 2;

functions a1(·), a2(·) and their derivatives up to the or-
der (ν + 1) need to be continuous and bounded onR3; the
sequence(hn) ∈ H(4).

The estimators (9) and (10) were used in identification of
CHARN (conditional heteroscedastic autoregressive nonlin-
ear) type model on the data of ”Gazprom” stock prices for
the period from January 15, 2008 till March 24, 2009 [21].

D. Estimation of the marginal rate of technical substitution
and elasticity coefficients

In turns, in economics, a number of other important char-
acteristics are defined in terms of the marginal productivity,
for example, the marginal rate of technical substitution of an
input xj with an inputxi

MRTSij(x) =
MPi(x)
MPj(x)

, i, j = 1, 2, 3, i 6= j,

H(a1, a2, a
(1j)
1 , a

(1j)
2 ) =

b
(1i)
1

b
(1j)
1

, g1(y) = y,

the elasticity coefficient of the outputy by the jth variable
factor

Ej(x) =
MPj(x)

r(x)
xj =

∂r(x)
∂xj

xj

r(x)
=

∂ ln r(x)
∂xj

xj ,

H(a1, a2, a
(1j)
1 , a

(1j)
2 ) =

b
(1j)
1

b1
xj , g1(y) = y.

So, the plug-in estimator of theMRTSij(x) takes the
form

MRTSij, n(x) =
Tin(x)
Tjn(x)

.

The piecewise smooth approximation of the
MRTSij, n(x) can be written easily. In view of condition 5)
of Theorem 1 the condition

r(x) 6= ∂a1(x)
∂xj

/
∂p (x)
∂xj
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has to hold in addition to the previous restrictions.
The class of functions (1) enable us to describe from

unique positions the system of characteristics of production
function: characteristics of the zero order (production func-
tions, average output of separate and general factors, profit);
characteristics of the first order (marginal productivity of
factors, elasticities of output by factors, marginal rate of
technical substitution of a factor by another, elasticity of
the output by the scale) [23, pp. 47–49]. As regards the
characteristics of the second order, for example, elasticities
of factors substitution by Allen, Mikhalevskii, Mac-Fadden
(see [23, pp. 49–50]), the approaches to their investigation
are similar because they can be obtained by the iterated
differentiation of characteristics of the first order.

V. SIMULATION

The methodology of the statistical experiment (the esti-
mation of the regression function) coincides with [22]. The
two-dimensional sample(X1, Y1), . . . , (Xn, Yn) is generated
with the p.d.f.

f(x, y) = f(y|x)p (x).

The random variableX uniformly distributed on the interval
[0, 5], i.e.,

p (x) = 1/5, x ∈ [0, 5].

At eachXi, the Yi are modeled as normally distributed
variables with the mean

r(Xi) = 10[1 + exp(− 0.5Xi)]

and with the variance

σ2(Xi) = [1 + exp(− 0.5Xi)] 2,

i.e.,

f(y|x) =
1√

2πσ(x)
exp
{
−[y − r(x)] 2

2σ2(x)

}
.

In the estimators, we use the Epanechnikov kernel

K(u) =


3

4
√

5

(
1− u2

5

)
, |u| ≤

√
5,

0, |u| >
√

5,

and the bandwidthshn = n−1/5.
The empirical MSEs of estimates are: for common esti-

mates

u2
n,com =

1
m

m∑
l=1

[rn,com(xl)− r(xl)] 2,

for recursive estimates

u2
n,rec =

1
m

m∑
l=1

[rn,rec(xl)− r(xl)] 2,

wherexl = l × 0.5, m = 10,

rn,com(x) =

n∑
i=1

YiK

(
x−Xi

hn

)
n∑

i=1

K

(
x−Xi

hn

) ,

rn,rec(x) =

n∑
i=1

Yi

hi
K

(
x−Xi

hi

)
n∑

i=1

1
hi

K

(
x−Xi

hi

) .

The results are given in Table 1.

TABLE 1

Empirical MSEs

n 40 60 200 1000
u2

n,com 0.264 0.236 0.128 0.083
u2

n,rec 0.243 0.207 0.065 0.038

VI. N ONPARAMETRIC SEMI-RECURSIVE IDENTIFICATION

OF THE DYNAMIC PRODUCTION FUNCTION

Generalize the above results, given for independent ob-
servations (random samples), to time series. In [21] an
autoregressive heteroscedastic model satisfying geometric
ergodicity conditions is considered. The approach allows us
to estimate dynamic production functions with lagged values
of the inputs and output.

Suppose that a sequence(Yt)t=...,−1,0,1,2,... is generated
by a nonlinear homoscedastic ARX process of order(m, s)

Yt = Ψ(Yt−i1 , . . . , Yt−im , Xt) + ξt = Ψ(Ut) + ξt, (11)

where Xt = (X1t, . . . , Xst) are exogenous variables,

Ut = (Yt−i1 , . . . , Yt−im
, Xt), 1 ≤ i1 < i2 < ... < im,

is the known subsequence of natural numbers,(ξt) is a
sequence of independent identically distributed (with density
positive on R1) random variables with zero mean, finite
variance, zero third, and finite fourth moments,Ψ(·) is
an unknown non-periodic function bounded on compacts.
Assume that the process is strictly stationary.

Criteria for geometric ergodicity of a nonlinear het-
eroscedastic autoregression and ARX models which in turn
imply α-mixing have been given by many authors (see, for
example, [24]– [28]).

Let Y1, . . . , Yn be observations generated by process (8).
The conditional expectation

Ψ(x, z) = Ψ(u) = E(Yt|Ut = u) = E(Yt|u),

(x, z) = u ∈ Rm+s, we estimate by the statistic, which
is a semi-recursive counterpart of the Nadaraya–Watson
estimator [18], [29] (similarly to (8)):

Ψn, m+s (u) =

n∑
t=2

Yt

hm+s
t

K
(

u− Ut

ht

)
n∑

t=2

1
hm+s

t

K
(

u− Ut

ht

) . (12)

Since the observations are dependent, investigation of the
estimators properties becomes much harder. For example, the
main part of the Nadaraya-Watson estimator’s AMSE for
strongly mixing (s.m.) sequences was found only in 1999
[30].
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According to [21], if the observed sequence satisfies the
s.m. condition with an s.m. coefficientα(τ) such that∫ ∞

0

τ2[α(τ)]
δ

2+δ dτ < ∞ (13)

for some0 < δ < 2, then Theorem 1 holds. Note that an s.m.
coefficient with the geometric rate satisfies condition (13).

We will examine the dependence of Russian Federation’s
Industrial Production Index (IPI)Y on the dollar exchange
rate X1, import X2, and direct investmentX3 for the
period from September 1994 till March 2004. The data are
available from: http://www.gks.ru and http://sophist.hse.ru/.
Apply (12) under

Ut = (Yt−1, X1t, X2t, X3t, X3(t−1)). (14)

The structure of data (14) provides the following estimator
for Yn :

Ŷn = Ψn, 5 (Yn−1, X1n, X2n, X3n, X3(n−1)) =

=
n−1∑
t=2

Yt
Kt

Ht

/
n−1∑
t=2

Kt

Ht
, (15)

whereHt =
5∏

j=1

hjt, and the five-dimensional kernelKt is

defined by the formula

Kt = K

(
Yn−1 − Yt−1

h1t

) 3∏
j=1

K

(
Xjn −Xjt

h(j+1)t

)
×

× K

(
X3(n−1) −X3(t−1)

h5t

)
.

The kernel used is the Gaussian kernel and the bandwidths

hjt = 0.17σ̂jt
−1/9,

where σ̂j , j = 1, 2, 3, 4, 5 are the corresponding sample
standard deviations, the constant 0.17 is chosen subjectively.
To compare nonparametric algorithm (NPA) (15) and the
least-squares estimator (LSE), we has calculated the relative
average error (RAE)A and relative average annual errors
(RAAEs)A(t), t = 1995, . . . , 2003, for both the approaches:

A =
1

113

113∑
i=1

∣∣∣∣∣Yi − Ŷi

Yi

∣∣∣∣∣ , A(t) =
1
12

12∑
i=1

∣∣∣∣∣Yi(t)− Ŷi(t)
Yi(t)

∣∣∣∣∣ ,
A(2004) =

1
3

3∑
i=1

∣∣∣∣∣Yi(2004)− Ŷi(2004)
Yi(2004)

∣∣∣∣∣ ,
whereYi is the IPI true value, and̂Yi is its estimate. The
results are given in Tables 2 and 3.

TABLE 2

RAAEs of Identification

t 1995 1996 1997 1998 1999

ANPA(t) 0.046 0.043 0.045 0.075 0.044
ALSE(t) 0.076 0.048 0.041 0.048 0.040

2000 2001 2002 2003 2004

0.039 0.032 0.041 0.051 0.056

0.029 0.035 0.033 0.031 0.036

TABLE 3

RAEs of Identification

ANPA 0.047
ALSE 0.042

The result of 1998 can be explained by 1998 Russian
financial crisis (”Ruble crisis”) in August 1998.

VII. F ORECASTING

To predict the IPI we will apply (12) under

Ut = (Yt−1, X1(t−1), X2(t−1), X3(t−1), X3(t−2)). (16)

The structure of data (16) provides the following forecast
for Yn :

Ŷn = Ψn, 5 (Yn−1, X1(n−1), X2(n−1), X3(n−1), X3(n−2)) =

=
n−1∑
t=3

Yt
Kt

Ht

/
n−1∑
t=3

Kt

Ht
, (17)

whereHt =
5∏

j=1

hjt, and the five-dimensional kernelKt is

defined by the formula

Kt = K

(
Yn−1 − Yt−1

h1t

) 3∏
j=1

K

(
Xj(n−1) −Xj(t−1)

h(j+1)t

)
×

× K

(
X3(n−2) −X3(t−2)

h5t

)
.

Statistic (17) may be interpreted as the predicted value based
on the past information.

To find the AMSE of the estimatorΨn, 5 (u) we use
Theorem 2 [21].

Suppose that

K(·) ∈ A ν , K(u) =
5∏

i=1

K(ui), sup
u∈R1

|K(u)| < ∞,

the sequence(hn) ∈ H(5), andλ = −5. Let functionsai(u),
i = 0, 1, and their derivatives up to and including the orderν

be continuous and bounded onR 5; functions
∫

y2f(u, y) dy

and
∫

y4f(u, y) dy be bounded onR 5; and, moreover,∫
y2f(u, y) dy and

∫
|y|2+δf(u, y) dy be continuous at the

point u. Then conditions (1)–(5) of Theorem 2 [21] hold;
we also suppose that condition (6) (Theorem 2 [21]) holds.
If p (u) > 0, then condition (7) (Theorem 2 [21]) holds too.

If the random variablesYt are uniformly bounded, and
we select a nonnegative kernel, then it is easy to show
that Ψn, 5 (u) are bounded forν = 2. By condition (8)
(Theorem 2 [21]), this is equivalent to the existence of a
majorizing sequence withγ = 0.

For ν > 2 the piecewise smooth approximation solves the
problem (see the previous section).
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In Table 4 the RAAEs of forecasting for each year from
1995 till 2004 are given when we use the NPA and LSE.
Similarly, in Table 5 the RAEs of forecasting for such
estimators are given.

TABLE 4
RAAEs of Forecasting

t 1995 1996 1997 1998 1999

ANPA(t) 0.049 0.058 0.058 0.052 0.048

ALSE(t) 0.113 0.045 0.039 0.049 0.027

2000 2001 2002 2003 2004

0.040 0.037 0.042 0.048 0.051

0.030 0.029 0.020 0.020 0.023

TABLE 5

RAEs of Forecasting

ANPA 0.048
ALSE 0.040

The marginal productivity function and marginal rate of
technical substitution are estimated in the same way on the
base of (10).

VIII. C ONCLUSION

This work presents a unifying approach to estimat-
ing both the statical and dynamical production function
and its characteristics (the marginal productivity function,
marginal rate of technical substitution, conditional vari-
ance). The approach is based on plug-in estimating of
functions depending on functionals of the joint station-
ary distribution of the vector of explanatory variables
Ut = (Yt, Yt−i1 , . . . , Yt−im

, X1t, . . . , Xst), where Xt =
(X1t, . . . , Xst) are exogenous variables,Yt is an output
(product), i2 < ... < im is the known subsequence of
natural numbers. Note thatim may be large, whilem
is small. We assume that the processYt is a nonlinear
homoscedastic ARX process, strictly stationary and satisfies
to the s. m. condition with the geometric rate. The plug-in
estimators are semi-recursive, i.e., we recursively compute
only the kernel estimators of functionals (3). By using the
piecewise smooth approximations of the estimators, we have
managed to avoid the problems concerning to the majorizing
sequence’s existence needed for obtaining of the main part
of the estimator’s AMSE.
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