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Abstract—We present a constructive proof of Brouwer’s
fixed point theorem for sequentially locally non-constant and
uniformly sequentially continuous functions based on the ex-
istence of approximate fixed points. And we will show that
our Brouwer’s fixed point theorem implies Sperner’s lemma
for a simplex. Since the existence of approximate fixed points
is derived from Sperner’s lemma, our Brouwer’s fixed point
theorem is equivalent to Sperner’s lemma.

Index Terms—Brouwer’s fixed point theorem, Sperner’s
lemma, sequentially locally non-constant functions, uniformly
sequentially continuous functions, constructive mathematics.

I. INTRODUCTION

IT is well known that Brouwer’s fixed point theorem can
not be constructively proved1. Sperner’s lemma which is

used to prove Brouwer’s theorem, however, can be construc-
tively proved. Some authors have presented an approximate
version of Brouwer’s theorem using Sperner’s lemma. See
[3] and [4]. Thus, Brouwer’s fixed point theorem is construc-
tively, in the sense of constructive mathematics á la Bishop,
proved in its approximate version.

Also Dalen in [3] states a conjecture that a uniformly con-
tinuous function f from a simplex into itself, with property
that each open set contains a point x such that x ̸= f(x),
which means |x−f(x)| > 0, and also at every point x on the
boundaries of the simplex x ̸= f(x), has an exact fixed point.
We call such a property of functions local non-constancy. In
this paper we present a partial answer to Dalen’s conjecture.

Recently [5] showed that the following theorem is equiv-
alent to Brouwer’s fan theorem.

Each uniformly continuous function f from a com-
pact metric space X into itself with at most one
fixed point and approximate fixed points has a fixed
point.

In [3], [4] and [5] uniform continuity of functions is assumed.
We consider a weaker uniform sequential continuity of
functions according to [6]. In classical mathematics uniform
continuity and uniform sequential continuity are equivalent.
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1[1] provided a constructive proof of Brouwer’s fixed point theorem. But
it is not constructive from the view point of constructive mathematics á la
Bishop. It is sufficient to say that one dimensional case of Brouwer’s fixed
point theorem, that is, the intermediate value theorem is non-constructive.
See [2] or [3].

In constructive mathematics á la Bishop, however, uniform
sequential continuity is weaker than uniform continuity2

And by reference to the notion of sequentially at most
one maximum in [9] we require a condition that a function
f is sequentially locally non-constant, and will show the
following result.

Each sequentially locally non-constant and uni-
formly sequentially continuous function f from an
n-dimensional simplex into itself has a fixed point,

without the fan theorem3. Our sequential local non-
constancy, the condition in [3] (local non-constancy) and the
condition that a function has at most one fixed point in [5]
are mutually different.

[11] constructed a computably coded continuous function
f from the unit square into itself, which is defined at
each computable point of the square, such that f has no
computable fixed point. His map consists of a retract of the
computable elements of the square to its boundary followed
by a rotation of the boundary of the square. As pointed out
by [12], since there is no retract of the square to its boundary,
his map does not have a total extension.

In the next section we present Sperner’s lemma. Its proof
is omitted indicating references. In Section 3 we present our
Brouwer’s fixed point theorem and its proof. The first part
of the proof proves the existence of an approximate fixed
point of uniformly sequentially continuous functions using
Sperner’s lemma, and the second part proves the existence
of an exact fixed point of sequentially locally non-constant
and uniformly sequentially continuous functions. In Section
4 we will derive Sperner’s lemma from Brouwer’s fixed
point theorem for uniformly sequentially continuous and
sequentially locally non-constant functions.

II. SPERNER’S LEMMA

Let ∆ denote an n-dimensional simplex. n is a finite
natural number. For example, a 2-dimensional simplex is a
triangle. Let partition or triangulate the simplex. Fig. 1 is
an example of partition (triangulation) of a 2-dimensional
simplex. In a 2-dimensional case we divide each side of ∆
in m equal segments, and draw the lines parallel to the sides

2Also in constructive mathematics sequential continuity is weaker than
continuity, and uniform continuity (respectively, uniform sequential conti-
nuity) is stronger than continuity (respectively, sequential continuity) even
in a compact space. See, for example, [7]. As stated in [8] all proofs of the
equivalence between continuity and sequential continuity involve the law of
excluded middle, and so the equivalence of them is non-constructive.

3In another paper [10] we have presented a partial answer to Dalen’s
conjecture with uniform continuity and sequential local non-constancy, that
is, a proof of the existence of a fixed point for a uniformly continuous and
sequentially locally non-constant functions.
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Fig. 1. Partition and labeling of 2-dimensional simplex

of ∆. m is a finite natural number. Then, the 2-dimensional
simplex is partitioned into m2 triangles. We consider par-
tition of ∆ inductively for cases of higher dimension. In
a 3 dimensional case each face of ∆ is a 2-dimensional
simplex, and so it is partitioned into m2 triangles in the
above-mentioned way, and draw the planes parallel to the
faces of ∆. Then, the 3-dimensional simplex is partitioned
into m3 trigonal pyramids. And similarly for cases of higher
dimension.

Let K denote the set of small n-dimensional simplices of
∆ constructed by partition. Vertices of these small simplices
of K are labeled with the numbers 0, 1, 2, . . . , n subject to
the following rules.

1) The vertices of ∆ are respectively labeled with 0
to n. We label a point (1, 0, . . . , 0) with 0, a point
(0, 1, 0, . . . , 0) with 1, a point (0, 0, 1 . . . , 0) with 2,
. . . , a point (0, . . . , 0, 1) with n. That is, a vertex
whose k-th coordinate (k = 0, 1, . . . , n) is 1 and all
other coordinates are 0 is labeled with k.

2) If a vertex of K is contained in an n− 1-dimensional
face of ∆, then this vertex is labeled with some number
which is the same as the number of one of the vertices
of that face.

3) If a vertex of K is contained in an n− 2-dimensional
face of ∆, then this vertex is labeled with some number
which is the same as the number of one of the vertices
of that face. And so on for cases of lower dimension.

4) A vertex contained inside of ∆ is labeled with an
arbitrary number among 0, 1, . . . , n.

A small simplex of K which is labeled with the numbers
0, 1, . . . , n is called a fully labeled simplex. Sperner’s lemma
is stated as follows.

Lemma 1 (Sperner’s lemma): If we label the vertices of
K following the rules 1) ∼ 4), then there are an odd number
of fully labeled simplices, and so there exists at least one
fully labeled simplex.

Proof: About constructive proofs of Sperner’s lemma
see [13] or [14].

Since n and partition of ∆ are finite, the number of small
simplices constructed by partition is also finite. Thus, we can
constructively find a fully labeled n-dimensional simplex of
K through finite steps.

III. BROUWER’S FIXED POINT THEOREM FOR

SEQUENTIALLY LOCALLY NON-CONSTANT AND

UNIFORMLY SEQUENTIALLY CONTINUOUS FUNCTIONS

Let x = (x0, x1, . . . , xn) be a point in an n-dimensional
simplex ∆, and consider a function f from ∆ to itself.
Denote the i-th components of x and f(x) by, respectively,
xi and fi(x) or fi.

Uniform continuity, sequential continuity and uniform
sequential continuity of functions are defined as follows;

Definition 1 (Uniform continuity): A function f is uni-
formly continuous in ∆ if for any x, x′ ∈ ∆ and ε > 0
there exists δ > 0 such that

If |x− x′| < δ, then |f(x)− f(x′)| < ε.

δ depends on only ε.
Definition 2 (Sequential continuity): A function f is se-

quentially continuous at x ∈ ∆ in ∆ if for sequences
(xn)n≥1 and (f(xn))n≥1 in ∆

f(xn) −→ f(x) whenever xn −→ x.

Definition 3 (Uniform sequential continuity): A function
f is uniformly sequentially continuous in ∆ if for sequences
(xn)n≥1, (x′

n)n≥1, (f(xn))n≥1 and (f(x′
n))n≥1 in ∆

|f(xn)− f(x′
n)| −→ 0 whenever |xn − x′

n| −→ 0.

|xn − x′
n| −→ 0 means

∀ε > 0 ∃N ∀n ≥ N (|xn − x′
n| < ε),

where ε is a real number, and n and N are natural numbers.
Similarly, |f(xn)− f(x′

n)| −→ 0 means

∀ε > 0 ∃N ′ ∀n ≥ N ′ (|f(xn)− f(x′
n)| < ε).

N ′ is a natural number. In classical mathematics uniform
continuity and uniform sequential continuity of functions are
equivalent. But in constructive mathematics á la Bishop uni-
form sequential continuity is weaker than uniform continuity.

On the other hand, the definition of local non-constancy
of functions is as follows;

Definition 4: (Local non-constancy of functions)

1) At a point x on a face (boundary) of a simplex f(x) ̸=
x. This means fi(x) > xi or fi(x) < xi for at least
one i.

2) In any open set of ∆ there exists a point x such that
f(x) ̸= x.

The notion that φ has at most one fixed point in [5] is
defined as follows;

Definition 5 (At most one fixed point): For all x, y ∈ ∆,
if x ̸= y, then f(x) ̸= x or f(y) ̸= y.

Next, by reference to the notion of sequentially at most
one maximum in [9], we define the property of sequential
local non-constancy.

First we recapitulate the compactness (total boundedness
with completeness) of a set in constructive mathematics. ∆
is totally bounded in the sense that for each ε > 0 there
exists a finitely enumerable ε-approximation to ∆4. An ε-
approximation to ∆ is a subset of ∆ such that for each x ∈ ∆
there exists y in that ε-approximation with |x − y| < ε.

4A set S is finitely enumerable if there exist a natural number N and a
mapping of the set {1, 2, . . . , N} onto S.
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According to Corollary 2.2.12 of [15] we have the following
result.

Lemma 2: For each ε > 0 there exist totally bounded sets
H1,H2, . . . , Hn, each of diameter less than or equal to ε,
such that ∆ = ∪n

i=1Hi.
The definition of sequential local non-constancy is as

follows;
Definition 6: (Sequential local non-constancy of func-

tions) There exists ε̄ > 0 with the following property. For
each ε > 0 less than or equal to ε̄ there exist totally bounded
sets H1,H2, . . . ,Hm, each of diameter less than or equal
to ε, such that ∆ = ∪m

i=1Hi, and if for all sequences
(xn)n≥1, (yn)n≥1 in each Hi, |f(xn) − xn| −→ 0 and
|f(yn)− yn| −→ 0, then |xn − yn| −→ 0.
Now we show the following lemma, which is based on
Lemma 2 of [9].

Lemma 3: Let f be a uniformly continuous function from
∆ into itself. Assume infx∈Hi |f(x)−x| = 0 for some Hi ⊂
∆ defined above. If the following property holds:

For each δ > 0 there exists ε > 0 such that if
x, y ∈ Hi, |f(x)−x| < ε and |f(y)−y| < ε, then
|x− y| ≤ δ.

Then, there exists a point z ∈ Hi such that f(z) = z, that
is, f has a fixed point.

Proof: Choose a sequence (xn)n≥1 in Hi such that
|f(xn)−xn| −→ 0. Compute N such that |f(xn)−xn| < ε
for all n ≥ N . Then, for m,n ≥ N we have |xm−xn| ≤ δ.
Since δ > 0 is arbitrary, (xn)n≥1 is a Cauchy sequence in
Hi, and converges to a limit z ∈ Hi. The continuity of f
yields |f(z)− z| = 0, that is, f(z) = z.

Next we show
Lemma 4: If X is a totally bounded space, and φ is

a uniformly sequentially continuous function of X into a
metric space, then φ(X) is totally bounded.

Proof: Consider a sequence of positive real numbers
(εm)m≥1 such that ε1 > ε2 > · · · > εm and εm −→ 0, and a
sequence of εm-approximation Lm = {x1m , x2m , . . . , xnm}
to X . For each x ∈ X and each εm, there exists a point
xim ∈ Lm such that |x−xim | < εm. Thus, we can construct
a sequence (xim)m≥1 such that |x−xim | −→ 0. The uniform
sequential continuity implies |φ(x) − φ(xim)| −→ 0. |x −
xim | −→ 0 means

∀εm > 0 ∃M ∀m ≥ M (|x− xim | < εm).

M is a natural number. Similarly, |φ(x) − φ(xim)| −→ 0
means

∀εm > 0 ∃M ′ ∀m ≥ M ′ (|φ(x)− φ(xim)| < εm).

M ′ is a natural number. Let m′ ≥ max(M,M ′). Then,
corresponding to an εm′-approximation to X there exists
an εm′-approximation to φ(X). Therefore, φ(X) is totally
bounded.

This is a modified version of Proposition 2.2.6 of [15]. From
this lemma we see that φ has the infimum in X by Corollary
2.2.7 of [15]. Then, |f(x)− x| has the infimum in ∆.

With these preliminaries we show the following theorem.
Theorem 1: (Brouwer’s fixed point theorem for sequen-

tially locally non-constant and uniformly sequentially con-
tinuous functions) Any sequentially locally non-constant

and uniformly sequentially continuous function from an n-
dimensional simplex ∆ to itself has a fixed point.

Proof:
1) First we show that we can partition ∆ so that the con-

ditions for Sperner’s lemma are satisfied. We partition
∆ according to the method in Sperner’s lemma, and
label the vertices of simplices constructed by partition
of ∆. It is important how to label the vertices contained
in the faces of ∆. Let K be the set of small simplices
constructed by partition of ∆, x = (x0, x1, . . . , xn)
be a vertex of a simplex of K, and denote the i-th
component of f(x) by fi. Then, we label a vertex x
according to the following rule,

If xk > fk or xk + τ > fk, we label x with k,

where τ is a positive number. If there are multiple k’s
which satisfy this condition, we label x conveniently
for the conditions for Sperner’s lemma to be satisfied.
We do not randomly label the vertices.
For example, let x be a point contained in an n −
1-dimensional face of ∆ such that xi = 0 for one
i among 0, 1, 2, . . . , n (its i-th coordinate is 0). With
τ > 0, we have fi > 0 or fi < τ . In constructive
mathematics for any real number x we can not prove
that x ≥ 0 or x < 0, that x > 0 or x = 0 or x < 0.
But for any distinct real numbers x, y and z such that
x > z we can prove that x > y or y > z.
When fi > 0, from

∑n
j=0 xj = 1,

∑n
j=0 fj = 1 and

xi = 0,
n∑

j=0,j ̸=i

xj >
n∑

j=0,j ̸=i

fj .

Then, for at least one j (denote it by k) we have
xk > fk, and we label x with k, where k is one of the
numbers which satisfy xk > fk. Since fi > xi = 0, i
does not satisfy this condition. Assume fi < τ . xi = 0
implies

∑n
j=0,j ̸=i xj = 1. Since

∑n
j=0,j ̸=i fj ≤ 1, we

obtain
n∑

j=0,j ̸=i

xj ≥
n∑

j=0,j ̸=i

fj .

Then, for a positive number τ we have
n∑

j=0,j ̸=i

(xj + τ) >

n∑
j=0,j ̸=i

fj .

There is at least one j(̸= i) which satisfies xj+τ > fj .
Denote it by k, and we label x with k. k is one of
the numbers other than i such that xk + τ > fk is
satisfied. i itself satisfies this condition (xi + τ > fi).
But, since there is a number other than i which satisfies
this condition, we can select a number other than i. We
have proved that we can label the vertices contained
in an n − 1-dimensional face of ∆ such that xi = 0
for one i among 0, 1, 2, . . . , n with the numbers other
than i. By similar procedures we can show that we can
label the vertices contained in an n − 2-dimensional
face of ∆ such that xi = 0 for two i’s among
0, 1, 2, . . . , n with the numbers other than those i’s, and
so on. Therefore, the conditions for Sperner’s lemma
are satisfied, and there exists an odd number of fully
labeled simplices in K.
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Consider a sequence (∆m)m≥1 of partitions of ∆,
and a sequence of fully labeled simplices (δm)m≥1.
The larger m, the finer partition. The larger m,
the smaller the diameter of a fully labeled sim-
plex. Let x0

m, x1
m, . . . and xn

m be the vertices of a
fully labeled simplex δm. We name these vertices so
that x0

m, x1
m, . . . , xn

m are labeled, respectively, with
0, 1, . . . , n. The values of f at theses vertices are
f(x0

m), f(x1
m), . . . and f(xn

m). We can consider se-
quences of vertices of fully labeled simplices. Denote
them by (x0

m)m≥1, (x1
m)m≥1, . . . , and (xn

m)m≥1. And
consider sequences of the values of f at vertices of
fully labeled simplices. Denote them by (f(x0

m))m≥1,
(f(x1

m))m≥1, . . . , and (f(xn
m))m≥1. By the uniform

sequential continuity of f

|(f(xi
m))− (f(xj

m))|m≥1 −→ 0

whenever |(xi
m)− (xj

m)|m≥1 −→ 0,

for i ̸= j. |(xi
m)m≥1 − (xj

m)m≥1| −→ 0 means

∀ε > 0 ∃M ∀m ≥ M (|xi
m − xj

m| < ε) i ̸= j,

and |(f(xi
m))m≥1 − (f(xj

m))m≥1| −→ 0 means

∀ε > 0 ∃M ′ ∀m ≥ M ′ (|f(xi
m)− f(xj

m)| < ε) i ̸= j.

Consider a fully labeled simplex δl in partition of ∆
such that l ≥ max(M,M ′). Denote vertices of δl
by x0, x1, . . . , xn. We name these vertices so that
x0, x1, . . . , xn are labeled, respectively, with 0, 1, . . . ,
n. Then, |xi − xj | < ε and |f(xi)− f(xj)| < ε.
About x0, from the labeling rules we have x0

0 + τ >
f(x0)0. About x1, also from the labeling rules we have
x1
1 + τ > f(x1)1 which implies x1

1 > f(x1)1 − τ .
|f(x0)− f(x1)| < ε means f(x1)1 > f(x0)1 − ε. On
the other hand, |x0 − x1| < ε means x0

1 > x1
1 − ε.

Thus, from

x0
1 > x1

1 − ε, x1
1 > f(x1)1 − τ, f(x1)1 > f(x0)1 − ε

we obtain
x0
1 > f(x0)1 − 2ε− τ

By similar arguments, for each i other than 0,

x0
i > f(x0)i − 2ε− τ. (1)

For i = 0 we have x0
0 + τ > f(x0)0. Then,

x0
0 > f(x0)0 − τ (2)

Adding (1) and (2) side by side except for some i
(denote it by k) other than 0,

n∑
j=0,j ̸=k

x0
j >

n∑
j=0,j ̸=k

f(x0)j − 2(n− 1)ε− nτ.

From
∑n

j=0 x
0
j = 1,

∑n
j=0 f(x

0)j = 1 we have 1 −
x0
k > 1− f(x0)k − 2(n− 1)ε−nτ , which is rewritten

as
x0
k < f(x0)k + 2(n− 1)ε+ nτ.

Since (1) implies x0
k > f(x0)k − 2ε− τ , we have

f(x0)k − 2ε− τ < x0
k < f(x0)k + 2(n− 1)ε+ nτ.

Thus,
|x0

k − f(x0)k| < 2(n− 1)ε+ nτ (3)

is derived. On the other hand, adding (1) from 1 to n
yields

n∑
j=1

x0
j >

n∑
j=1

f(x0)j − 2nε− nτ.

From
∑n

j=0 x
0
j = 1,

∑n
j=0 f(x

0)j = 1 we have

1− x0
0 > 1− f(x0)0 − 2nε− nτ. (4)

Then, from (2) and (4) we get

|x0
0 − f(x0)0| < 2nε+ nτ. (5)

From (3) and (5) we obtain the following result,

|x0
i − f(x0)i| < 2nε+ nτ for all i.

Thus,

|x0 − f(x0)| < n(n+ 1)(2ε+ τ). (6)

Since n is finite, x0 is an approximate fixed point of
f 5. And since ε > 0 and τ are arbitrary,

inf
x∈∆

|x− f(x)| = 0.

By Lemma 2 we have infx∈Hi
|x−f(x)| = 0 for some

Hi ⊂ ∆ defined in that lemma.
2) Choose a sequence (ξm)m≥1 in Hi such that |f(ξm)−

ξm| −→ 0. In view of Lemma 3 it is enough to prove
that the following condition holds.

For each δ > 0 there exists ε > 0 such that if
x, y ∈ Hi, |f(x) − x| < ε and |f(y) − y| < ε,
then |x− y| ≤ δ.

Assume that the set

K = {(x, y) ∈ Hi ×Hi : |x− y| ≥ δ}

is nonempty and compact6. Since the mapping
(x, y) −→ max(|f(x) − x|, |f(y) − y|) is uniformly
sequentially continuous, by Lemma 4 we can construct
an increasing binary sequence (λm)m≥1 such that

λm = 0 ⇒ inf
(x,y)∈K

max(|f(x)−x|, |f(y)−y|) < 2−m,

λm = 1 ⇒ inf
(x,y)∈K

max(|f(x)−x|, |f(y)−y|) > 2−m−1.

It suffices to find m such that λm = 1. In that case, if
|f(x)−x| < 2−m−1 and |f(y)−y| < 2−m−1, we have
(x, y) /∈ K and |x− y| ≤ δ. Assume λ1 = 0. If λm =
0, choose (xm, ym) ∈ K such that max(|f(xm) −
xm|, |f(ym)− ym|) < 2−m, and if λm = 1, set xm =
ym = ξm. Then, |f(xm) − xm| −→ 0 and |f(ym) −
ym| −→ 0, so |xm − ym| −→ 0. Computing M such
that |xM − yM | < δ, we must have λM = 1. We have
completed the proof.

5In another paper [16] we have shown the existence of an approximate
fixed point of each uniformly continuous function in a locally-convex space.

6See Theorem 2.2.13 of [15].
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IV. FROM BROUWER’S FIXED POINT THEOREM FOR

SEQUENTIALLY LOCALLY NON-CONSTANT AND

UNIFORMLY SEQUENTIALLY CONTINUOUS FUNCTIONS TO

SPERNER’S LEMMA

In this section we will derive Sperner’s lemma from
Brouwer’s fixed point theorem for sequentially locally non-
constant and uniformly sequentially continuous functions.
Let ∆ be an n-dimensional simplex. Denote a point on ∆
by x. Consider a function f from ∆ to itself. Partition ∆ in
the way depicted in Fig. 1. Let K denote the set of small n-
dimensional simplices of ∆ constructed by partition. Vertices
of these small simplices of K are labeled with the numbers
0, 1, 2, . . . , n subject to the same rules as those in Lemma 1.
Now we derive Sperner’s lemma expressed in Lemma 1 from
Brouwer’s fixed point theorem for sequentially locally non-
constant and uniformly sequentially continuous functions.

Denote the vertices of an n-dimensional simplex of K by
x0, x1, . . . , xn, the j-th coordinate of xi by xi

j , and denote
the label of xi by l(xi). Let τ be a positive number which
is smaller than xi

l(xi) for all xi, and define a function f(xi)

as follows7:

f(xi) = (f0(x
i), f1(x

i), . . . , fn(x
i)),

and

fj(x
i) =

{
xi
j − τ for j = l(xi),

xi
j +

τ
n for j ̸= l(xi).

(7)

fj denotes the j-th component of f . From the labeling rules
we have xi

l(xi) > 0 for all xi, and so τ > 0 is well defined.
Since

∑n
j=0 fj(x

i) =
∑n

j=0 x
i
j = 1, we have

f(xi) ∈ ∆.

We extend f to all points in the simplex by convex combina-
tions on the vertices of the simplex. Let z be a point in the n-
dimensional simplex of K whose vertices are x0, x1, . . . , xn.
Then, z and f(z) are expressed as follows;

z =
n∑

i=0

λix
i, and f(z) =

n∑
i=0

λif(x
i), λi ≥ 0,

n∑
i=0

λi = 1.

We verify that f is uniformly sequentially continuous.
Consider sequences (z(n))n≥1, (z′(n))n≥1, (f(z(n)))n≥1

and (f(z′(n)))n≥1 such that |z(n) − z′(n)| −→ 0. De-
note each component of z(n) by z(n)j and so on. When
|z(n)−z′(n)| −→ 0, |z(n)j−z′(n)j | −→ 0 for each j. Then,
since τ > 0 is finite, we have |f(z(n)) − f(z′(n))| −→ 0,
and so f is uniformly sequentially continuous.

Next we verify that f is sequentially locally non-constant.

1) Assume that a point z is contained in an n − 1-
dimensional small simplex δn−1 constructed by par-
tition of an n− 1-dimensional face of ∆ such that its
i-th coordinate is zi = 0. Denote the vertices of δn−1

by xj , j = 0, 1, . . . , n−1 and their i-th coordinate by
xj
i . Then, we have

fi(z) =
n−1∑
j=0

λjfi(x
j), λj ≥ 0,

n−1∑
j=0

λj = 1.

Since all vertices of δn−1 are not labeled with i, (7)
means fi(x

j) > xj
i for all j = {0, 1, . . . , n − 1}.

7We refer to [17] about the definition of this function.

Then, there exists no sequence (z(m))m≥1 such that
|f(z(m))− z(m)| −→ 0 in an n− 1-dimensional face
of ∆.

2) Let z be a point in an n-dimensional simplex δn.
Assume that no vertex of δn is labeled with i. Then

fi(z) =
n∑

j=0

λjfi(x
j) = zi +

(
1 +

1

n

)
τ. (8)

Then, there exists no sequence (z(m))m≥1 such that
|f(z(m))− z(m)| −→ 0 in δn.

3) Assume that z is contained in a fully labeled n-
dimensional simplex δn, and rename vertices of δn so
that a vertex xi is labeled with i for each i. Then,

fi(z) =
n∑

j=0

λjfi(x
j) =

n∑
j=0

λjx
j
i +

∑
j ̸=i

λj
τ

n
− λiτ

= zi +

 1

n

∑
j ̸=i

λj − λi

 τ for each i.

Consider sequences (z(m))m≥1 = (z(1), z(2), . . . ),
(z′(m))m≥1 = (z′(1), z′(2), . . . ) such that |f(z(m))−
z(m)| −→ 0 and |f(z′(m))− z′(m)| −→ 0.
Let z(m) =

∑n
i=0 λ(m)ix

i and z′(m) =∑n
i=0 λ

′(m)ix
i. Then, we have

1

n

∑
j ̸=i

λ(m)j − λ(m)i −→ 0, and

1

n

∑
j ̸=i

λ′(m)j − λ′(m)i −→ 0 for all i.

Therefore, we obtain

λ(m)i −→
1

n+ 1
, and λ′(m)i −→

1

n+ 1
.

These mean

|z(m)− z′(m)| −→ 0.

Thus, f is sequentially locally non-constant, and it has a
fixed point. Let z∗ be a fixed point of f . We have

z∗i = fi(z
∗) for all i. (9)

Suppose that z∗ is contained in a small n-dimensional
simplex δ∗. Let z0, z1, . . . , zn be the vertices of δ∗. Then,
z∗ and f(z∗) are expressed as

z∗ =
n∑

i=0

λiz
i and f(z∗) =

n∑
i=0

λif(z
i), λi ≥ 0,

n∑
i=0

λi = 1.

(7) implies that if only one zk among z0, z1, . . . , zn is
labeled with i, we have

fi(z
∗) =

n∑
j=0

λjfi(z
j) =

n∑
j=0

λjz
j
i +

n∑
j ̸=k

λj
τ

n
− λkτ

= z∗i (z∗i is the i−th coordinate of z∗).

This means
1

n

n∑
j ̸=k

λj − λk = 0.

Then, (9) is satisfied with λk = 1
n+1 for all k. If no zj is

labeled with i, we have (8) with z = z∗ and then (9) can not
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be satisfied. Thus, one and only one zj must be labeled with i
for each i. Therefore, δ∗ must be a fully labeled simplex, and
so the existence of a fixed point of f implies the existence
of a fully labeled simplex.

We have completely proved Sperner’s lemma.

V. CONCLUDING REMARKS

As a future research program we are studying the follow-
ing themes.

1) An application of Brouwer’s fixed point theorem for se-
quentially locally non-constant functions to economic
theory and game theory, in particular, the problem
of the existence of an equilibrium in a competitive
economy with excess demand functions which have
the property that is similar to sequential local non-
constancy, and the existence of Nash equilibrium in
a strategic game with payoff functions which satisfy
sequential local non-constancy.

2) A generalization of the result of this paper to Kaku-
tani’s fixed point theorem for multi-valued functions
with property of sequential local non-constancy and
its application to economic theory.
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