
 
 

 

  
Abstract—The nonlinear equations of Gaussian apodized and 

cosine shapes of fiber Bragg gratings (FBGs) are solved for 
quasi-pulses by using a simple numerical approach. We showed 
that there is a switching action for these structures related to 
input pulse power, and the required switching power for cosine 
shape FBG is 30% less than that needed for apodized FBG. 
Also, for two configurations, attenuation of the pulse amplitude 
at the fiber ends is less respect to the uniform gratings. In fact, 
we have almost constant pulse amplitude and there is 
attenuation just at the fiber centre where the grating coupling 
coefficient is high. Our numerical method is applicable to 
non-solitary pulses too. 
 

Index Terms—Fiber Bragg gratings, Gaussian apodized 
gratings, nonuniform gratings, soliton 
 

I. INTRODUCTION 

Fiber Bragg grating (FBGs) have grate applications in 
optical communication such as optical multiplexers and 
de-multiplexers, wavelength division multiplexing (WDM), 
dense WDM (DWDM), null couplers [1] and so on. The main 
usage of these structures is filtering action of them; for 
example negative coefficient and multi tab filters [2]. 
Tuneable FBGs are used in designing the fiber optical 
code-division multi-access. The elastic and thermal sensors 
are other groups of the FBG applications [3].  

But, the most important FBG application is the optical 
switching. It was reported that we can use a self induced 
nonlinear switch to form an AND gate [4]. Polymeric 
switches are made by an array of FBGs [5]. Depending to the 
relationships of the wavelengths of the quasi-continuous 
waves and the Bragg wavelengths, the resonance effects or a 
decaying behaviour can exist. In the former case, the light 
wavelength is in the outer region of the forbidden gap forms a 
gap soliton [6], and in the latter case when the input light 
wavelength is near the Bragg’s wavelength, we have an 
attenuated wave. Simulation of the second case is done by 
Schrödinger’s equation [7-8]. But, in general case it is very 
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difficult to consider all of the nonlinear effects on FBG 
analysis.  

In this article, we impose a heuristic method to solve the 
mentioned equations and simulate the quasi-pulse propagation 
through a non-uniform FBG such as Gaussian apodized and 
cosine shapes. We studied the effects of nonlinearities and 
switching in these structures.  

 

II. THEORY 

To simulate (quasi) pulse propagation in a FBG we have to 
solve the related equations of a FBG considering the boundary 
conditions. Due to the nonlinear Kerr effects, the fiber index 
varies along the fiber length and it can be written as: 
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where gnδ is the periodic index change of the fiber and n2 is a 

power dependent nonlinear term. According to the coupled 
mode theory, there is an energy exchange between the forward 
and backward waves and the following relations can interpret 
these variations [9]: 
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where the detuning δ is the amount of deviation from the 
Bragg’s propagation constant, and γ is a nonlinear Kerr term 
defined as: 
 

cAeft

W02λγ =                                                                           (4) 

 

κ is the coupling coefficient of the grating and gives the extent 
of the forward, Af, and backward, Ab, wave amplitudes energy 
exchange. Coupling coefficient is varied because of the index 
changes along the fiber length. This factor is a function of the 
material used in, and the shape of the corrugation (such as the 
grating period and height). 

It is possible to derive a relation for the coupling 
coefficient in the form of: 
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where g(z) is the envelop shape function of the index 
changes. If we want to survey the non-uniform FBG, the 
envelop function g(z) can be varied and different shapes with 
different bandwidths generates since the grating shape or 
equivalently the coupling strength, can be used to set the 
bandwidth. To do this, we use two special cases of the 
Gaussian apodized and cosine shapes envelop functions. The 
term ‘apodization’ is used for the type of the gratings in a 
tapered form in the refractive index; a maximum at the 
middle which approaches to zero at the grating ends. 
Apodized gratings have large improvement side-lobe 
suppression and hence narrower bandwidth.  

In general, for the envelop shape function g(z) we have the 
form of: 
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in the case of Gaussian apodized FBG, and: 
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for cosine grating, where α0 and α1 are the proper defined 
factors.  
 

III. NUMERICAL METHOD 

There are many methods (in general numerically) to solve 
the coupled equations (2) and (3) with a predefined boundary 
conditions. All of them have a related complexity, such as the 
finite element method. But with a heuristic method we can 
solve these nonlinear equations for quasi-pulse propagation 
in FBGs, which is fast and exact. Our procedure is based on 
the Jacobi iterative method and forth-fifth orders 
Runge-Kutta (R-K) method with non-uniform step size. The 
predefined data are the boundary conditions at the input and 
output of the structure. At first, we guess some values of the 
field amplitudes. This is done by considering the equations 
without any nonlinearity (γ=0 in (2) and (3)). Using the R-K 
method, we solve (2) and (3) with these initial conditions at 
the forward direction and for a quasi-pulse at the input. After 
that, there are initial guess for the field amplitudes at the 
boundaries. Whit these values the coupled equations are 
solved in the backward directions and hence we will find 
better estimations. By using the Jacobi iteration method and 
the mentioned procedure we will have the converged forward 
and backward field amplitudes Af and Ab (typically in four or 
five iterations).  

For various FBG structures, we can choose R-K method 
with a variable step size to guarantee the required accuracy of 
our results (in some structures this procedure needs a 
significant amount of computation; we can resolve this 
complexity by using the Runge-Kutta Fehlberg method). 
This method is very fast since any numerical method used to 
solve (2) and (3), considering all the nonlinear conditions, 
must decompose the equations with the related boundary 

conditions, whereas in our method these boundary conditions 
are reformed to the initial conditions which can solve using a 
simple procedure. 

The flowchart of our algorithm is shown in Fig. 1. 
 

 
 
Fig. 1: Solution algorithm to simulate quasi-pulse propagation 

in an arbitrary non-uniform FBG 

IV. SIMULATION RESULTS 

In this section we impose the above algorithm on (2) and 
(3), and verify the (quasi) pulse propagation in non-uniform 
FBGs whit the Gaussian apodized and cosine envelop 
functions. The results are shown in Fig. 2.  

 

 
 

Fig. 2: Normalized profile functions of the refractive index 
variations for Gaussian apodized and cosine gratings 

 
In these simulations we assumed that λb=1550nm and all 

the nonlinear effects are included too. The coupling and 
detuning parameters are two important parameters for which 
any variations of them can generate different cases, 
considering the wavelength variations.  

When the Bragg wavelength lies at the forbidden gap of a 
FBG (or when the detuning is less than the coupling strength; 
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δ<κ), the quasi-pulse propagation is in the form of Fig. 3, for 
a Gaussian apodized FBG. All the amplitudes are normalized 
and as seen the forward and backward wave amplitudes are 
decaying.  
 

 
 

 
Fig. 3: Simulation of pulse propagation  

in an apodized FBG (δ<κ) 
 

It is evident the FBG acts like a filter; the incoming light is 
reflected and we don’t have illustrious field at the output. In 
fact, in a Gaussian apodized structure the coupling strength at 
the either edges of the FBG is low, so there is a minimum 
energy exchange between the forward and backward field 
amplitudes. On the other hand, this factor is maximized at the 
grating middle and the grating effect (or coupling strength) 
can dominate in this region. The input field attenuates and 
some of the pulse energy reflects back, hence due to lower 
coupling at the end of FBG we will have approximately 
constant pulse amplitude along the fiber.  

This is comparable to a uniform FBG where there is a 
continuous and exponential decay for the field amplitudes; 
while in a Gaussian apodized FBG there is a negligible 
interaction between the field and the grating at both ends. The 
numerical results based on the proposed method are shown in 
Fig. 4. With a constant total energy at the fiber input, there is 
an exchange between the forward and backward wave 
amplitudes during the propagation in a FBG. In fact, this 
exchange is due to the coupling amount, where measure the 
wave feedback capability. In each section of the fiber the 
total energy is constant but the forward and backward wave 
amplitudes have variable values. This is independent from 
the coupling amount, since the coupling strength is large at 
the middle of the fiber and it is very low at both ends in an 
apodized FBG. Our simulation results for energy exchanges 
are shown in Fig. 5. 

 
 

 
 

Fig. 4: Simulation of pulse propagation in a uniform FBG (δ<κ) 
 

 
 
Fig. 5: Simulation of pulse propagation energy for forward and 

backward wave amplitudes in an apodized FBG (δ<κ) 
 

Note that, the constant total energy confirms the mentioned 
discussions and accuracy of our numerical method. Another 
non-uniform FBG is cosine envelop structure which defined 
in (7). Because of higher coupling strength for cosine FBGs, 
there is a larger energy exchange between the forward and 
backward field amplitudes and hence higher challenge 
between them, so the reflected field amplitude will be more. 
This is simulated and the results are shown in Fig. 6. 
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Fig. 6: Simulation of pulse propagation  
in a cosine envelop FBG (δ<κ) 

 
For low amplitude pulses the nonlinear terms in (2) and (3) 

can be neglected while for high power input pulse the Kerr 
effect is important and we should consider the nonlinearities 
in the structure.  

We imposed these conditions to an apodized FBG to see 
the switching effects by application of our proposed method. 
The results are plotted in Fig. 7. As seen, increasing the input 
pulse amplitude causes a left frequency shift and the central 
frequency of the input pulse is not in the Bragg wavelength 
region, so the input pulse exits from the other side of FBG. 
This is a switching operation of FBG and FBG acts as an 
optical switch in this case. As shown in Fig. 7c, the ratio of 
the output to input pulse power increased for high power 
inputs. There is a critical power, PCritical, so that for input 
powers more than this value the output power increases. For 
pulse with low input power, the output to input power ratio is 
less than the critical power, PCritical, (the grating switch off) 
and for pulses with input powers more than PCritical this ratio 
tends to "1", means total transmittance (the grating switch 
on). 

The switching behaviors are seen in cosine envelop FBGs 
too. The results of our simulation for this type of the grating 
are reported in Fig. 8. Again, for high power pulses the 
nonlinear effects of the gratins, cause on-off or switching 
action for cosine envelops FBG structures. 

Comparing the results of Fig. 7 and 8, we find that for the 
low power pulses there is a more switching effect in a cosine 
envelops FBG respect to a Gaussian apodized FBG. This is 

due to higher coupling in cosine envelop FBG structures. It is 
found that, for a cosine FBG the reflected pulse is more 
affected by the grating shape, respected to the Gaussian 
apodized FBG and one can decomposes it to two separated 
soliton like pulses. 
 
 

 
 

 
 

 
 

Fig. 7: (a) Forward and (b) backward pulse powers, (c) 
switching effect due to increasing of the input pulse  

power in an apodized envelop FBG (δ<κ) 
 

Finally, in Fig. 9 we drew the switching behaviors of a 
uniform FBG. Referring to the figure, it is clear that the 
switching action is faster respect to the Gaussian apodized 

(a) 

(b) 

(c) 
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and cosine envelops FBGs and this is due to the higher 
average coupling. 
 

 
 

 
 

 
 

Fig. 8: (a) Forward and (b) backward pulse powers, (c) 
switching effect due to increasing of the input pulse power in a 

cosine envelop FBG (δ<κ) 
 

V. CONCLUSIONS 

In this paper we studied the quasi-pulse propagation and 
the nonlinear effects through the apodized and cosine shapes 
FBGs using a simple and fast numerical method. We tested 
our method by imposing it on uniform FBG and then apply 
the proposed numerical approach to non-uniform structures. 
This method is useful especially for consideration of 
nonlinear effects in the FBG governing equations; since these 
equations are usually complex in general case. Our technique 
was based on the transforming the boundary conditions to 

some well-defined initial conditions, so that the FBG 
equations can solve fast and simple. 

 
Fig. 9: Switching behavior of a uniform FBG 

 

The well-defined initial conditions are derived from 
uniform structures without any nonlinearity. With this idea, 
the proposed numerical method would be converged.  

After applying the mentioned numerical method, it is 
found that for lower pulse powers there is a filtering action 
for two configurations of the chosen gratings, but for cosine 
shape FBGs more filtering operation is seen. Contrary to 
non-uniform gratings, which have the exponential 
attenuation for input pulse amplitude through the fibers, in 
these types of FBGs the pulse amplitude has almost constant 
values at both fiber ends during the propagation. This is due 
to the index lowering at the fiber ends and hence we have the 
most power transformations at the fiber centre. Indeed, 
cosine shapes FBGs have more power exchanges between 
the forward and backward wave amplitudes respect to the 
Gaussian apodized FBGs. 

For pulses with higher powers, the nonlinear effects are 
seen so the switching effects appear and it is more for 
apodized FBGs rather than cosine FBGs. In other words, the 
switching effects are occurred for cosine FBGs in lower 
powers. In fact, we can make an optical switch using these 
types of the gratings; with dominant operation for Gaussian 
apodized FBG structures. The average field coupling for 
cosine FBGs are grater than the Gaussian apodized FBGs and 
this is the reason for such switching behaviors.  

In general, the proposed method can interpret the 
mentioned results with a good accuracy. In our proposed 
procedure, any complicated nonlinearity existing in the FBG 
equations can be considered in the simulation. It is possible to 
use this method to simulate the related all optical switches in 
integrated optic devices. We can explain the non-solitary 
wave propagation in different fibers using this method with 
adequate accuracy and convergence. 
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