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Abstract—Recursive formula for the terminal cost distribu-
tion in a scalar linear discrete-time system with disturbance
and noise corrupted measurements is obtained. The system is
subject to a linear saturated control strategy. The distributions
of the initial state and the estimator error are assumed to
be known. The disturbance is independent of the state/control
and its distribution is known. The general result is applied to
an interception problem with different types of disturbance.
An illustrative numerical example confirms that the analytical
method can replace extensive Monte Carlo simulations.

Index Terms—linear discrete-time system, robust transferring
strategy, noisy measurements, terminal state distribution.

I. I NTRODUCTION

V ARIOUS real life control problems (including intercep-
tion and navigation) can be formulated as a problem of

transferring a system to a prescribed hyperplane in the state
space at a prescribed time by bounded control in the presence
of noise corrupted measurements and unknown bounded
disturbance [1], [2], [3], [4]. This problem can be reduced to
a scalar one, where the new state variablez is the distance
between a current point on the trajectory of the uncontrolled
system motion and the hyperplane. By this scalarization, the
problem of transferring to a prescribed hyperplane becomes
a problem of robust transferring to zero.

If perfect state information is available, several classes of
deterministic feedback strategiesu = u(t, z(t)) that robustly
transfer a scalar system from some domain of initial positions
to zero, are known. Among such robust transferring strategies
are differential game based bang-bang strategies [1], [2], as
well as various linear, saturated linear and weakly nonlinear
strategies [3], [5], [6], [7], [8], [9].

In real life applications, the state information is corrupted
by measurement noise and only part of the state variables
can be directly measured. This fact impedes significantly the
practical implementation of theoretically robust transferring
strategies. Moreover, an estimator, reconstructing and filter-
ing the state variables, becomes an indispensable compo-
nent of the control loop. Due to the noisy measurements
and the uncertain (random) disturbance the control function
u(t, z(t)) receives, instead of the exact value ofz(t), a
random estimator output̂z(t) = z(t) + η(t), whereη(t) is
the estimation error. As the consequence, the terminal value
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of z becomes a random variable with an a-priori unknown
distribution. In order to appreciate the extent of performance
deterioration of a deterministic robust transferring strategy by
using such a stochastic data, the distribution of the terminal
value ofz has be found.

In the current practice, such a distribution is obtained,
for any given estimator/control strategy combination and
specified disturbance and noise models, by a large set of
Monte Carlo simulations [10], [11]. Such a-posteriori test
is necessary for validation purpose, but cannot be applied
for an insightful control system design. There is an obvious
need for an analytical a-priori estimate of the control strategy
performance as a part of the integrated control system design.

State estimates in the presence of deterministic infor-
mation errors were obtained in [12] and [13]. In [13],
such estimates are used to construct a robust control of
a dynamic system with inexact state information. In inter-
ception problems, the scalar state variablez is the zero-
effort miss distance and its terminal value is the actual
miss distance itself. Under some general linear assumptions
without taking into account the system dynamics, the miss
distance distribution was investigated in [14]. In the case
of linear interceptor strategies, the dependence of the miss
distance on the measurement noises was analyzed, by means
of the adjoint approach in [15] and [16]. Unfortunately, this
approach can be applied only in the case of non saturated
linear strategies.

In this paper, the system dynamics is modeled by a
discrete-time scalar linear equation controlled by asaturated
linear transferring strategy. Assuming that the distributions
of initial state z0, the estimation errorηn and disturbance
vn are known, a recurrence formula for the distribution of
zn+1 is obtained. The random variablezn+1 is the linear
combination of two dependent random variables - the state
zn at the previous time step and the control variableun

(nonlinearly depending onzn via the saturation function) and
an independent random variablevn. This makes the problem
to be mathematically nontrivial. The disturbance free version
of the problem was studied in [17].

II. PROBLEM STATEMENT

A. Original Control Problem

Consider the controlled system

Ẋ = A(t)X + b(t)u + c(t)v + f(t), (1)

whereX ∈ Rn is the state vector;t ∈ [t0, tf ], X(t0) = X0,
tf is a fixed time instant,t0 ∈ [0, tf ); the matrix function
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A(t) and the vector functionsb(t), c(t), f(t) are differen-
tiable for a sufficient number of times on the interval[0, tf ].
The scalar controlu and disturbancev are assumed to be
measurable on[t0, tf ) and satisfying the constraints

|u(t)| ≤ 1, |v(t)| ≤ 1, t ∈ [t0, tf ). (2)

The target set is the hyperplaneD = {X ∈ Rn | dT X+d0 =
0}, whered ∈ Rn is a prescribed non-zero vector,d0 is a
prescribed scalar, the superscriptT denotes the transposition.
The control objective is to guaranteeX(tf ) ∈ D against any
admissible disturbance functionv(t).

By the transformation of the state variable of (1),

z = z(t,X) =

dT
(
Φ(tf , t)X +

tf∫

t

Φ(tf , τ)f(τ)dτ
)

+ d0, (3)

the system (1) is reduced to the scalar one

ż = h1(t)u + h2(t)v, z(t0) = z0, (4)

where h1(t) = dT Φ(tf , t)b(t), h2(t) = dT Φ(tf , t)c(t),
z0 = z(t0, X0), Φ(t, t0) is the fundamental matrix of the
homogeneous systeṁX = A(t)X. The control objective
becomes to guaranteez(tf ) = 0.

It is assumed that the control is given by a saturated linear
strategy

u(t, z) = sat(K(t)z), (5)

where

sat(y) =





1, y > 1,
y, |y| ≤ 1,
−1, y < −1,

(6)

the gain functionK(t) satisfies the conditions [9], guarantee-
ing that the linear strategyu = K(t)z is robust transferring.

B. Discrete-Time Estimation Problem

Define the division of the interval[0, tf ]: 0 = t0 < t1 <
. . . < tN = tf , wheretn+1 − tn = ∆t, n = 0, . . . , N − 1.
The discrete-time version of the system (4) is

zn+1 = zn + bnun + cnvn, (7)

where for the simplest Euler approximation of the differential
equation (4),

bn = ∆th1(tn), cn = ∆th2(tn). (8)

The control is

un = sat(kn(zn + ηn)), (9)

where kn = K(tn) is the control gain andηn is the
estimation error. The probability density functionsfz0(x) of
z0 andfηn(x) of ηn, n = 0, 1, . . . , N−1, are assumed to be
known. For anyn, the random valuevn is independent ofzn

andun. Its probability density functionfvn
(x) is assumed to

be known. The problem is to obtain the probability density
function fzN

(x).
Denote

w1n , zn + bnun, (10)

w2n , cnvn. (11)

Since vn is independent ofzn and un, the random values
w1n and w2n are independent. Thus, due to (7) and (10) –
(11), the convolution formula [18] can be applied:

fzn+1(x) =

∞∫

−∞
fw1n(x− ξ)fw2n(ξ)dξ, (12)

where fw1n(x) and fw2n(x) are the probability density
functions ofw1n andw2n, respectively. However, since the
random variableszn andun are dependent, the distribution
function of w1n cannot be calculated by using the convolu-
tion formula.

III. SOLUTION

Since the probability density functionfw2n(x) is assumed
to be known, the calculation offzn+1(x), due to (12), is
reduced to the calculation offw1n(x).

A. Calculation offw1n(x)
Due to (7) – (9), the distribution function ofw1n is

Fw1n(x) = P (w1n < x) =

p1P (kn(zn + ηn) > 1) + p2P (|kn(zn + ηn)| ≤ 1)+

p3P (kn(zn + ηn) < −1), (13)

wherep1, p2 andp3 are the conditional probabilities

p1 = P (zn + bn < x
∣∣∣ kn(zn + ηn) > 1), (14)

p2 =

P ((1 + bnkn)zn + bnknηn < x
∣∣∣ |kn(zn + ηn)| ≤ 1), (15)

p3 = P (zn − bn < x
∣∣∣ kn(zn + ηn) < −1). (16)

Thus, the problem is reduced to calculating the conditional
probabilities (14) – (16).

1) Calculation of p1 and p3: By using (14) and the
formula for the probability of the product of dependent
events,

p1 = p̃1P (zn < x− bn)
/

P (zn + ηn > 1/kn), (17)

where

p̃1 = P
(
zn + ηn > 1/kn

∣∣∣ zn < x− bn

)
. (18)

Let calculate the conditional probabilitỹp1.
First, instead of the eventzn < x − bn, consider the

eventzn ∈ (a, x − bn), wherea is a negative number with
sufficiently large absolute value:

p̃1a = P
(
zn + ηn > 1/kn

∣∣∣ zn ∈ (a, x− bn

)
. (19)

Note that
p̃1 = lim

a→−∞
p̃1a. (20)

Let divide the interval(a, x − bn) into M subintervals
of equal length∆x = (x − bn − a)/M : xj = a + j∆x,
j = 0, 1, . . . ,M . Then, since the eventszn ∈ (xj , xj+1),
j = 0, . . . , M − 1, are mutually exclusive,

p̃1a ≈
M−1∑

j=0

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)
×
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P
(
zn + ηn > 1/kn

∣∣∣ zn ∈ (xj , xj+1)
)
. (21)

Let start with calculating the first conditional probability
under the sum in (21). Note that

P
([

zn ∈ (xj , xj+1)
]
&

[
zn ∈ (a, x− bn)

])
=

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)
P (zn ∈ (a, x− bn)).

(22)
At the other hand,

P
([

zn ∈ (xj , xj+1)
]
&

[
zn ∈ (a, x− bn)

])
=

P
(
zn ∈ (a, x− bn)

∣∣∣ zn ∈ (xj , xj+1)
)

︸ ︷︷ ︸
=1

P (zn ∈ (xj , xj+1))

= P (zn ∈ (xj , xj+1)). (23)

From (22) – (23),

P
(
zn ∈ (xj , xj+1)

∣∣∣ zn ∈ (a, x− bn)
)

=

P (zn ∈ (xj , xj+1))
/

P (zn ∈ (a, x− bn)). (24)

For sufficiently small∆x, the second conditional proba-
bility under the sum in (21) can be approximated as

P
(
zn + ηn > 1/kn

∣∣∣zn ∈ (xj , xj+1)
)
≈

P
(
zn + ηn > 1/kn

∣∣∣ zn = x̄j

)
= P

(
ηn > 1/kn − x̄j

)
,

(25)
wherex̄j = (xj + xj+1)/2.

Due to (21) and (24) – (25),

p̃1a ≈ 1
P (zn ∈ (a, x− bn))

M−1∑

j=0

P
(
zn ∈ (xj , xj+1)

)
×

P
(
ηn > 1/kn − x̄j

)
=

1
x−bn∫

a

fzn
(y)dy

M−1∑

j=0

xj+1∫

xj

fzn
(y)dy

∞∫

1/kn−x̄j

fηn
(y)dy, (26)

wherefzn(y) and fηn
(y) are the probability density func-

tions of the random variableszn andηn, respectively. Since

xj+1∫

xj

fzn
(y)dy ≈ fzn

(x̄j)∆x, (27)

the equation (26) can be rewritten as

p̃1a ≈ 1
x−bn∫

a

fzn(y)dy

M−1∑

j=0


fzn(x̄j)

∞∫

1/kn−x̄j

fηn(y)dy


 ∆x.

(28)

Hence,

p̃1a =

lim
M→∞

M−1∑
j=0


fzn(x̄j)

∞∫

1/kn−x̄j

fηn(y)dy


 ∆x

x−bn∫

a

fzn(y)dy

=

x−bn∫

a


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

x−bn∫

a

fzn(y)dy

. (29)

By virtue of (20),

p̃1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

x−bn∫

−∞
fzn(y)dy

. (30)

Due to (17) and (30),

p1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

∞∫

1/kn

fzn+ηn(y)dy

. (31)

Therandomvariableszn andηn are independent. Therefore,

fzn+ηn(y) = fzn(y) ∗ fηn(y) =

∞∫

−∞
fzn

(y − s)fηn
(s)ds.

(32)
Finally,

p1 =

x−bn∫

−∞


fzn(s)

∞∫

1/kn−s

fηn(y)dy


 ds

∞∫

−1/kn




∞∫

−∞
fzn

(y − s)fηn
(s)ds


 dy

. (33)

The calculationof p3 is similar to the calculation ofp1,
resulting in

p3 =

x+bn∫

−∞


fzn(s)

−1/kn−s∫

−∞
fηn(x)dx


 ds

−1/kn∫

−∞




∞∫

−∞
fzn(x− s)fηn(s)ds


 dx

. (34)
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2) Calculation of p2: Consider the casebn ≥ 0. By
definition of the conditional probability,

p2 =
P

(
(zn, ηn) ∈ R(x)&(zn, ηn) ∈ Q

)

P
(
(zn, ηn) ∈ Q

) =

P
(
(zn, ηn) ∈ S(x)

)/
P

(
(zn, ηn) ∈ Q

)
, (35)

where (see Fig. 1)

R(x) , {(zn, ηn) : ηn < −Azn + B(x)} , (36)

A = 1 +
1

bnkn
, B(x) =

x

bnkn
,

Q , {(zn, ηn) : −zn − 1/kn ≤ ηn ≤ −zn + 1/kn} ,
(37)

S(x) , R(x)
⋂

Q. (38)

−2 −1 0 1 2
−10

−5

0

5

10

15

zn

ηn

Q

R(x)

x − bn
x + bn

S1(x)

S2(x)

ηn = −zn − 1/kn

ηn = −zn + 1/kn

ηn = −Azn + B(x)

Fig. 1. SetsR(x) andQ for bn > 0

The straight lineηn = −Azn +B(x) (the upper boundary
of the setR(x)) intersects the straight linesηn = −zn±1/kn

(boundaries of the setQ) at zn = x± bn. Thus, the setS(x)
can be represented as

S(x) = S1(x)
⋃

S2(x), S1(x)
⋂

S2(x) = ∅, (39)

where
S1(x) =

{
(zn, ηn) : zn < x− bn,

−zn − 1/kn ≤ ηn ≤ −zn + 1/kn

}
, (40)

S2(x) =
{

(zn, ηn) : zn ∈ [x− bn, x + bn],

−zn − 1/kn ≤ ηn ≤ −Azn + B(x)
}

. (41)

Therefore,
P

(
(zn, ηn) ∈ S(x)

)
=

P
(
(zn, ηn) ∈ S1(x)

)
+ P

(
(zn, ηn) ∈ S2(x)

)
. (42)

Similarly to the calculation ofp1, by discretization and
limiting,

P
(
(zn, ηn) ∈ S1(x)

)
=

x−bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn(y)dy


 ds, (43)

P
(
(zn, ηn) ∈ S2(x)

)
=

x+bn∫

x−bn


fzn(s)

−As+B(x)∫

−s−1/kn

fηn(y)dy


 ds. (44)

By virtue of (35), (37) and (43) – (44),

p2 =
1

Cn





x−bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn(y)dy


 ds+

x+bn∫

x−bn


fzn(s)

−As+B(x)∫

−s−1/kn

fηn(y)dy


 ds





, (45)

where

Cn =

1/kn∫

−1/kn




∞∫

−∞
fzn(y − s)fηn(s)ds


 dy. (46)

If bn < 0, similarly to (45), it is obtained that

p2 =
1

Cn





x+bn∫

−∞


fzn(s)

−s+1/kn∫

−s−1/kn

fηn(y)dy


 ds +

x−bn∫

x+bn


fzn(s)

−s+1/kn∫

−As+B(x)

fηn(y)dy


 ds





. (47)

3) Final expression offw1n(x): For bn ≥ 0, by substi-
tuting (31), (34) and (45) into (13) and by simplifying the
obtained expression,

Fw1n
(x) =

x−bn∫

−∞
fzn

(s)ds+

x+bn∫

x−bn


fzn

(s)

−As+B(x)∫

−∞
fηn

(y)dy


 ds. (48)

Similarly, for bn < 0,

Fw1n(x) =

x+bn∫

−∞
fzn(s)ds+

x−bn∫

x+bn


fzn

(s)

∞∫

−As+B(x)

fηn
(y)dy


 ds. (49)

Differentiating (48) and (49) with respect tox yields the
same expression for the probability density function ofw1n:

fw1n(x) = fzn(x−bn)+fzn(x+bn)

−x−1/kn−bn∫

−∞
fηn(y)dy−
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fzn(x− bn)

−x+1/kn+bn∫

−∞
fηn(y)dy+

1
bnkn

x+bn∫

x−bn

[fzn(s)fηn(−As + B(x))]ds. (50)

B. Calculationof FzN (x)

Oncefw1n(x) has been calculated, the probability density
functionfzn+1(x) is obtained by using (12). The probability
density functionfzN

(x) of a terminal state is computed by
applying the recurrence formulae (50) and (12)N times.
Finally, the probability functionFzN

(x) is

FzN
(x) =

x∫

−∞
fzN

(ξ)dξ. (51)

IV. I NTERCEPTIONPROBLEM

A. Problem Outline

As an example, a planar engagement between two point-
mass objects (pursuer and evader) is considered. It is assumed
that the dynamics of each object is expressed by a first-
order transfer function with the time constantsτp and τe,
respectively. The velocitiesVp andVe and the bounds of the
lateral acceleration commandsamax

p andamax
e of the objects

are constant. The geometry of such planar engagement is
presented in Fig. 2.

yp

ye

X

Y

ap

ae

Vp

•

xe

xp

Ve

Pursuer

Evader

λ

ϕe

ϕp

r y = ye − yp

•

Fig. 2. Interception geometry

Assuming that the aspect anglesϕp andϕe are small, the
engagement is modeled by the system (1), whereX1 is the
relative separation between the objects, normal to the initial
line-of-sight;X2 is the relative normal velocity;X3 andX4

are the lateral accelerations of the evader and the pursuer,
respectively;tf = r0/(Vp +Ve), wherer0 is the initial range
between the objects;

A(t) ≡




0 1 0 0
0 0 1 −1
0 0 −1/τe 0
0 0 0 −1/τp


 , (52)

b(t) ≡ (0, 0, 0, amax
p /τp)T , c(t) ≡ (0, 0, amax

e /τe, 0)T ,
(53)

f(t) ≡ 0, X0 = (0, X20, 0, 0)T , X20 = Veϕe(0)−Vpϕp(0).
(54)

The controls of the pursueru and the evaderv are the
normalized lateral acceleration commands, satisfying the
constraints (2). The objective of the pursuer is to nullify
the miss distance|X1(tf )|, i.e. in the target hyperplane,
d = (1, 0, 0, 0)T , d0 = 0.

In the scalarized system (4),z0 = tfX20,

h1(t) = −h(t; τp, a
max
p ), h2(t) = h(t; τe, a

max
e ), (55)

where
h(t; τ, amax) = τamaxΨ((tf − t)/τ), (56)

Ψ(ξ) = exp(−ξ) + ξ − 1 > 0, ξ > 0. (57)

The new state variablez is the well-known zero-effort miss
distance [15]. The target point is(tf , 0).

The pursuer strategy is given by (5) with the gain function

K(t) = 2/(tf − t)3. (58)

The scalar system is approximated by the discrete-time
equation (7), where the coefficientsbn < 0 and cn > 0
are given by (8), while the functionsh1(t) and h2(t) are
given by (55).

B. Types of Disturbance

In this example four types of different disturbances, rep-
resenting evader maneuvers, are considered.

1) Constant disturbance:In this case, the evader employs
the constant (deterministic) strategyv(t) ≡ V = const, and
the probability function ofw2n, given by (11), is

Fw2n(x) =





0, x ≤ cnV,

1, x > cnV,
(59)

yielding
fw2n(x) = δ(x− cnV ), (60)

whereδ(x) is the Dirac delta function. Thus, due to (12),

fzn+1(x) = fw1n(x− cnV ). (61)

2) Bang-bang disturbance:In this case, the evader em-
ploys the bang-bang strategy

v(t) =





1, t ∈ [0, tsw],

−1, t ∈ (tsw, tf ),
(62)

with a fixed switch timetsw ∈ (0, tf ). In the discrete
model (7), it is assumed thattsw = ∆tnsw, wherensw ∈
{0, . . . , N − 1}, i.e.

w2n =





cn, n ≤ nsw

−cn, n > nsw.
(63)

Thus, the probability function ofw2n is

Fw2n(x) =





0, x ≤ cn

1, x > cn,
for n ≤ nsw, (64)

and

Fw2n
(x) =





0, x ≤ −cn

1, x > −cn,
for n > nsw. (65)
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The equations(64) – (65) yield

fw2n(x) =





δ(x− cn), n ≤ nsw

δ(x + cn), n > nsw.
(66)

Consequently, by using (12),

fzn+1(x) =





fw1n(x− cn), n ≤ nsw

fw1n(x + cn), n > nsw.
(67)

3) Random switch bang-bang disturbance:In this case,
the evader also employs the bang-bang strategy (62), but the
switch time tsw is random, uniformly distributed over the
interval [0, tf ]. In the discrete model (7), it is assumed that
tsw = ∆tnsw, wherensw can accept any value from the set

{0, 1, . . . , N − 1} with the probabilityp =
1
N

.
Let calculatethe probability

p+
n , P (w2n = cn). (68)

Due to (62),

p+
n = P (n ≤ nsw) = 1− Fnsw(n), (69)

whereFnsw(x) is the probability function ofnsw:

Fnsw(x) =





0, x ≤ 0,

1
N

, 0 < x ≤ 1,

2
N

, 1 < x ≤ 2,

. . .

1, x > N − 1,

(70)

yielding

Fnsw(n) =
n

N
, n = 0, 1, . . . , N − 1, (71)

and, by (69),
p+

n = 1− n

N
. (72)

Therefore,the disturbance termw2n has a random value

w2n =





cn, p = p+
n ,

−cn, p = 1− p+
n ,

(73)

wherep is the probability.
Thus, the probability function ofw2n is

Fw2n
(x) =





0, x ≤ −cn,

n

N
, −cn < x ≤ cn,

1, x > cn.

(74)

By differentiating (74), the probability density function is

fw2n(x) =
n

N
δ(x + cn) +

(
1− n

N

)
δ(x− cn). (75)

Equation(12) along with (75) yields

fzn+1(x) =
n

N
fw1n(x+cn)+

(
1− n

N

)
fw1n

(x−cn). (76)

4) Randomvalue disturbance:In this case, it is assumed
that for anyt ∈ [0, tf ], the disturbancev(t) has a random
value, uniformly distributed on the interval[−1, 1]. Thus, in
the discrete model (7), the random variablew2n is uniformly
distributed on the interval[−cn, cn], yielding the probability
density function

fw2n(x) =





1
2cn

, x ∈ (−cn, cn],

0, x /∈ (−cn, cn].

(77)

The latter, along with (12), leads to

fzn+1(x) =

cn∫

−cn

fw1n(x− ξ)dξ. (78)

C. Numerical Illustration

In this subsection the analytical results are compared to
the outcome of extensive Monte Carlo simulations. It is
assumed that the initial valuez0 and the estimation errors
ηn are gaussian:z0 ∼ N (0.5, 0.1), ηn ∼ N (µn, σn),
n = 0, . . . , N−1. The set of such values ofµn andσn were
extracted from a realistic Monte Carlo simulation with noisy
line-of-sight measurements and an estimator in the control
loop. For the sake of comparison, the same set of values
were chosen for all the four types of disturbance. The data
for the comparisons aretf = 1 s, N = 10, ∆t = 0.1 s,
τp = 0.2 s, amax

p = 30 m/s2, τe = 0.2 s, amax
e = 15 m/s2.

The cumulative distribution function of the miss distance
|zN | is calculated as

F|zN |(x) = FzN (x)− FzN (−x), (79)

whereFzN
(x) is given by (51).
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Fig. 3. Simulative and theoretic distribution functions of|zN | for constant
disturbance

In Figs. 3 – 6, the cumulative distributions of|zN |,
obtained by Monte Carlo simulation of (4) and by using
(50), (51) and (79), are depicted and compared to the results
of Monte Carlo simulation of (4) for the four different types
of disturbance.
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Fig. 4. Simulative and theoretic distribution functions of|zN | for bang-
bang disturbance,nsw = 5
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Fig. 5. Simulative and theoretic distribution functions of|zN | for bang-
bang disturbance with random switch
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Fig. 6. Simulative and theoretic distribution functions of|zN | for random
value disturbance

For all cases2000 runs of Monte Carlo simulations were
performed. In these simulations there was no estimator in
the loop and the estimation errorsη were the same as in
the analytical expressions. It is seen that in all cases the two
curves are very close.

V. CONCLUSIONS

The problem of evaluating the probability distribution of
the final state of a scalar discrete-time system is solved.

In this problem, it is assumed that the state information
is corrupted by an error with known distribution and the
initial state distribution is also known. Moreover, the system
is subject to an additive random disturbance with known
distribution. The control is realized by a saturated linear
strategy. The formulation is motivated by various real life
control problems, such as the interception problem, where
validating robust transferring deterministic strategies in real-
istic stochastic environment is of a high practical importance.

The problem is mathematically nontrivial, because the
evaluation of the sum of two dependent random variables
is required. The solution is based on proper discretization of
some conditional probabilities. The resulting formula allows
to obtain the final state distribution without carrying out a
great amount of Monte Carlo simulation runs.

The general result is used to compare the miss distance
distribution in an interception problem with four different
types of disturbance using a given set of estimation errors
with the outcome of a large set of Monte Carlo simulations.
The numerical examples confirm that the large number of
Monte Carlo runs can be replaced by using analytic formulae.
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