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Terminal Cost Distribution in Discrete-Time
Controlled System with Disturbance
and Noise-Corrupted State Information

Valery Y. Glizer, Vladimir Turetsky, and Josef Shinar

Abstract—Recursive formula for the terminal cost distribu- of z becomes a random variable with an a-priori unknown
tion in a scalar linear discrete-time system with disturbance distribution. In order to appreciate the extent of performance
and noise corrupted measurements is obtained. The system s yeterioration of a deterministic robust transferring strategy by

subject to a linear saturated control strategy. The distributions . . S .
of tJhe initial state and the estimator er%/r are assumed to USiNg such a stochastic data, the distribution of the terminal

be known. The disturbance is independent of the state/control Value ofz has be found.
and its distribution is known. The general result is applied to In the current practice, such a distribution is obtained,

an interception problem with different types of disturbance. for any given estimator/control strategy combination and
An illustrative numerical example confirms that the.analytlcal specified disturbance and noise models, by a large set of
method can replace extensive Monte Carlo simulations. . ) .
Monte Carlo simulations [10], [11]. Such a-posteriori test
Index Terms—linear discrete-time system, robl_Jst_tran_sferring is necessary for validation purpose, but cannot be applied
strategy, noisy measurements, terminal state distribution. for an insightful control system design. There is an obvious
need for an analytical a-priori estimate of the control strategy
|. INTRODUCTION performance as a part of the integrated control system design.
ARIOUS real life control problems (including intercep- State estimates in the presence of deterministic infor-
tion and navigation) can be formulated as a problem ofation errors were obtained in [12] and [13]. In [13],
transferring a system to a prescribed hyperplane in the statgh estimates are used to construct a robust control of
space at a prescribed time by bounded control in the preseAcgynamic system with inexact state information. In inter-
of noise corrupted measurements and unknown boundigption problems, the scalar state variables the zero-
disturbance [1], [2], [3], [4]. This problem can be reduced teffort miss distance and its terminal value is the actual
a scalar one, where the new state variablie the distance miss distance itself. Under some general linear assumptions
between a current point on the trajectory of the uncontrollgdthout taking into account the system dynamics, the miss
system motion and the hyperplane. By this scalarization, tHistance distribution was investigated in [14]. In the case
problem of transferring to a prescribed hyperplane becomefslinear interceptor strategies, the dependence of the miss
a problem of robust transferring to zero. distance on the measurement noises was analyzed, by means
If perfect state information is available, several classes of the adjoint approach in [15] and [16]. Unfortunately, this
deterministic feedback strategies= u(t, z(¢)) that robustly approach can be applied only in the case of non saturated
transfer a scalar system from some domain of initial positiotisear strategies.
to zero, are known. Among such robust transferring strategiedn this paper, the system dynamics is modeled by a
are differential game based bang-bang strategies [1], [2], @iscrete-time scalar linear equation controlled tsasurated
well as various linear, saturated linear and weakly nonlinelimear transferring strategy. Assuming that the distributions
strategies [3], [5], [6], [7], [8], [9]. of initial state zo, the estimation error,, and disturbance
In real life applications, the state information is corrupted,, are known, a recurrence formula for the distribution of
by measurement noise and only part of the state variables.; is obtained. The random variablg,; is the linear
can be directly measured. This fact impedes significantly teembination of two dependent random variables - the state
practical implementation of theoretically robust transferring, at the previous time step and the control variablge
strategies. Moreover, an estimator, reconstructing and filténonlinearly depending og, via the saturation function) and
ing the state variables, becomes an indispensable compo-independent random variahlg. This makes the problem
nent of the control loop. Due to the noisy measuremeris be mathematically nontrivial. The disturbance free version
and the uncertain (random) disturbance the control functiofi the problem was studied in [17].
u(t, z(t)) receives, instead of the exact value oft), a
random estimator outpui(t) = z(t) + n(t), wheren(t) is I
the estimation error. As the consequence, the terminal value
A. Original Control Problem
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A(t) andthe vector functionsb(t), c(t), f(t) are differen- Sincew, is independent ot,, andw,, the random values
tiable for a sufficient number of times on the interf@lts]. w1, andws,, are independent. Thus, due to (7) and (10) —
The scalar controk, and disturbance) are assumed to be (11), the convolution formula [18] can be applied:
measurable offty, t;) and satisfying the constraints

lu@®)] <1, @) <1, tEftoty) ) fonin (@) = /fwl,l(x—f)fw%,(f)d&, (12)

The target set is the hyperplafie= {X € R" | d" X +dy = N _

0}, whered € R” is a prescribed non-zero vectak, is a Where fu,, (z) and fu,, () are the probability density
prescribed scalar, the superscfiptienotes the transposition.fU”C"'OnS of_wl,, and ws,, respectively. However, since 'Fhe
The control objective is to guarantég(t;) € D against any random variableg,, and u,, are dependent, the distribution

admissible disturbance functiar(t). fgnction of wy,, cannot be calculated by using the convolu-
By the transformation of the state variable of (1), tion formula.
z=z(t,X) = I1l. SOLUTION
ty Since the probability density functiofy,,, (x) is assumed

a7 ((I)(tf,t)X+/@(tf,r)f(r)dr) +do, @) 1o be known, the calculation of. .  (z), due to (12), is

/ reduced to the calculation of,,  (z).

the system (1) is reduced to the scalar one A. Calculation off,, (x)

5= hy(t)u+ ha(t)v,  2(te) = 2o, 4) Due to (7) — (9), the distribution function ab,,, is

where hq(t) = dP®(ts, t)b(t), ho(t) = dT®(ts,t)c(t), Fy,, (z) = P(w, <) =
20 = z(to, Xo), ®(t,t0) is the fundamental matrix of the
homogeneous systentt = A(¢)X. The control objective PrP(kn(zn +1n) > 1) + p2P([kn (20 + )| < 1)+
becomes to guarantegt;) =0. . P3P (kp(2n +1n) < —1), (13)
It is assumed that the control is given by a saturated linear - o
strategy wherep;, p2 andps are the conditional probabilities

ult, 2) = sat(K(t)2), ) PL= Pl by <@ | bz +m0) > 1), (14)

where _
1, y>1, P2

sat(y) =4 v, |yl <1, 6)  P((1+bukn)zn + bpkniin < @ ’ (20 +10)| < 1), (15)
_1a y < _17

the gain functionk (¢) satisfies the conditions [9], guarantee- 3 = P(2n —bn <2 ’ k(2 + 1) < =1). (16)

ing that the linear strategy = K(t)z is robust transferring.  tpyg the problem is reduced to calculating the conditional

probabilities (14) — (16).

B. Discrete-Time Estimation Problem 1) Calculation of p; and p3: By using (14) and the
Define the division of the intervaD, ¢;]: 0 = to < ¢, < formula for the probability of the product of dependent
. <ty =t;, Wheret, 1 —t, = At,n =0,..., N —1. ©Vents,
The discrete-time version of the system (4) is p1=p1P(zn <@ — bn)/P(zn Yo > 1/kn), A7)
Znt1 = Zn + bptn + CpUn, ()  where
where for the simplest Euler approximation of the differential P = p(zn i > 1ky | 2 <2 — bn)~ (18)

equation (4),
Let calculate the conditional probabilify; .
bn = Athi(tn), cn = Atha(ty,). (8) First, instead of the event, < z — b,, consider the
eventz, € (a,x —b,), wherea is a negative number with
sufficiently large absolute value:

The control is

Up bat(kn(zn + nrb))a (9) ]31(1 _ P(Z" 4 > 1/]{3" - (a7 o b") . (19)
where k,, = K(t,) is the control gain andy, is the
estimation error. The probability density functiofig (z) of Note that
zoandf, (z)of n,,n=0,1,...,N —1, are assumed to be pr=_lm pi. (20)

known. For anyn, the random value,, is independent of,,
andu,,. Its probability density functiorf,, (x) is assumed to
be known. The problem is to obtain the probability densi

Let divide the interval(a,z — b,) into M subintervals
t?f equal lengthAz = (z — b, — a)/M: z; = a + jAz,

function f. (). )= 0,1,.-]\.4,Mi Then, Smcﬁ the levejntzi,, € (xj,zj+1),
Denote 7=0,..., — 1, are mutually exclusive,
Win £ Zn + bptty, (10) R M-1
A P1a = Z P(Zn € (xjij+1) Zn € (a,:c - bn)) X
W2n = CnUn. (11) =0
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P(zn + 0 > 1/ky | 2, € (xj,:vjﬂ)). (21) Hence,
Let start with calculating the first conditional probability M1 s
under the sum in (21). Note that N}im > | fan (7)) / fon (W)dy | Az
- l/k?nffj
P({zn € (xj,$j+1):|&|:zn € (a,z — bn)D = Dia = p—— =
[ iy
P(zn € (zj,241) ’ Zn € (a,x — bn))P(zn € (a,z —by)). J
(22)
At the other hand, w—by, 5
P([fn € Gpgs)] & [on € (00— 10)]) = [ |t [ fwiy] ds
a 1/kn—s
p (29)
Plz, €(a,x—by) | zn € (x,; P(z, € (x5,
(o0 € (@ =ba) [ 20 € 23, 2510)) Plen € (25,511)) [ i
=1 a
= P(z, € (xj,241)). (23) By virtue of (20),
From (22) — (23), z—by, oo
- dy| d
P(zn € (5,5541) ‘ o € (a2 bn)) _ / fzn(8) /k/ fon (Y)dy | ds
~ —0o0 1/k,—s
P = P - (30
Plzn € (2,2541)) [ P(ea € (0,2 = b)) (24) i )y
For sufficiently smallAz, the second conditional proba- —oo
bility under the sum in (21) can be approximated as Dueto (17) and (30)
P(zn + 0 > 1/kn|zn € (xj,acj+1)) R~ b, 0o
[ @ [ sy as
P(zn—i—nn > 1/k, zn:fj) :P(nn >1/k, —Z;), oo 1/kn—s
25) h = = . (31)
wherez; = (l’j + Ij+1)/2- / fentin (y)dy
Due to (21) and (24) — (25), 1k
- Th d iablesz,, andn, ind dent. Therefore,
Pra P x—b Z P(z2 € (z;, 7+1))X erandomvariablesz,, andn,, are independen erefore
fzn ( ) fz / fz - S f )
P > 1/kn — ;) = o "
(32)
1 M—1 it o0 Finally,
> [ w5 @0 - )
=0 gz 1/kn—7;
for W)y [ [ fuwy] as
a —0o0 1/ky,—s
o p=—at—! NGO
where f., (y) and f, (y) are the probability density func-
tions of the random variables, andn,,, respectively. Since / / fon(y = 8) [y, (s)ds | dy
Tjt1 —1/k,, L=oo
fan(W)dy =~ f2, (25) Az, (27) " The calculationof p; is similar to the calculation op;,
z; resulting in
the equation (26) can be rewritten as z4b, —1/kn—s
1 M-1 / / fon (z)dx | ds
Pla R b Z fan (T / [ (W)dy | Az Py = . (34)
3=0 1/kn—%; sl
/ fen(y)dy / [ / fo (@ )ds] dzx
’ (28)
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2) Calculation of p,: Consider the case, > 0. By z—bn —s+1/kn
definition of the conditional probability, / / fan(y)dy | ds, (43)

P((z0:m) € R(@)&(z0m0) € Q)

—s—1/ky,

o P((Znann) S Q) B P((zn777n) € SQ(‘T)) =
z+b, —As+B(z)
P((Zmnn )/ P< i) € Q> (39) / Fonls) / o ()dy | ds. (44)
where (see Fig. 1) z—b, —s—1/kp
R(z) £ {(zn,mm) : 7 < —Az, + B(x)},  (36) By virtue of (35), (37) and (43) — (44),
A=1+ , B(g(;) = z , x—by —s+1/kp,
b bnkn P2 = Ci / on / f’ln dy d8+
é {(Znann) . _Zn_]-/kn Snn S _Zn+]-/kn}7 " —00 —s— 1/k
(37)
S(z) = R(z)(@- (38) wtbn ~AsEB)
[ [ fawi]dsp. )
z—b,, —s—1/kn
5 ‘ ; where
T]/IL 1/k
10 =/ [ [ =98, (51 ] dy.  (46)
—1/k, L=oo

If b, <0, similarly to (45), it is obtained that

\k'wL 1 z+by, —s+1/kn
0 S. () _ / fzn / fnn dy ds +

C
Nn = —2n — 1/k'n, : 1 Q " — 00 —s—1/ky,
-5 : E il z—b, —s+1/ky
v f2.(5) / o (w)dy| ds . 47)
-1 | z—b - 'z + bm
) -1 0 1 22 z+by, —As+B(x)

_ 3) Final expression off,,,, (x): For b, > 0, by substi-
Fig. 1. Setsk(z) andQ for bn >0 tuting (31), (34) and (45) into (13) and by simplifying the

The straight line),, = — Az, + B(x) (the upper boundary obtained expression,

of the setR(x)) intersects the straight lineg, = —z, +1/k,

(boundaries of the s&p) at z,, = x + b,,. Thus, the sef(x) Fy,, (2) = / fo, (8)ds+
can be represented as
o) JSa(x), Si(x)()Sa(x) =0,  (39) +bn —As+B(x)
where / fan(8) / I, (Y)dy | ds. (48)
Sl(x) = {(Znann) D2 < T — bn> z—bn, —o0
Similarly, for b,, < 0,
Zn — l/kn S 77n S —Zn + 1/k7z}7 (40) y
z+b,
SQ(-T) = {(Zn777n) . Zn S [(E - b'n,vx + b’ﬂ]? Euln (I) = / fzn (S)d5+
= 1kn < 0 < —Azn + B(a:)}. (41) . N
Therefore, [t [ fwi] s @
P((Zmnn) € S(J?)) = z+bn —As+DB(zx)

Differentiating (48) and (49) with respect toyields the
P<(Zn777n) €S ($)> + P((Zm ) € SQ(m))' (42)  same expression for the probability density functiongf,:

Similarly to the calculation ofp;, by discretization and —2—1/kp—bn

limiting, Jwin (x) = fzn (x_bn)'i'fzn (x+bn) f"']n (y)dy_
P((zrunn) € S1($)) = /

— 00
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—x+1/kyn+by
fan (@ —by) fn (y)dy+
1 z+by,
[ fen5) o (—As+ B@)lds.  (50)

B. Calculationof F, (x)

f(t) = 07 XO = (OaX2Oa070)T7 X20 = %‘pe(o)_vp@p(o)~
(54)

The controls of the pursuet and the evadew are the

normalized lateral acceleration commands, satisfying the

constraints (2). The objective of the pursuer is to nullify

the miss distanceX;(ts)|, i.e. in the target hyperplane,

d=(1,0,0,0), dy = 0.

In the scalarized system (4)y =ty X2,

Once f.,,, () has been calculated, the probability density o q

function £, ., (x) is obtained by using (12). The probability
density functionf,, () of a terminal state is computed by

applying the recurrence formulae (50) and (1) times.
Finally, the probability functionF’, , (z) is

F.\(2) = / fon (€)dE. (51)

IV. INTERCEPTIONPROBLEM
A. Problem Outline

hi(t) = =h(t;7p, a™), ha(t) = h(t; 1e,ad™), (55)
h(t;7,a™™) = 7a™>U((ty — t)/7), (56)
U(§) =exp(=§) +£—1>0, £>0. (57)

The new state variable is the well-known zero-effort miss
distance [15]. The target point {3/, 0).
The pursuer strategy is given by (5) with the gain function

K(t)=2/(t; —t)°. (58)

The scalar system is approximated by the discrete-time
equation (7), where the coefficients < 0 and¢, > 0
are given by (8), while the functionk;(¢) and h.(t) are

As an example, a planar engagement between two poigtven by (55).
mass objects (pursuer and evader) is considered. It is assumed
that the dynamics of each object is expressed by a fir@:- Types of Disturbance

order transfer function with the time constants and 7.,

In this example four types of different disturbances, rep-

respectively. The velocities, andV, and the bounds of the resenting evader maneuvers, are considered.

lateral acceleration command§®* andag*** of the objects

1) Constant disturbanceln this case, the evader employs

are constant. The geometry of such planar engagementyg constant (deterministic) strategyt) = V = const, and

presented in Fig. 2.

YA
|<
Ap
e
ZTp
Y Y >
Fig. 2. Interception geometry

Assuming that the aspect angles and¢. are small, the
engagement is modeled by the system (1), wh€éreis the

relative separation between the objects, normal to the initial

line-of-sight; X is the relative normal velocityX3; and X,

are the lateral accelerations of the evader and the pursuer,

respectivelyy; = ro/(V,+V.), wherery is the initial range
between the objects;

01 0 0
oo 1 4

AO=10 0 —1yr. o |+ ©?
00 0 -1/r

b(t) = (0,0,0,a2**/7,)",  e(t) = (0,0,a2**/7.,0)",

(53)

the probability function ofw,,,, given by (11), is

0, z<¢)V,
Fy,, (2) = (59)
1, z=>c¢,V,
yielding
Juws, () = 0(z — ¢, V), (60)

whered(z) is the Dirac delta function. Thus, due to (12),

on+1 (w) = fwln (LE - CnV) (61)

2) Bang-bang disturbanceln this case, the evader em-
ploys the bang-bang strategy

L,
-1, t€ (tsw,ty),

with a fixed switch timet,,, € (0,t¢). In the discrete
model (7), it is assumed thdt,, = Atng,, Whereng,, €
{0,...,N —1},i.e.

t € [0,tsu],

o(t) (62)

Cny N <Ny
—Cpy M > Ny
Thus, the probability function ofvs,, is
0, z<e¢,
F,, (x) = for n < ngy, (64)
1, =>c¢p,
and
Oa X S —Cn
Fu,, (x) = for n > ng,. (65)
1, > —cy,

(Advance online publication: 27 February 2012)
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The equationg64) — (65) yield

6(w_cn)7 ng nsu)
s, () =
6(‘7: + Cn)y n > Ngy-
Consequently, by using (12),
fwln(x_cn)7 n S Nsw
on+1 (.T) =
fwln(x+c'll)7 n > Ngw-

3) Random switch bang-bang disturbande this case,

(66)

(67)

4) Randonvalue disturbancein this case, it is assumed
that for anyt € [0,ts], the disturbance(t) has a random
value, uniformly distributed on the intervih1, 1]. Thus, in
the discrete model (7), the random variabig, is uniformly
distributed on the intervdl-c,, ¢,,], yielding the probability
density function

the evader also employs the bang-bang strategy (62), but T latter, along with (12), leads to

switch time t,,, is random, uniformly distributed over the
interval [0, ¢f]. In the discrete model (7), it is assumed that
tsw = Atng,, Whereng, can accept any value from the set

{0,1,..., N — 1} with the probabilityp = i.
. N
Let calculatethe probability

Pl 2 P(wa, = cy).
Due to (62),
pr=Pn<ng)=1-F,(n),

whereF,,_ (x) is the probability function ofis,,:

0, r <0,
1 0<z<1
N’ e
_ 2
Fnsw(z)_ N’ 1<z <2,
17 T > N — 17
yielding
Fnsw(n):%’ n:O,L .,N—L
and, by (69), n
+ = 1 - - .
pn N

Therefore the disturbance termw,,, has a random value

Cn, p=np,
Wan =

—Cp, pP= 1 7pza
wherep is the probability.
Thus, the probability function ofvs,, is

0, T < —cp,

Fy,, () = —cp < x < Cp,

n
Nv

1, T > cp.

By differentiating (74), the probability density function is

Fuon, (2) = —

TR (R P

Equation(12) along with (75) yields
n

Fonin (@) = 2 fun aen)+ (1= 1

(68)

(69)

(70)

(71)

(72)

(73)

(74)

(75)

) furn(@=ca). (76)

! x € (—Cp, )

Fum () = 2 o (77)
0, x & (—cp,cpl-

forir (@) = / Fu (& — €. (78)

C. Numerical lllustration

In this subsection the analytical results are compared to
the outcome of extensive Monte Carlo simulations. It is
assumed that the initial valug, and the estimation errors
n, are gaussianzy ~ N(0.5,0.1), n, ~ N(pn,0n),
n=20,...,N—1. The set of such values ¢f, ando,, were
extracted from a realistic Monte Carlo simulation with noisy
line-of-sight measurements and an estimator in the control
loop. For the sake of comparison, the same set of values
were chosen for all the four types of disturbance. The data
for the comparisons are; = 1 s, N = 10, At = 0.1 s,
7p = 0.2, 4" =30 m/s, 7. = 0.2 s, a® =15 m/s.

The cumulative distribution function of the miss distance
|zn| is calculated as

’F“ZN|(‘T) = FZN ({L‘) - FZN(_‘T)7
where F, , (x) is given by (51).

(79)

Flayl (@)

0.81

- --Monte Carlo
0.6r —Theoretic

0.4r

0.2;

0 1 2 3 4 5

z [m]

Fig. 3. Simulative and theoretic distribution functions|efy | for constant
disturbance

In Figs. 3 — 6, the cumulative distributions d¢y|,
obtained by Monte Carlo simulation of (4) and by using
(50), (51) and (79), are depicted and compared to the results
of Monte Carlo simulation of (4) for the four different types
of disturbance.
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F|ZN\ ('75:)[

0.8-

- --Monte Carlo

0.6 —Theoretic

o 05 1 15 2 25 3
z [m]

Fig. 4. Simulative and theoretic distribution functions lafy| for bang-
bang disturbanceys,, = 5

1
F\ZN\ (T)

0.8f i

---Monte Carlo| |
—Theoretic

0.61

0.4r 1

02t f i

6y [m]

Fig. 5. Simulative and theoretic distribution functions fafy| for bang-
bang disturbance with random switch

1
Floy) ()

0.81

0.6f

- --Monte Carlo
—Theoretic

0.4r

0.2r

Fig. 6. Simulative and theoretic distribution functions|efy | for random
value disturbance

In this problem, it is assumed that the state information
is corrupted by an error with known distribution and the
initial state distribution is also known. Moreover, the system
is subject to an additive random disturbance with known
distribution. The control is realized by a saturated linear
strategy. The formulation is motivated by various real life
control problems, such as the interception problem, where
validating robust transferring deterministic strategies in real-
istic stochastic environment is of a high practical importance.

The problem is mathematically nontrivial, because the
evaluation of the sum of two dependent random variables
is required. The solution is based on proper discretization of
some conditional probabilities. The resulting formula allows
to obtain the final state distribution without carrying out a
great amount of Monte Carlo simulation runs.

The general result is used to compare the miss distance
distribution in an interception problem with four different
types of disturbance using a given set of estimation errors
with the outcome of a large set of Monte Carlo simulations.
The numerical examples confirm that the large number of
Monte Carlo runs can be replaced by using analytic formulae.

(1]

(2]

(3]

(5]

(6]

(7]

(8]
(9]

[10]

[11]

For all case000 runs of Monte Carlo simulations werel12]
performed. In these simulations there was no estimator in
the loop and the estimation errorswere the same as in[13]
the analytical expressions. It is seen that in all cases the two

curves are very close.

V. CONCLUSIONS

The problem of evaluating the probability distribution 01[

[14]

15]

the final state of a scalar discrete-time system is solved.

REFERENCES

J. Shinar, “Solution techniques for realistic pursuit-evasion games,” in
Advances in Control and Dynamic Syster@s Leondes, Ed. New
York, N.Y.: Academic Press, 1981, vol. 17, pp. 63 — 124.

T. Shima and J. Shinar, “Time-varying linear pursuit-evasion game
models with bounded controlsJournal of Guidance, Control and
Dynamics vol. 25, pp. 425 — 432, 2002.

V. Turetsky and V. Y. Glizer, “Continuous feedback control strategy
with maximal capture zone in a class of pursuit gambggrnational
Game Theory Revigwol. 7, pp. 1 — 24, 2005.

S. I. Kumkov, V. S. Patsko, S. G. Pyatko, and A. A. Fedotov,
“Construction of the solvability set in a problem of guiding an
aircraft under wind disturbanceProceedings of Steklov Institute of
Mathematicspp. S163 — S174, 2005, supplement 1.

V. Turetsky, “Capture zones of cheap control interception strategies,”
Journal of Optimization Theory and Applicatignsol. 135, pp. 69 —

84, 2007.

V. Turetsky and V. Y. Glizer, “Feasibility sets of nonlinear strategies
in scalarizable robust transfer problem,” froceedings of the 10th
IASTED International Conference on Intelligent Systems and Control
Cambridge, MA, USA, November 2007, pp. 434 — 439.

——, “Robust solution of a time-variable interception problem: a
cheap control approachihternational Game Theory Reviewol. 9,

pp. 637 — 655, 2007.

V. Turetsky, “Capture zones of linear feedback pursuer strategies,”
Automatica vol. 44, pp. 560 — 566, 2008.

V. Y. Glizer and V. Turetsky, “Robust transferrable sets of linear trans-
ferring strategies,Journal of Optimization Theory and Applicatigns
vol. 145, pp. 36 — 52, 2010.

J. Shinar, V. Turetsky, and Y. Oshman, “Integrated estimation/guidance
design approach for improved homing against randomly maneuvering
targets,” Journal of Guidance, Control, and Dynamjcgol. 30, pp.

154 — 160, 2007.

J. Shinar and V. Turetsky, “Three-dimensional validation of an inte-
grated estimation/guidance algorithm against randomly maneuvering
targets,” Journal of Guidance, Control, and Dynamjcgol. 32, pp.
1034 — 1039, 2009.

A. Kurzhanskii, “Identification - a theory of guaranteed estimates,” in
From Data to ModelJ. C. Willems, Ed. Springer - Verlag, 1989, pp.
135 — 214.

R. Gabbasov, F. Kirillova, and E. Poyasok, “Optimual robust control of
dynamic systems using inexact measurements of their output signals,”
Doklady Mathematigsvol. 78, pp. 626 — 630, 2008.

W. Kendall, “The probability distribution of anti-missile miss distance
due to observation and guidance noise,” The RAND Corporation, Santa
Monica, Memorandum RM-3505-ARPA, February 1963.

P. ZarchanTactical and Strategic Missile Guidancser. Progress in
Astronautics and Aeronautics. Washington D.C.: AIAA, Inc., 1990,
vol. 124.

(Advance online publication: 27 February 2012)



TAENG International Journal of Applied Mathematics, 42:1, [JAM 42 1 07

[16] M. Weiss, “Adjoint method for missile performance analysis on state-
space modelsJournal of Guidance, Control, and Dynamjcsl. 28,
pp. 236 — 248, 2005.

[17] V. Y. Glizer, V. Turetsky, and J. Shinar, “Distribution of terminal cost
functional in discrete-time controlled system with noise-corrupted state
information,” in Proceedings of the World Congress on Engineering
2011, WCE 2011ser. Lecture Notes in Engineering and Computer
Science, vol. 1, London, U.K., July 2011, pp. 296 — 300.

[18] W. Feller,An Introduction to Probability Theory and its Applicatigns
2nd ed. New York — London — Sydney — Toronto: John Wikey
Sons, Inc., 1971, vol. 2.

(Advance online publication: 27 February 2012)





