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system should have the form of series expansion

𝑆1(𝑝𝑛+1, 𝑞𝑛, ℎ) = 𝜎𝑝𝑛+1Δ𝑛𝑊1 − 𝛾𝑞𝑛Δ𝑛𝑊2

+
ℎ

2
(𝑝2𝑛+1 + 𝑞2𝑛)

− 𝜎𝛾

∫ 𝑡𝑛+1

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛)) ∘ 𝑑𝑊2(𝑠)

− 𝛾𝑝𝑛+1

∫ 𝑡𝑛+1

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠)

+ 𝜎𝑞𝑛

∫ 𝑡𝑛+1

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠

+
ℎ2

2
𝑝𝑛+1𝑞𝑛 + ⋅ ⋅ ⋅ ,

(6)

where ℎ =: 𝑡𝑛+1 − 𝑡𝑛 is the time step-size, Δ𝑛𝑊𝑖 =:
𝑊𝑖(𝑡𝑛+1) −𝑊𝑖(𝑡𝑛), (𝑖 = 1, 2), and this kind of generating
function can create the symplectic mapping (𝑝𝑛, 𝑞𝑛) 7→
(𝑝𝑛+1, 𝑞𝑛+1) via the relations

𝑝𝑛 = 𝑝𝑛+1 +
∂𝑆1

∂𝑞𝑛
, 𝑞𝑛+1 = 𝑞𝑛 +

∂𝑆1

∂𝑝𝑛+1
. (7)

Approximating 𝑆1 by truncating the series after the fourth
term, i.e. the term in the third line of (6), and using the
relations (7) produces the scheme

𝑝𝑛+1 = 𝑝𝑛 + 𝛾Δ𝑛𝑊2 − ℎ𝑞𝑛

𝑞𝑛+1 = 𝑞𝑛 + 𝜎Δ𝑛𝑊1 + ℎ𝑝𝑛+1,
(8)

which is the symplectic Euler-Maruyama method given in
[8], but here reattained via the generating function approach.

Truncating the series of 𝑆1 after the seventh term, i.e. the
term in the sixth line of (6), with application of the relations
(7), gives the following scheme

𝑝𝑛+1 = 𝑝𝑛 + 𝛾Δ𝑛𝑊2 − ℎ𝑞𝑛

− 𝜎

∫ 𝑡𝑛+1

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠− ℎ2

2
𝑝𝑛+1

𝑞𝑛+1 = 𝑞𝑛 + 𝜎Δ𝑛𝑊1 + ℎ𝑝𝑛+1

− 𝛾

∫ 𝑡𝑛+1

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠) +
ℎ2

2
𝑞𝑛,

(9)

which is a new scheme that contains some additional higher
order terms than (8).

In principle, methods of higher mean-square order can be
obtained by involving sequentially and appropriately more
terms of the series into the truncated 𝑆1.

For any 𝑡 ∈ [0, 𝑇 ], ℎ > 0 such that 𝑡 + ℎ ≤ 𝑇 , if we
denote 𝑋(𝑡 + ℎ) = (𝑄,𝑃 )𝑇 , 𝑋(𝑡) = (𝑞, 𝑝)𝑇 , then the true
solution of (1) on the domain 𝑡 ∈ [0, 𝑇 ] can be expressed as
([8])

𝑄 = 𝑞 cosℎ+ 𝑝 sinℎ+ 𝑢1(𝑡),

𝑃 = −𝑞 sinℎ+ 𝑝 cosℎ+ 𝑢2(𝑡),
(10)

with 𝑋(0) =

(
𝑞0
𝑝0

)
, and

𝑢1(𝑡) = 𝜎

∫ 𝑡+ℎ

𝑡

cos(𝑡+ ℎ− 𝑠)𝑑𝑊1(𝑠)

+ 𝛾

∫ 𝑡+ℎ

𝑡

sin(𝑡+ ℎ− 𝑠)𝑑𝑊2(𝑠)

𝑢2(𝑡) = −𝜎

∫ 𝑡+ℎ

𝑡

sin(𝑡+ ℎ− 𝑠)𝑑𝑊1(𝑠)

+ 𝛾

∫ 𝑡+ℎ

𝑡

cos(𝑡+ ℎ− 𝑠)𝑑𝑊2(𝑠).

(11)

Proposition 1. The mean-square order of (8) is 1, and
that of (9) is 2.

Proof. We only give the proof for scheme (9), since that
of (8) is similar.

Denote with (𝑃𝑛, 𝑄𝑛)
𝑇 =: 𝑌𝑛 the true solution of the

oscillator at time 𝑡𝑛, with (𝑝𝑛+1, 𝑞𝑛+1)
𝑇 =: 𝑦𝑛+1 the one-

step approximation resulted from the numerical scheme (9)
starting from (𝑃𝑛, 𝑄𝑛) with time step-size ℎ, and with
(𝑃𝑛+1, 𝑄𝑛+1)

𝑇 =: 𝑌𝑛+1 the true solution at time 𝑡𝑛+1 =
𝑡𝑛+ℎ, calculated from the iteration formula (10) with 𝑡 = 𝑡𝑛.

We have

𝑦𝑛+1 − 𝑌𝑛+1

=

(
( 2
2+ℎ2 − cosℎ)𝑃𝑛 + ( −2ℎ

2+ℎ2 + sinℎ)𝑄𝑛 +𝑅1

( 2ℎ
2+ℎ2 − sinℎ)𝑃𝑛 + ( 4+ℎ4

4+2ℎ2 − cosℎ)𝑄𝑛 +𝑅2

)
(12)

with

𝑅1 =
2

2 + ℎ2

(
𝛾Δ𝑛𝑊2 − 𝜎

∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠

)
− 𝑢2(𝑡𝑛)

𝑅2 =
2ℎ

2 + ℎ2

(
𝛾Δ𝑛𝑊2 − 𝜎

∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠

)

+ 𝜎Δ𝑛𝑊1 − 𝛾

∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠)− 𝑢1(𝑡𝑛)

(13)

Note that E(𝑢𝑖) = 0, E(Δ𝑛𝑊𝑖) = 0, 𝑖 = 1, 2, and that all
the integrals in 𝑅1 and 𝑅2 have zero expectations, we have
E(𝑅𝑖) = 0 for 𝑖 = 1, 2. Thus

∣E(𝑦𝑛+1 − 𝑌𝑛+1)∣2

=

[
(

2

2 + ℎ2
− cosℎ)E𝑃𝑛 + (

−2ℎ

2 + ℎ2
+ sinℎ)E𝑄𝑛

]2
+

[
(

2ℎ

2 + ℎ2
− sinℎ)E𝑃𝑛 + (

4 + ℎ4

4 + 2ℎ2
− cosℎ)E𝑄𝑛

]2
.

(14)

A straight-forward calculation with using the Taylor expan-
sions

sinℎ = ℎ− ℎ3

3!
+

ℎ5

5!
− ⋅ ⋅ ⋅ ,

cosℎ = 1− ℎ2

2!
+

ℎ4

4!
− ⋅ ⋅ ⋅

(15)
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yields

∣E(𝑦𝑛+1 − 𝑌𝑛+1)∣2

=
4

9

ℎ6

(2 + ℎ2)2
((E𝑃𝑛)

2 + (E𝑄𝑛)
2) +𝑂(ℎ7).

(16)

Now we calculate E∣𝑦𝑛+1 − 𝑌𝑛+1∣2. Note that for 𝑖 =
1, 2, E(Δ𝑛𝑊𝑖)

2 = ℎ, and that 𝑊1 and 𝑊2 are independent.
Using the definitions and properties of 𝑊 and Itô stochastic
integrals, we can calculate that

E

(∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠

)2

=
ℎ3

3
,

E(𝑢1(𝑡𝑛)
2 + 𝑢2(𝑡𝑛)

2) = (𝜎2 + 𝛾2)ℎ,

E(Δ𝑛𝑊2 ⋅ 𝑢2) = 𝛾 sinℎ,

E(Δ𝑛𝑊1 ⋅ 𝑢1) = 𝜎 sinℎ,

E(Δ𝑛𝑊2 ⋅ 𝑢1) = 𝛾(1− cosℎ),

E

(∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠 ⋅ 𝑢2

)
= 𝜎(ℎ cosℎ− sinℎ),

E

(∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠 ⋅ 𝑢1

)
= 𝜎(ℎ sinℎ+ cosℎ− 1),

E

(∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠) ⋅ 𝑢1

)
= 𝛾(ℎ− sinℎ),

E

(∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠)

)2

=
ℎ3

3
,

E

(
Δ𝑛𝑊2 ⋅

∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠)

)
=

ℎ2

2
,

E

(
Δ𝑛𝑊1 ⋅

∫ 𝑡𝑛+ℎ

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠

)
=

ℎ2

2
.

(17)

Using these results, together with (14)-(16), also noticing
that (𝑃𝑛, 𝑄𝑛) are independent to 𝑅𝑖 (𝑖 = 1, 2), we obtain

E∣𝑦𝑛+1 − 𝑌𝑛+1∣2 =
8

15

𝛾2 + 𝜎2

(2 + ℎ2)2
ℎ5 +𝑂(ℎ6). (18)

The results (16) and (18) implies that, the mean-square
order of the scheme (9) is 2 (see THEOREM 1.1 in [7]).
This ends the proof. □

Proposition 2. The numerical methods (8) and (9) for
the stochastic oscillator (1) are both symplectic.

Proof. Symplecticity of (8) is already assured by [8],
therefore we only prove that for (9). In fact, the proof for
(8) can just follow the same way.

Rewrite (9) into the following convenient form

𝑝𝑛+1 =
2

2 + ℎ2
𝑝𝑛 − 2ℎ

2 + ℎ2
𝑞𝑛 +

2

2 + ℎ2
𝛽1,

𝑞𝑛+1 =
2ℎ

2 + ℎ2
𝑝𝑛 +

4 + ℎ4

2(2 + ℎ2)
𝑞𝑛 +

2

2 + ℎ2
𝛽2,

(19)

where

𝛽1 = 𝛾Δ𝑛𝑊2 − 𝜎

∫ 𝑡𝑛+1

𝑡𝑛

(𝑊1(𝑠)−𝑊1(𝑡𝑛))𝑑𝑠,

𝛽2 = ℎ𝛽1 + (1 +
ℎ2

2
)𝛼1,

(20)

with

𝛼1 = 𝜎Δ𝑛𝑊1 − 𝛾

∫ 𝑡𝑛+1

𝑡𝑛

(𝑠− 𝑡𝑛)𝑑𝑊2(𝑠). (21)

Consequently,

𝑑𝑝𝑛+1 ∧ 𝑑𝑞𝑛+1 =

(
4 + ℎ4

(2 + ℎ2)2
+

4ℎ2

(2 + ℎ2)2

)
𝑑𝑝𝑛 ∧ 𝑑𝑞𝑛

= 𝑑𝑝𝑛 ∧ 𝑑𝑞𝑛.
(22)

□
It is not difficult to check that, the true solution (10) is a

symplectic mapping (𝑝, 𝑞) 7→ (𝑃,𝑄) which can be generated
by the function

𝑆(𝑞,𝑄, ℎ) = (𝑄− 𝑢1)(𝑢2 − 𝑞 cscℎ)

+
1

2
(𝑞2 + (𝑄− 𝑢1)

2) cotℎ
(23)

via the relations

𝑝 = −∂𝑆

∂𝑞
, 𝑃 =

∂𝑆

∂𝑄
. (24)

Note that 𝑆 and 𝑆1 are two different kinds of gen-
erating functions with different assignments of indepen-
dent variables. Actually, they can be transformed to each
other through coordinate transformation (see e.g. [2], [3],
[12]), and each of them satisfies a corresponding stochastic
Hamilton-Jacobi PDE, by solving which the series expansion
of them such as (6) can be obtained. For example, given the
stochastic Hamiltonian system (3), the stochastic Hamilton-
Jacobi PDE for 𝑆1(𝑃, 𝑞, 𝑡) should be

𝑑𝑆1
𝑡 = 𝐻(𝑃, 𝑞 +

∂𝑆1

∂𝑃
)𝑑𝑡+

𝑚∑
𝑟=1

𝐻𝑟(𝑃, 𝑞 +
∂𝑆1

∂𝑃
) ∘ 𝑑𝑊𝑟(𝑡),

𝑆1(𝑃, 𝑞, 0) = 0,
(25)

the solution of which is assumed to be of the form

𝑆1(𝑃, 𝑞, 𝑡) =
𝑚∑
𝑟=1

𝐺𝑟(𝑃, 𝑞)𝐼𝑟 +𝐺0(𝑃, 𝑞)𝐼0

+
𝑚∑

𝑣=1

𝑚∑
𝑟=1

𝐺𝑣,𝑟(𝑃, 𝑞)𝐼𝑣,𝑟

+

𝑚∑
𝑖=1

𝑚∑
𝑣=1

𝑚∑
𝑟=1

𝐺𝑖,𝑣,𝑟(𝑃, 𝑞)𝐼𝑖,𝑣,𝑟

+

𝑚∑
𝑟=1

𝐺0,𝑟(𝑃, 𝑞)𝐼0,𝑟 +

𝑚∑
𝑟=1

𝐺𝑟,0(𝑃, 𝑞)𝐼𝑟,0

+𝐺0,0(𝑃, 𝑞)𝐼0,0

+ ⋅ ⋅ ⋅ ,

(26)

where

𝐼𝑖1,⋅⋅⋅ ,𝑖𝑗 =

∫ 𝑡

0

∫ 𝑢1

0

⋅ ⋅ ⋅
∫ 𝑢𝑗−1

0

∘𝑑𝑊𝑖1(𝑢𝑗) ⋅ ⋅ ⋅ ∘ 𝑑𝑊𝑖𝑗 (𝑢1),

(27)
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in which 𝑗 ≥ 1, 𝑗 ∈ 𝒵+, 𝑖𝑘 (𝑘 = 1, ⋅ ⋅ ⋅ 𝑗) takes value from
the set {0, 1, ⋅ ⋅ ⋅ ,𝑚}, and if 𝑖𝑘 = 0, 𝑑𝑊𝑖𝑘(𝑢𝑠) := 𝑑𝑢𝑠. The
functions containing the character 𝐺 are to be determined by
substituting the series (26) into the equation (25). The series
𝑆1 in (6) is just obtained in this way.

More details about the stochastic generating function
theory were given in [5] and [12].

Proposition 3. The second moment of the solution of (1)
grows linearly with respect to time 𝑡, that is,

E(𝑝(𝑡)2 + 𝑞(𝑡)2) = E(𝑝20 + 𝑞20) + (𝜎2 + 𝛾2)𝑡. (28)

Proof. A straightforward calculation of the second moment
on the true solution (10) yields

E(𝑃 2 +𝑄2) = E(𝑝2 + 𝑞2) + (𝜎2 + 𝛾2)ℎ, (29)

which is equivalent to (28) by assigning 𝑡 = 0 and substitut-
ing the notation ℎ by 𝑡 in (10). □

In the next section, we use the linear growth property (28)
as a criterion of evaluating the numerical methods.

III. NUMERICAL TESTS

To compare the symplectic methods with non-symplectic
ones, we take the non-symplectic Euler-Maruyama method
applied to (1) as an example, which reads

𝑝𝑛+1 = 𝑝𝑛 + 𝛾Δ𝑛𝑊2 − ℎ𝑞𝑛

𝑞𝑛+1 = 𝑞𝑛 + 𝜎Δ𝑛𝑊1 + ℎ𝑝𝑛.
(30)

For the implementation methods of Δ𝑛𝑊𝑖 (𝑖 = 1, 2) and
the stochastic integrals in (8) and (9), refer to e.g. [4], [6]
and [7].

The numerical tests examine the behavior of the numerical
methods from three aspects: first, closeness between the os-
cillation curves produced by the numerical (𝑞𝑛) and the true
solution (𝑞(𝑡𝑛)), to which Fig. 1, 2, and 3 are contributed;
second, ability of preserving the linear growth property (28),
as shown by Fig. 4, 5, and 6; and third, the empirical mean-
square order of the methods illustrated by Fig. 7 and 8.

Both Fig. 1 and 2, produced by the methods (8) and (9)
respectively, exhibit good coincidence between the numerical
(blue dotted) and the true solution (red solid) curves, while
obviously larger and larger deviation of the numerical curve
created by the Euler-Maruyama method (30) from the true
solution is observed in Fig. 3, which indicates the effective-
ness of the symplectic methods (8) and (9), as well as the
invalidity of the non-symplectic Euler-Maruyama method in
solving the stochastic oscillator.

Fig. 4, 5, and 6 show the evolution of the numerical second
moment E(𝑝2𝑛 + 𝑞2𝑛) (blue solid) by the methods (8), (9)
and (30), respectively, compared with the reference line (red
dotted) indicating the theoretical path of the linear growth,
from which it can be seen that the method (9) preserves the
linear growth property (28) more accurately than (8), though
both of them behave fairly well in this aspect. The Euler-
Maruyama method, however, fails to reproduce the linear
growth of the second moment. The expectation E in these
tests is approximated by taking average over 500 sample
solutions.

0 50 100 150 200
−20

−15

−10

−5

0

5

10

15

20

t

q

s1 lower, h=0.02

 

 
exact solution
method

Fig. 1. A Sample Trajectory arising from the Numerical Method (8) (blue
dotted) and the True Solution (10) (red solid)
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q
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exact solution
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Fig. 2. A Sample Trajectory arising from the Numerical Method (9) (blue
dotted) and the True Solution (10) (red solid)
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−150

−100

−50

0

50
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150

t

q

Euler−Maruyama, h=0.02

 

 
exact solution
method

Fig. 3. A Sample Trajectory arising from the Euler-Maruyama Method
(30) (blue dotted) and the True Solution (10) (red solid)

The data for the tests are: (𝑝0, 𝑞0) = (0, 0), 𝜎 = 𝛾 = 1,
𝑡 ∈ [0, 200], and the time step-size ℎ = 0.02.

The log-log plot between the step-sizes ℎ and the
corresponding mean-square error at 𝑡 = 200, i.e.[
E[(𝑝𝑁 − 𝑝(200))2 + (𝑞𝑁 − 𝑞(200))2]

] 1
2 , where 𝑁 =

200/ℎ, arising from the numerical schemes (8) and (9) are
exhibited in Fig. 7 and 8 respectively. Five different values
of ℎ, i.e. 0.01, 0.02, 0.05, 0.1, 0.2 are chosen for the test,
corresponding to the five circle markers on the blue solid
lines. The red dotted straight lines are of slope 1 in Fig. 7
and 2 in Fig. 8. It is indicated by the parallelism between
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Fig. 4. Evolution of the Sample Average (over 500 samples) of 𝑝2𝑛 + 𝑞2𝑛
by the Numerical Method (8) (blue solid) and the Exact Second Moment
(red dotted)
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Fig. 5. Evolution of the Sample Average (over 500 samples) of 𝑝2𝑛 + 𝑞2𝑛
by the Numerical Method (9) (blue solid) and the Exact Second Moment
(red dotted)
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Fig. 6. Evolution of the Sample Average (over 500 samples) of 𝑝2𝑛 + 𝑞2𝑛
by the Euler-Maruyama Method (30) (blue solid) and the Exact Second
Moment (red dotted)

the numerical plot and the corresponding reference lines that,
the mean-square order of (8) is 1, and that of (9) is 2, which
coincides with the theoretical results in Proposition 1.

IV. CONCLUSION

Symplectic methods are very important in the simulation
of stochastic Hamiltonian systems, especially in long time
simulation problems. The paper applies the stochastic gen-
erating function approach, which is a systematic way of
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Fig. 7. Logarithm of the Mean-Square Error at Time 𝑡 = 200 by the
Numerical Method (8), versus the Logarithm of the time step-size ℎ, for
h=0.01, 0.02, 0.05, 0.1, 0.2 (blue solid), and the Reference Line of Slope 1
(red dotted)
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Fig. 8. Logarithm of the Mean-Square Error at Time 𝑡 = 200 by the
Numerical Method (9), versus the Logarithm of the time step-size ℎ, for
h=0.01, 0.02, 0.05, 0.1, 0.2 (blue solid), and the Reference Line of Slope 2
(red dotted)

constructing symplectic scheme for stochastic Hamiltonian
systems, to a concrete stochastic Hamiltonian system, the
linear stochastic oscillator (1), to build symplectic schemes
for it, which might serve as a demonstration of the applica-
tion of the stochastic generating function approach. Although
only two schemes are given here, many others, in fact, can
be produced, by different truncations of the same generating
function series, or different choices of generating functions,
such as 𝑆, 𝑆2 or 𝑆3 ([12]). Construction and implementation
of symplectic schemes with even higher orders, however, are
still subject to further investigation.
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