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Riesz Potentials, Riesz Transforms on Lipschitz
Spaces in Compact Lie Groups

Daning Chen, Jiecheng Chen & Dashan Fan

Abstract—Using the heat kernel characterization, we establish
some boundedness properties for Riesz potentials and Riesz
transforms on Lipschitz spaces in a compact Lie group.
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I. INTRODUCTION

Let G be a connected, simply connected, compact semisimple
Lie group of dimension N. The main purpose of this paper is

transforms R

of Riesz j

to establish boundedness

(j = 1,2,--~,n) and Riesz potentials |, on the Lipschitz

z

spaces AP (0( >0,1<p,g< OO)on G . These operators
were studied by E.M. Stein in [8], by using the heat kernel W,
on G. It was proved by Cowling, Mantero and Ricci in [6]

that the Riesz transforms R.

i are Calderon-Zygmund

operators. Thus a standard argument shows that R j are

bounded operators on the Lebesgue space L° (G) for any

1< p <o0. Also, it is well-known that the Riesz transforms

R; are not bounded on the Lebesgue spaces L'(G) and

L” (G) Our results (see Theorem 2) in this paper, however,
seem little surprising, since we will show that on a compact

Lie group G, the Riesz transforms R are bounded on the

i
Lipschitz spaces A1 (G) forany 1< p<ooif a>0.

Our main results are stated in the following theorems.
Theorem 1 Let Re(z) = B/2 > 0. Then the Riesz potential

I, = (_A)iz

. . p.q
is a linear operator that maps A o to
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+p Doundedly.

Theorem 2 The Riesz transforms are bounded on A';’q
Theorem 3 Suppose that Re(z) =p/2<0 and o+ > 0.
Then |, is a linear bounded operator from A?% to AP 5

Our proof uses a heat kernel characterization of the
Lipschitz space obtained by Meda and Pini in [7], the
semi-group property of the heat kernel and an estimate on the
heat kernel in [6]. This proof might be a new one even in the
classical case.

For the historic development of the Riesz potential on both
classical case and Lie groups, one can refer [8],[9],[10] and the
references therein. We also want to mention some recent
articles [2],[3],[4] about harmonic analysis on compact Lie
groups.

This paper is organized as following. In the second
section, we will present some necessary notations on Lie group
and definitions of operators and spaces that will be studied in
the paper. We will introduce some lemmas in the third section
and present the proofs of the theorems in Section 4. In this
paper, we use the notation A =< B to mean that there is a
positive constant C independent of all essential variables such
that A <CB. We use the notation A =B to mean that there are

two positive constants C; and C, independent of all essential

variables such that C;A<B < C,A.

II. NOTATIONS AND DEFINITIONS.

Let G be a connected, simply connected, compact
semisimple Lie group of dimension n. Let g be the Lie
algebraof G and t the Lie algebra of a fixed maximal torus
T in G of dimension m. Let A be a system of positive roots

for (g, T), so that Card(A)= (n-m)/2 and let O = Z a.

achA

Let | - |
the Killing form B on gc, the complexification of g, then
-

since B |TCXTC is nondegenerate, given A € hom . (T(C, (C) ,

be the norm of g induced by the negative of

induces a bi-invariant metric d on G. Furthermore,

there is a H, in 7€ such that

/’L(H)ZB(H,Hl) foreach H € 7®. Welet <> and

unique
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/I - /I denote the inner product and norm transferred from 1t

to hom c (Z', iR) by means of this canonical isomorphism.

Let N={H er,expH =1}, I being the identity in

G. The weight lattice P is defined by
P:{/ier:</1,n>627zZ forany neN} with
dominant weights defined by

A ={ﬂ, € P:<ﬂ,a> >0 forany ae A}. A provides a
full set of parameters for the equivalent classes of unitary
irreducible representation of G: for AE A, the representation

U , has dimension
A+0, a>

<
v

aehA

and its associated character is

7 W ei<w(/1+5),§>
(§)=ZWew ( )iwﬁ,
Y e
weW

where £ €7, W isthe Weyl group and E(W) is the

A

signature of WeW . Let X,, X,,..., X, be an orthonormal

basis of g. Form the Casimer operator

n
A= X1,
i=1
This is an elliptic bi-invariant operator on G which is

independent of the choice of orthonormal basis of g. The

solution of the heat equation on G xR”

do
A(D(x,t):w(x,t), ®(x,0)=f(x)
for f ELI(G) is given by (D(X,t)=Wt*f(X),
where Wt is the Gauss-Weierstrass kernel (heat kernel). It is
well known that Wt is a central function and one can write it

as,for €7 and t>0,

W,

(&)=Y e—t(umwf—usuz) d,7, (£).

AeA

It is easy to see that Wt satisfies the semi-group property
W

t+s

=W, *W, forany s, t>0.

Using the heat kernel, one can defines various useful
function spaces on G. One of such spaces is the Besov space

Bl (G) defined in the following.
Forany k>0a>0, and 1 <p <o, we say that a function

f 1is in the homogeneous Besov space hBOf’q (G) if the
hB ! (G) norm of f

[ lhagee)
v S ; -1 ‘
3 b

when q # o0; and

” f ”th‘q(G) - Z sup

M:k O<t<27"0

X "W, fHLp(G) <o

when q = o, where X' = le‘ ijz an" with the
multi-index | =(j1, Jysee jn)
We say that an " function f is in the Besov space

BM(G) if
”f B29(G) :” f ”LP(G) +|| f|

is finite.
Remark 4 (i) In the definition of the Besov spaces, the sum

hep9(G) ° (1 <ps OO)

is taken over all the differential monomials of order k, and N,
is a fixed big number. It is easy to check that in the definition of

the Besov spaces, one can use the number N, - 1 to replace

n

o -

(ii) One can pick any k> a in the definition. The Besov
norms obtained from different k are equivalent.

Another important function space is the Lipschitz space
A2 on G. Let k be a positive integer. For f € L? (G)

and for every element V & g, with V] =1, we define the
k-th order difference operator centered at x with direction V

A';V f (X):i(—l)kﬁj f (Xexp(jSV)),s>0.

The k-th order LP -modulus of smoothness of f is the
function

o, (t, f,L°)= AX, f

sup

V|=1,0<s<t L

Let o> 0. We say that a function f e L’ (G ) ,
AP

a

1 <p <o, isin the Lipschitz space if the norm

l
[#ge =1+ e e £.00))

if 1<q<ow, and

|t

APa = || f ||Lp(G) +§3§1t7“mk (t, f , LD) (if q=)
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is finite.
The Lipschitz space plays an important role in studying
harmonic analysis on Lie groups. It is known in [1] that one can

use the Lipschitz space to characterize the Hardy space H " on
a compact Lie group. Also, Meda and Pini proved that the
Besov norm and the Lipschitz norm are equivalent (see [7]),

therefore As’q (G) = Bf’q (G) )

Next, we recall that one can use the heat kernel to define
Riesz transforms and Riesz potentials on G. The following
definitions can be found in Stein [8]. The Riesz potential

|, =(-A)",zeC,Re(z) >0, isdefined by
-z 1

where

[Pt gt
0

W)=Y e—t(umuz—usuz) d,7,(£)

AeA\{0}
Thus, it is easy to see that

J'GWI'(x)dx:O.

We can extend the definition of |Z to the complex plane

by using the formula
(-A) " =-A(-A) "

We are interested in the particular case z = 1/2 and define
the Riesz transforms Rj ( j=12,..., I’l) by

1 1
Ryf =7 2 [t 72X W, fdt.

When in the case Z=14, A e R\{O} ,

—i —1 0 .
A f=——— | tYAW, * fdt .
(=4) F(1+i/1)J.0 v

In [6], both operators (—A)_Iy and R j are shown to be

Calderén-Zygmund operators. Combining that with the L2
boundedness proved by E.M. Stein [8], it follows by a standard
method of Calderén-Zygmund decomposition that both

operators (—A)_W and R j are strong type ., p),
1 <p<oo, and of weak type (1, 1). In this paper, we are also
—iy

a
+ &
interested in the Riesz potentials (—A) 2, a>0.

Some Lemmas

Let H?® be the Sobolev space of functions f on G for
. s 2
which any le,ij,...st €qg, szlxjk fel (G)
A norm on the subspace of central functions in H ST
1
[f]

| Sl peora,f
where f , are the Fourier coefficients of f. Since the heat

AeA

kernel W, is a central function, we have the following estimate

of Wt.

Lemma 5 For any multi-index I and any 1 < p < oo,
HX IWt HLP(G) <t forany N> 0 uniformly for t>o.

Proof. Use the Holder's inequality, semi group property of
. and the left invariance of X, one has

“x W,

() jHX IWt

LP L*(G)

<Jxw,w = [xw

z "\Nt/2| H>*(G) "\Nt/Z

with s=[I].

LZ(G) "VVt/Z

(6

LZ(G) b

Thus, the lemma follows easily from the definition of W, .

By the Poisson summation formula (see [5], or [6]), we
know that

Ja+ef
oz) 2| Llsraaje =)

, -n
tlo| 't 2
ol

Wt(f):

where

D(éj) _ Z ei<wb‘,§>‘

wew

Using this expression of the heat kernel, we can obtain the
following estimate.
Lemma 6 For any multi-index I with [I] = k,
k
t2X IWt =<1 uniformly for t> 0.
L(e)

Proof: By Lemma 5, we may assume that t is small. Let
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U be a neighborhood of 0 in t such that it translates by

elements of A are all disjoint, and let n(x) bea C” function
supported on U, radial and identically one on a neighborhood

of 0. One defines two modified kernels K, and V, by

o202 Lt
V,(€) t ;\%e ,
2ol st
K (§)=e""" > n(g+a)e *
AeN

By Theorem 4 of [6], it is known that for any pair of
integers s and N,

(L =0(t"), t—o.

Also, by Theorem 2 of [6], we know that given any pair of
integers s and N, there is an integer L such that

N
lav, - =0(t"), t—0,
where
Mo L(n—-m)
_ j _
A= Zt D, .M =
and D, il =0,1,..,M, are differential operators of order

j,» which are invariant under both left and right translations.
Thus, for t <o, we have

W) =[x (We-a vl
=<[X"A (v -K,) o +|X'A LK, H
j"\/t_Kt|H2’5(G) Lt"t G)+“X AL’thHLI(G)

for some suitable integers s and r. Therefore, for 0 <t<go,

X W) =X ALK

Recalling that the function K, considered as a function

on G, is supported on a small neighborhood of T of G, one
introduces on this neighborhood the regular coordinates

(Errnss) s where (&) > exp( 27X, )

In this coordinates,

2
, N e

Kt(g) 2l 2,7(éz)e at

By the proof of the Lemma 5 in [6], it is easy to see that

_n lel®
‘XIALth(é:)‘jt 2 "é”He a

Thus

k

t2X'W, (&)

n | lel®

<72 ef'e  vo()

is an integrable kernel on G. The lemma is proved.

By the proof of Lemma 6, it is easy to obtain the following
estimate. We skip the proof of it.

Proposition 7 Let 0 <t<1. Then
B-n-3|
X rw (&)=l +tf

for any multi-index J with |J| >p =2Re(2).
Proofs of Theorems

Proof of Theorem 1
Since the norms of Besov space and Lipschitz space are
equivalent, it suffices to show our theorems in the Besov
norms. For any 1 < p < oo, by the Minkowski inequality and
LP

Holder's inequality,
1L (f)
1 7 . 12 B}
10l {0 W e [ i .
Thus, by Lemma 5 and Lemma 6, we have
L (O =1l

Now, by the definition of the Besov norm, it suffices to
show
IZ ( f )thé’;% j || f

First, we study the case q = . It is easy to see that we only
need to prove that if k> o+ f3, then for any multi-index I with
1| =k, one has

BP

(1) supt N HXW*I fH

0<t<2™"

jz supt2 HXW*fH

|1|=k O<ts2” o

VIl

Denote 2™ = & . Using the semi-group property of W,

and the left invariance of X' , we have

(Advance online publication: 27 August 2012)



TAENG International Journal of Applied Mathematics, 42:3, IJAM 42 3 02

HX IW‘ *l; fHLp(G)

A1,

+{L‘J‘t SIXW, = f (x)ds
S

Forany 0<t<o, when k> a+ p, by the Minkowski
k—a-p
inequality we see that t 2 J, is dominated by

q q

ol k-a-p zl p ip »
. }L (2) jo t 2 UGI X'W,,, * f(x)ds‘ dx] t'dt}
dx

[7sIX W, * f (x)ds

q

1 - k-a-p . p lp )
2 s -
pdx}p (3) IO t UGJ“ X'W,, * (x)ds‘ dxj t'dt

dX} P_ J+J.+] are bounded by ” f ”qu , up to a constant multiple. Using
T Ty T

the Holder Inequality, we eas11y obtain that the inside integral
in (2)

1
UGU sTIX'W, 1‘(x)ds‘pdxjp

P
I J.Ocs HX s dsdx £
L'(G 2 I
ol ©) <2 W g X W f ‘o
Thus, by Lemma 5, we have which implies that the integral (2) is bounded by
k—a-p C f
t 2 J _<||f|| ) ” ”qu
) e ) Nowfork>2a+2B+l, and any 1 with [I| =k, we
Lhet p’' be the conjugate index of p. By Holder's inequality, write X' = X"X" suchthat | I | =k, > arp | I
we have

| =k: >a+ (B/2) + 1. Then the integral (3) is bounded by

o U ’ ds)' P (1 o J]

LP(G) " .

» 1 L] q
It e i ‘)x'zw‘*fi{j!”spzﬂx' A s]qtldt

=l

_k-a-p
<t 2 supt 2 ‘

0<t<2o

Jist o )

Similarly, by Holder's inequality, the second integral J:
is dominated by, up to a positive constant,

1
: 1
el p(k-a) pla+p-k) ip {J vt HX Wt e dt} 2 Flagace) -

t P e fop(G)s 2 s 2 ds

k-a-p (k-a The proof of the theorem is completed.
<t 2 supt ?

0<s<20

L*(e)’ Proof of Theorem 2
Combining the estimates on J: , J: and Js , we obtain

the estimate (1), which proves the case q= . By checking the proof of Theorem 1, one easily sees that

Next, we show the case 1 < q <oo. Checking the proof for HR f H
the case q = o, we only need to show that both he; (G
integrals

To prove the theorem, now it suffices to show that
Rt =l

By the L° boundedness of R j for 1 <p <o proved in

[CM], clearly we only need to discuss the cases p=1 and
p=o. If p=1 and q=co, by Lemma 5, it is easy to see that

(Advance online publication: 27 August 2012)
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Proof of Theorem 3.

[ tX W £ ()t dx+| g,

IR =
Without loss of generality, we may assume z = - /2.
Using Integrate by part; the first term above is bounded First, we prove that

by, (up to a constant multiple), ||| f” <C ” f "

Je
1 P potential, it is easy to see that
+.|.G Io tzanWt*f(X)dt l, f I t 2AkW*f( ) t'dt

By Lemma 6, for some k satisfying 1>k-o/2>0. By Lemma 5, it is
easy to see that

qu

hthXW*f( )

t—0

dx

for any f € Bof 4 (G) By the definition of the Riesz

dX+|| f ”L‘(G)

[ hmtzxw * £ (x) [dx ol

o [V ey =]f, 2 AWextdt]  +]f

1 LP(G)

<liminf | 2 XW, * f (X) dx When q=o0 and p# o, let & be a small positive number

0 ¢ such that pe is sufficiently small in a way to be determined.

Then

liminf t2X W * f fil,  =<Ifl, o kB
t—0 ( ) LI(G) ” ”L(G) ” "L(G) J’O tk ZAkWt  f (X)t_ldt

Also,

i {j t s ‘A"Wt*f(x)‘pdt}p.

1
‘j:tzngwt* f(x)dt

1
= J-G .[oUtEAX W, f (X) dt|dx. Thus, up to a positive constant, ” I, f "E"(G) ts dominated by
Intjgrfting by parts k times for an even k >a, we get sup LS 2 “AKW * f “ Jp -[Ogt P[%_Q-l— pgdt + ” f ”LP
J‘ J’ tzijWt*f(x)dt dx =
sldo We now have

ooy

k+l Dt o k Bpw

= ”f”U +_[ ‘_[ t 2 tzAzijt * f (X)dt dx by choosmgasmall s>0
=] L e L W tat=|f B (0 (e @ Pounded By
f o k—g—l K f
In the same way, we can prove the case p=q= . “(G) * C.[ t HA W, * H “(
Next, we consider the case p=1and 1< q <oo. In this o B
case, we have < ” {1_‘_]‘ t 2 2] dt} < ”
B (G B (G
HRJ fHL‘(G) = ” f ”L'(G)

When 1 <£q <o and | <p < . Using the Minkowski

k

A2X W, * f

q q inequality, we have
! e k—ﬁ—l
U(G)} tdyx ”Iz f ||LP(G) = ” f ||LP(G) +J.0 t 2 HAKWt * fHLP(G dt

) J_: {t(mza)

=f]

BLA( For g=1,

The proof for the case p=o and 1<q<oo is similar and
is skipped. The theorem is proved.
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[ faw e o]t

<7 g o], =] 1]

he'(G) *

For 1 <q<o, we use Holder's inequality to obtain

[V flisiey < Cillf o)

k) 9
+Cy| [ (e w1 viw | =1 b

where

i

C,= j:tq(g_f)_ldt "

Thus (4) is proved. To complete the proof of Theorem
3, it remains to show that

1 ¥ lhegs o) < Cltlogpece)-

We skip the proof, since it is similar to those of Theorem
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