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Abstract—In this paper we examine the relationships among
several notions about Brouwer’s fixed point theorem for uni-
formly continuous functions from a simplex into itself in
the framework of constructive mathematics à la Bishop. We
compare the notions such as
(A) a function has at most one fixed point,
(B) a function is sequentially locally non-constant,
(C) a function has locally strong fixed point,
(D) a function has locally sequentially at most one fixed point.
(A) is not sufficient to Brouwer’s fixed point theorem to hold
for uniformly continuous functions on a simplex. We need
Brouwer’s fan theorem. (B) is sufficient to Brouwer’s fixed point
theorem, but somewhat too strong. (D) is a weaker version of
(B), but it is sufficient to Brouwer’s fixed point theorem.

The main conclusion of this paper is that (C) is equivalent
to (D), that is, any uniformly continuous function has a locally
strong fixed point if and only if it has locally sequentially at
most one fixed point.

Index Terms—Brouwer’s fixed point theorem, Locally strong
fixed point, Locally sequentially at most one fixed point,
Constructive mathematics.

I. INTRODUCTION

IN the previous paper [1] published in IAENG Interna-
tional Journal of Applied Mathematics we have presented

a constructive proof of Brouwer’s fixed point theorem for
sequentially locally non-constant and uniformly sequentially
continuous functions from a compact metric space, for exam-
ple, an n-dimensional simplex into itself. Uniform sequential
continuity of functions assumed in [1] is equivalent to
uniform continuity in classical mathematics, but the former
is strictly weaker than the latter in constructive mathematics.
Thus, sequential local non-constancy of functions is also
sufficient to Brouwer’s fixed point theorem to hold for
uniformly continuous functions from a simplex into itself.

In another paper [2] also published in IAENG Inter-
national Journal of Applied Mathematics we have
presented a constructive proof of an approximate
version of the Fan-Glicksberg fixed point theorem
for multi-functions (multi-valued functions) in a
locally convex space, that is, the existence of an
approximate fixed point of multi-functions in a
locally convex space.

Sequential local non-constancy, however, may be too
strong. In this paper we examine the relationships among
several notions about Brouwer’s fixed point theorem for
uniformly continuous functions from a simplex into itself
in the framework of constructive mathematics à la Bishop
([3], [4], [5]). We compare the following notions
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(A) a function has at most one fixed point ([6]),
(B) a function is sequentially locally non-constant ([1]),
(C) a function has locally strong fixed point,
(D) a function has locally sequentially at most one fixed

point.
(A) is not sufficient to Brouwer’s fixed point theorem to hold
for uniformly continuous functions on a simplex. We need
Brouwer’s fan theorem. (B) is sufficient to Brouwer’s fixed
point theorem, but somewhat too strong. To define (C) we
refer to the strong maximum in [7] and the strong minimum
in [8]. (D) is our original notion. It is a weaker version of
(B), but it is sufficient to Brouwer’s fixed point theorem.
About (C) and (D) we will show the following results.

1) The existence of a locally strong fixed point of a
uniformly continuous function means the existence of
a fixed point which is locally unique, and also means
that the function has locally sequentially at most one
fixed point.

2) A uniformly continuous function which has locally
sequentially at most one fixed point has a fixed point,
and it means the existence of a locally strong fixed
point.

Thus any uniformly continuous function has a locally strong
fixed point if and only if it has locally sequentially at most
one fixed point.

We require uniform continuity to functions rather than
uniform sequential continuity because the former is more
popular than the latter, and the main theme of this paper is
comparison of the above-mentioned notions, not continuity
of functions.

II. BROUWER’S FIXED POINT THEOREM WITH LOCALLY

STRONG FIXED POINT IN CONSTRUCTIVE MATHEMATICS

In constructive mathematics a nonempty set is called an
inhabited set. A set S is inhabited if there exists an element
of S.

Note that in order to show that S is inhabited, we
cannot just prove that it is impossible for S to be
empty: we must actually construct an element of
S (see page 12 of [5]).

Also in constructive mathematics compactness of a set means
total boundedness with completeness. First define finite enu-
merability of a set and an ε-approximation to a set. A set
S is finitely enumerable if there exist a natural number
N and a mapping of the set {1, 2, . . . , N} onto S. An ε-
approximation to S is a subset of S such that for each x ∈ S
there exists y in that ε-approximation with |x−y| < ε (|x−y|
is the distance between x and y). S is totally bounded if for
each ε > 0 there exists a finitely enumerable ε-approximation
to S. Completeness of a set, of course, means that every
Cauchy sequence in the set converges.
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Let us consider an n-dimensional simplex ∆ as a compact
metric space. About a totally bounded set, according to
Corollary 2.2.12 in [5], we have the following result.

Lemma 1: For each ε > 0 there exist totally bounded sets
H1, . . . , Hn, each of diameter less than or equal to ε, such
that ∆ = ∪n

i=1Hi.

Let x = (x0, x1, . . . , xn) be a point in ∆ with n ≥ 2, and
consider a function f from ∆ into itself.

Uniform continuity of functions is defined as follows;
Definition 1 (Uniform continuity): A function f is uni-

formly continuous in ∆ if for any x, x′ ∈ ∆ and ε > 0
there exists δ > 0 such that

If |x− x′| < δ, then |f(x)− f(x′)| < ε.

δ depends on only ε not on x.

If f is a uniformly continuous function from ∆ into itself,
according to [9] and [10] it has an approximate fixed point.
This means

For each ε > 0 there exists x ∈ ∆ such that |x−f(x)| < ε.

Since ε > 0 is arbitrary,

inf
x∈∆

|x− f(x)| = 0.

By Lemma 1 we have ∪n
i=1Hi = ∆, where n is a finite

number. Since Hi is totally bounded for each i, |x − f(x)|
has the infimum in Hi because of its uniform continuity.
Thus, we can find Hi(1 ≤ i ≤ n) such that the infimum of
|x− f(x)| in Hi is 0, that is,

inf
x∈Hi

|x− f(x)| = 0,

for some i such that ∪n
i=1Hi = ∆.

The notion that f has at most one fixed point in [6] is
defined as follows;

Definition 2 (At most one fixed point): For all x, y ∈ ∆,
if x ̸= y, then f(x) ̸= x or f(y) ̸= y.

[6] has shown that the following theorem is equivalent to
Brouwer’s fan theorem.

Each uniformly continuous function from a com-
pact metric space into itself with at most one fixed
point and approximate fixed points has a fixed
point.

Thus, this theorem is non-constructive.
Next, by reference to the notion of sequentially at most

one maximum in [7], we define the property of sequential
local non-constancy as follows;

Definition 3 (Sequential local non-constancy): There ex-
ists ε̄ > 0 with the following property. For each ε > 0
less than or equal to ε̄ there exist totally bounded sets
H1,H2, . . . , Hm, each of diameter less than or equal to ε,
such that ∆ = ∪m

i=1Hi, and if for all sequences (xn)n≥1,
(yn)n≥1 in each Hi, |xn−f(xn)| −→ 0 and |yn−f(yn)| −→
0, then |xn − yn| −→ 0.

In [1] we have presented a constructive proof of Brouwer’s
fixed point theorem for sequentially locally non-constant and
uniformly sequentially continuous functions. This result im-
plies that we can constructively prove Brouwer’s fixed point
theorem for sequentially locally non-constant and uniformly
continuous functions.

Further we define the notion that a function has locally
sequentially at most one fixed point. It is a weaker version of
sequential local non-constancy. The definition is as follows;

Definition 4 (Locally sequentially at most one fixed point):
There exists ε̄ > 0 with the following property. For each
ε > 0 less than or equal to ε̄ there exist totally bounded
sets H1, H2, . . . , Hm, each of diameter less than or equal
to ε, such that ∆ = ∪m

i=1Hi, and for at least one i such that
infx∈Hi f(x) = 0 if for all sequences (xn)n≥1, (yn)n≥1

in Hi, |xn − f(xn)| −→ 0 and |yn − f(yn)| −→ 0, then
|xn − yn| −→ 0.

A fixed point of a function f is a point x∗ such that x∗ =
f(x∗) or |x∗ − f(x∗)| = 0. In addition, by reference to the
strong maximum in [7] or the strong minimum in [8], we
define a locally strong fixed point of f as follows.

Definition 5 (Locally strong fixed point): Let Hi be a set
such that ∪n

i=1Hi = ∆ and infx∈Hi f(x) = 0. By a locally
strong fixed point in Hi we mean a point x̃ such that for
each ε > 0 there exists δ > 0 such that if x ∈ Hi and
|x− f(x)| < |x̃− f(x̃)|+ δ, then |x− x̃| < ε.

About locally strong fixed points we get the following
results.

Theorem 1: Let x̃ be a locally strong fixed point of f in
Hi. Then,

1) x̃ is the unique fixed point in Hi. I call such a fixed
point locally unique.

2) f has locally sequentially at most one fixed point.

Proof:

1) If x ∈ Hi and |x−f(x)| ≤ |x̃−f(x̃)|, then |x−x̃| < ε
for each ε > 0, so x = x̃. Thus, x̃ is the unique fixed
point in Hi.

2) Let (εn)n≥1 be a decreasing sequence with εn > 0 for
each n and εn −→ 0. Choose any sequence (xn)n≥1

in Hi such that |xn − f(xn)| < εn. Then, we have
|xn − x̃| −→ 0, and so |xn − x′

n| −→ 0 for any such
sequences (xn)n≥1 and (x′

n)n≥1 in Hi. Therefore, f
has locally sequentially at most one fixed point.

Now we show the following lemma.
Lemma 2: Let Hi be a set such that ∪n

i=1Hi = ∆ and
infx∈Hi f(x) = 0, and f be a uniformly continuous function
from an n-dimensional simplex into itself. If the following
property holds:

For each δ > 0 there exists ε > 0 such that if
x, y ∈ Hi, |x−f(x)| < ε and |y−f(y)| < ε, then
|x− y| ≤ δ.

Then, f has a fixed point in Hi and has a locally strong fixed
point in Hi.

Proof: Choose a sequence (xn)n≥1 in Hi such that
|xn−f(xn)| −→ 0. Compute N such that |xn−f(xn)| < δ
for all n ≥ N . Then, for m,n ≥ N we have |xm−xn| ≤ ε.
Since ε > 0 is arbitrary, (xn)n≥1 is a Cauchy sequence in
Hi, and converges to a limit x̃ ∈ Hi. The continuity of f
yields |x̃− f(x̃)| = 0, that is, f(x̃) = x̃, and so x̃ is a fixed
point of f . By the above property if |x − f(x)| < ε and
|x̃− f(x̃)| = 0, then |x− x̃| ≤ δ. x̃ is a locally strong fixed
point.

Finally we show the following theorem.
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Theorem 2: Let f be a uniformly continuous function
from an n-dimensional simplex ∆ into itself. Assume
infx∈Hi |x − f(x)| = 0 for some Hi ⊂ ∆ defined above.
If f has locally sequentially at most one fixed point, then f
has a locally strong fixed point.

Proof: Choose a sequence (zm)m≥1 in Hi such that
|f(zm) − zm| −→ 0. In view of Lemma 2, it is enough to
prove that the following property holds.

For each δ > 0 there exists ε > 0 such that if
x, y ∈ Hi, |x−f(x)| < ε and |y−f(y)| < ε, then
|x− y| ≤ δ.

Assume that the set

K = {(x, y) ∈ Hi ×Hi : |x− y| ≥ δ}

is nonempty and compact (see Theorem 2.2.13 of [5]).
Since the mapping (x, y) −→ max(|x − f(x)|, |y − f(y)|)
is uniformly continuous, by Corollary 2.2.7 in [5] we can
construct an increasing binary sequence (λm)m≥1 such that

λm = 0 ⇒ inf
(x,y)∈K

max(|x− f(x)|, |y − f(y)|) < 2−m,

λm = 1 ⇒ inf
(x,y)∈K

max(|x− f(x)|, |y − f(y)|) > 2−m−1.

It suffices to find m such that λm = 1. In that case, if
|x − f(x)| < 2−m−1 and |y − f(y)| < 2−m−1, we have
(x, y) /∈ K and |x − y| ≤ δ. Assume λ1 = 0. If λm = 0,
choose (xm, ym) ∈ K such that max(|xm − f(xm)|, |ym −
f(ym)|) < 2−m, and if λm = 1, set xm = ym = zm.
Then, |xm − f(xm)| −→ 0 and |ym − f(ym)| −→ 0, so
|xm − ym| −→ 0. Computing M such that |xm − ym| < δ,
we must have λm = 1.

We have completed the proof that any uniformly contin-
uous function has a locally strong fixed point if and only if
it has locally sequentially at most one fixed point.
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