
Abstract —In this paper, we prove that the modified Painlevé- 
Ince (PI) equation, the force-free Duffing nonlinear type 
oscillator (DO) and the Lotka-Volterra (LV) nonlinear 
ordinary differential equation ODEs can be solved in general 
parametric form. The developed mathematical methodology 
and the extracted results, being expressed by way of new 
theorems including admissible functional transformations and 
substitutions, generalize the corresponding ones given by V. K. 
Chandrasekar, M. Senthilvelan, and M. Lakshmanan. 
 

Index Terms — Force-free Duffing Oscillator, modified, Lotka-
Volterra equation, parametric solution Painlevé-Ince 
equations. 
 

I. Introduction 

A well known nonlinear ordinary differential equation 
(ODE) in nonlinear dynamics and applied mathematics is 
the modified Painlevé- Ince (PI) second order ODE which is  

3 0xx xy ay y y    , where   and   are arbitrary 

parameters. Mathematicians and physicians have an 
attracted interest in this equation [4-6], [9], [14]. For 
example, Painlevé studied this equation and indentified 
general solution for 2 / 9  or 2 ,    while V. 

Chandrasekar, M. Senthilvelan, and M. Lakshmanan [4] 
gave the time independent integrals and the corresponding 
Hamiltonians for the above PI equation. Moreover, the PI 
equation is intimately connected with the two other well 
known nonlinear models, the free-force Duffing Oscillator 
(DO) type equation and the two dimensional Lotka-Volterra 
(LV) equations. Many investigators studied and solved these 
two equations, but only under various restrictions [3-6], [9], 
[12-14] and [19],[21]. H. Duler [5] and W. Kapteyn [12] 
four years later provided the first two investigations about 
LV equation. The equivalent system to LV equation was 
examined in 1952 by N. Bautin [3] and by J.Petrovskii and 
E.Landis [17] in 1955. A detailed reference to the Duffing 
problem was included in [5]. Interest in the six Painlevé 
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equations was reignited by Ablowitz et al [1-2]. Recently, T. 
Hasuike [20] proposed a solution algorithm based on a 
parametric solution approach, P.R. Gordoa and A. Pickering 
[8] gave a new derivation of two Painlevé hierarchies, Yi 
Zhang et al [22] provided an exact solution and A. Pichering 
[18] presented a Hamiltonian approach. 

In this paper we prove that the modified PI equation 
3 0,xx xy ay y y     where   and   are free parameters, 

is integrable in general parametric form for any value of   
and  . The PI nonlinear, second order ODE is intimately 

connected with two other well known nonlinear models, the 
force-free Duffing type Oscillator (DO) and the two 
dimensional LV equation. The general parametric solutions 
of these two nonlinear ODEs are also constructed by means 
of new proposed theorems inserting admissible functional 
transformations and substitutions. The developed theory 
includes no restrictions, generalizes the successful results 
given V. K. Chandrasekar, M. Senthilvelan, and M. 
Lakshmanan [4], using  the mathematical methodology by 
D. Panayotounakos, Th. I. Zarmpoutis and C. Siettos [15-
16]. 

 
II. Some Basic Results 

The symbols     2 2/ , / ,...
x xx

d dx d dx    are used 

to denote the total derivatives. The modified PI equation [4], 
[9] is not possible to be integrated straightforwardly. 
Consequently, we make use of the following theorem, 

Theorem 1 
Applying admissible functional transformation on the 

modified PI nonlinear ODE 3 0,xx xy y y y     where 

,a b   suitable constants, exact parametric solutions, 
including two arbitrary constants of integration, can be 
extracted 

Proof 
The transformation 

    , 0 ,x xx y

dp dy
y p y p y y p p

dy dx
             (1) 

reduces the modified PI equation  

 3 0; ,xx xy y y y a b      suitable constants 0 , 

to the Abel nonlinear ODE of the second kind  

3 0,yp p ayp y            (2) 
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where p  is a subsidiary differentiable function which has to 

be determined. 
In addition the substitution 

 
2

,
2

ay
z a ydy      (3) 

reduces the Abel equation (2) to the canonical (normal) form 
2

.zp p p z



                       (4) 

The last equation (4) admits the parametric solution [19; 
p.29] 

  

 

2

2

exp ,
2

1 exp ,
22

integration constant, parameter . 

dt
z C

C dt
p

C z


 


 
  


 
 

  
   
 

 
 

    
   
 

     




(5) 

The above parametric solution (5) can be summarized as 
  

  1 ,
2

p

z

 


    

and thus, if we estimate  
 

 
2

ln
2

z dt

C


 


 
 

 , 

and according to [7; p.68, 2.175.1], one obtains 
 

 2

2

1 2 1
ln ln

22 2

z dt

C

 
  


    
 

 , 

or equivalently the result 
 

 

2

2

2
1

ln
22

z
dt

C

 


 


 
 

 
 .       (6) 

 
The integral in the right hand side of (6) is evaluated as 

(elliptic, parabolic hyperbolic cases) 
 

 

2

1
22

1 1 1 2 2
ln , if 1 0;

2 1 2

1 2
, if 1 0;

1 2

1 1 2 2
arctan , if 1 0,

parameter .

d
 


 



 
 




 
 


         

    

     

 
   

        
     



(7) 

 

Solving equation (6) in terms of z , one extracts 
expressions with parameter  , that is  

1

1

22

1

22

1

1

22

1 1 2

2 1 2 2
, if 1 0;

2

1
exp

1 2 2
, if 1 0;

2

1 1 1 2
exp tan

2 2
, if 1 0,

2

suitableconstant of integ

C

C

z

C

C


 

 


 
 





 







    
           

   
 

           
     

             
   
 


2

ration;

2
discriminat of the ,

parameter .

 



























    
     

(8) 

Thus, using (3), one finds the following solution for 2y  

(elliptic, parabolic hyperbolic types) 

1

1
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1
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2
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2
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C
a

C
a

y

C
a

C


 

 


 
 





 







    
          

   
 
            
     
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
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(9) 

or equivalently 

 
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where 
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
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




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


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   
     

 
 

  
   
 



           (11) 

  

Combining (1) and (5), the parametric function  x x   

is also obtained,  

    
,x

dy dy
y p dx

dx p



                     (12) 

where  y y   as in (10). Consequently, making use of 

(10) and the second of (5), one extracts 
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1
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1
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x
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C






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  

 
  

 
  


















    




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



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









     (13) 

where    , 1, 2,3iF     as in (11). 

This result completes the proof of the Theorem 1. We 
underline, that C  and *C  are suitable constants of 
integration and      is the parameter. Also, without 
loss of generality, it is supposed that 0   and 0C  . A 
first conclusion of the above analysis is that the general 
solution of the PI nonlinear ODE may be not unique inside a 
main interval of the parameter  1 2,   . According to the 

sign of the discriminant Δ, the exact solutions, may be 
divided into three parametric solutions given by formulae 
(10) and (13) which are valid into consecutive subintervals 
of the main interval  1 2,  .  

 We continue with the following corollary and theorems 
concerning nonlinear oscillator equations 

Corollary 1 

 The already examined modified PI nonlinear ODE [9] , [21] 
3 0;xx xy ay y y     ,a   suitable constants can be 

transformed to a nonlinear oscillator equation 

    3 2 2
0,

3 9tt t

a
w aw w w w w

         

through the invertible point admissible functional 
transformation 

  
3

exp , exp .
3 7 3

y w x
           

   
 

Here   is an arbitrary parameter. In case of 0  , the 

previous nonlinear ODE in terms of  w   also describes the 

force-free Duffing oscillators. 
The proof of this corollary is presented by V. 

Chandrasekar et al [4] and consequently the following 
theorem holds.  

Theorem 2 

The nonlinear oscillator equation 

   
2

3 2 2
0,

3 9
w w w w w w 

           

by way of suitable admissible functional transformations can 
be reduced to an Abel equation of the second kind; in the 
sequel it can be transformed to a first order linear ODE 
performing general solutions. 

Proof 

The admissible substitution  

   , 0 ,w ww p w p w p w pp            (14) 

transforms the considered nonlinear oscillator equation to 
the second kind Abel nonlinear ODE of the second kind 
[11], [19]  

   3 2 2
0.

3 9w

a
p p aw p w w w

           
 

    (15) 

Setting *   ; *;c   * */ 3 ;b    22 / 9   

 *2 2 *22 / 9b b  , one estimates *3 ;b    *;c    

and the above Abel equation of the second kind (15) 
becomes in the form  

    * * * 3 * * 2 *23 2 0,wp p w b p c w b w b w           (16) 

the type of which is included in [19; p. 47]. Then, the new 
substitution 2 *p w t b w   reduces the above Abel equation 

to the following linear ODE with respect to  w w t

  

   2 * * *2 ,t wt t c w t b       

or equivalently  

               22 ,
3tt at w t w
        (17) 

where *3b    is an arbitrary parameter. The general 

integral of this equation is given by the functional relation   

 
exp

exp exp ,
3

t
t t R

w t C dt dt dt
R R R


 
            

      (18)
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in which 2 * * 22 2 ,R t t C t at        and
tdt

R
  as in 

[7; p. 68, equation number 2.175], namely 
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       (19)  

Here J  is the integral  
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 
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  
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 

 (20) 

A first observation is that the solution of the given 
equation (17) is not unique inside a main interval of the 
variable t , but according to (20), it may be divided into 
three solutions which are valid separately inside three 
consecutive subintervals. From now on, following the 
inverse course, one constructs the general solution of the 
nonlinear oscillator equation. This completes the proof of 
the Theorem 2. 

 

III. The nonlinear Lotka-Volterra equation 

Let us consider the general two dimensional Lotka-
Volterra (LV) equation given by the first order nonlinear 
system [5,13,21]  

    1 2 3 1 2 3, ,t tx x a a x a y y y b b x b y          (21) 

where   and ib   1,2,3   are six real parameters. Such 

types of systems have been investigated since 1908. Useful 
results were developed by H. Dulac [6], W. Kapteyn [12] 
and M. Frommer [5]. These investigations were reexamined 
in 1955 by J. Petrovski and E. Landis [17] and also 
reaffirmed the correctness of Bautin’s [3] investigation. A 
convenient decoupling methodology [4] of equations (21) 
sets the following general second order nonlinear ODE 
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     

  

      
      
      
   
   
   

 
 
 

(22) 

Let us choose two of the parameters in (22) in the form 

3 3b a  . So (22) results in the simpler form  

 
   

   

2 3
2 2 1 1 2 2 1

2 2
2 1 2 1 1 2 1 1 1

3 2

2 0,

tt tx a b x a b x b a a x

a b b a a a x a b a x

        

     
    (23) 

with associated LV equations ( including five parameters) 
given by  

    1 2 3 1 2 3, .t tx x a a x a y y y b b x a y           (24) 

A thorough investigation of these kinds of systems is 
developed by H. Davis [5]. More detailed investigations for 
the restricted form were presented  by V. Chandrasekar, M. 
Senthilvelan, and M. Lakshmanan [4]. 

Setting 

    , ; 0,t tt x t xx w x x w x ww w x                 (25) 

equation (23) becomes to the following Abel equation of the 
second kind  

   
   

1 2

3 2
1 1 2 2 3 4 5

2
1 2 2 2 1 1 3 2 2 1

2
4 2 1 2 1 1 2 5 1 1 1

;

, ;

2 , 2 , ,

2 , ,

x

A

w w F x w F x

F x A x A F x A x A x A x

a b A a b A b a a

A a b b a a a A a b a

   

    

     

    

 (26) 

which further by the admissible substitution  

  

 
2

1 2
1

2
2 2 1

1

2

2

2
,

A x A x
F x dx

A A A
x






  

  
 




                 (27) 

is reduced to the canonical form  

 

   
 

 

 

2
3 4 52

1 1 2

1 2

;

,

2
,

2

w w w G

x A x A x AF x
G

F x A A

x A x A

 





  

 
   






     (28) 

where iA   1,...,5i   as in (26). In addition, another type of 

admissible substitution, that is  

      2

1
; 0,

u
w w u

u u


 



                 (29) 

reduces (28) to the Abel nonlinear ODE of the first kind [11] 

    3 2 .u G u u                                (30) 

The solution of (30), by way of (29) and (26), is 
equivalent with the solutions  w   or  w x  (  x t and 

 y t  become through (24)). For this purpose we introduce 

the following proposition. 

Proposition 1 

Using the admissible functional transformation 

    1
, 0,t

t

u t
t

 


  


 

the nonlinear ODE 

      3 2 ,u G u u       

is transformed to a new nonlinear ODE of the second kind 
of the Emden-Fowler type 
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   2 ; 0,tt t G t      

where  G   is given continuous function. 

We postpone the proof of this proposition, because it is 
extensively developed in [15] and we set  

2 32 ,u t du t dt u udt        

 
2 2

2 ,t
tt t

t

t t
z t dt dt


 

  

 


             

            (31) 

so that, by way of the total differentials (31), ;du dz  and 

the expressions for ;tt t    which are given in   Proposition 

1, we derive the equation  

  
 

    

2 2

as in

,

2

28

z

du u u
u

dz G
u z u z u

G






  
 

  
 

 (32) 

Furthermore, putting  

     ,u t p t   (33) 

and supposing that 

    2

2 ,
G p

z zp



                 (34) 

one gets the nonlinear ODE 

        
  2

,z

p
p

z z p
  

 
  (35) 

where  z  is a function which must be determined. 

Equation (35) is reduced in the first Abel nonlinear ODE 

  2 0,zz p z p       (36) 

fact that permits us to use the Julia construction [10; 11, 
p.27] being expressed as 

Proposition 2 

If the variable coefficients of the general Abel equation of 
the second kind 

          2
1 0 2 1 0 ,xg x y g x y f x y f x y f x         

satisfy the functional relation  

    0 2 1 1 1 0 12 ; 0 ,
x x

g f g g f g g        

then, its general solution is given by 

 
2

1 0 0

1 1

2
2 ,

g y g y f
dx C

g J g J


      

where  J x is the integral 

    2

1

2
exp ,

f
J x dx C

g
  integration constant. 

Applying the functional relation given by the above 
Proposition  2 to (36), one defines  z  through the first 

order linear ODE    2 1 ,zz z     that is 

  2
1/ 3 / ,z z C z    ( 1C   integration constant). Since the 

integration of the original nonlinear system (25) must 
include two constants of integration we can set 1 0C   and 

thus   / 3.z z   On the other hand, the Abel equation (36) 

according to the Proposition 2 admits the general solution 
because of 1,J   2 2 22 / 3 0,z p zp z C    0 0,f z   

  / 3.g z z  Thus, one estimates  

    21
1 1 36 ;

3
p z z C

z
     

 

C  first constant of integration 

(37) 

where without loss of generality, we suppose  236 1,z G   

 21/ 36 ;C z  parameter<+ .z     

By now, following the inverse proceeding we are able to 
define function  x x t  and thus  y y t  using the first of 

(24). Also one observes that the solution of the problem 
under consideration may not be unique inside a main 
interval of the parameter being introduced, because of the  
sign concerning square roots and the sign of the subsquare 
quantity ( C is the first integration constant), but it can be 
divided to several solutions valid inside consecutive 
subintervals of the main interval. Then, matching of the 
corresponding solutions must be done in each point that 
solution changes in order to ensure the appropriate 
smoothness. 

Summarizing one extracts the following results 

 

     
       

 
 

 

2
1

2
1

2 2
1

2 2
1

2

1

/ 3;

1
1 1 36 ;

3

62
;

;

1 1
;

parameter<+ ;

first constant of integration.

z z

p z F z z C
z

G G z zF zz

pp F z

u p F z

t t
u F z

z

C

  
 

 

   

 
   

 

   

   


 

 

 
(38) 

 

 

 

 

Moreover, by the last of (38) one derives  

 
 
1

2
1

,z
F

dt dz
F z


   

while by the transformation  1/ tu t    one extracts 

 
   3 3

1 1

1 1 1
.t

d d dz d dt

dt dz dt tu dz dzF z F z

             

Thus, though the fourth and the last of (38), one also 
estimates 

 
 
 

1

5
1

,z
F zd

dz F z

 
   or  4

1

1
.

4
F z   

In other words, we have already derived  
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 

   
 

2
1

2
1

4
1

2

,

1
1 1 36 ;

3
1

,
4
parameter<+ ;

1
first integration constant ,

36

u F z

F z z C
z

F z

z

C
z

 



  



   

 

 (39) 

and based on the substitution 1/w u , we evaluate  

 

 

   
 

2
1

2
1

4
1

2

1
,

1
1 1 36 ;

3
1

,
4

parameter<+ ;

1
first integration constant .

36

w
F z

F z z C
z

F z

z

C
z

 



  



   

 

 (40) 

The possible elimination of the parameter z  among w  

and   leads to an explicit  w w  or equivalently to an 

implicit solution  , 0h w   . From the third of (28) and 

without lost of generality for  22 0x x A  , we are able to 

write  1 22 / 2,x A x A    so that the parametric solution 

(40) becomes  

 

     
   

 

2
12

1

4
1 2 1

2

1 2 1 1 2 2 1 1

1 1
, 1 1 36 ;

3

1
2 ;

2
parameter<+ ;

1
first integration constant ;

36
2 ; 3 , 2 .

w F z z C
zF z

x A x A F z

z

C
z

x A x A A a b A a b



   

 

   

 

     

         (41) 

The above results, as previously prescribed, complete the 
solution of the problem under consideration. Remark: The 
second constant of integration *C  will be introduced 
through the already prescribed inverse mathematical 
procedure leading to the evaluation of the functions 

   , .x t y t  This procedure demands the integration by parts 

of first of equation (25). 
 

IV. Conclusions 

In this paper, we have considered a modified Painlevé- 
Ince (PI), a force-free Duffing nonlinear type oscillator 
(DO) and a Lotka-Volterra (LV) ODE. Using admissible 
functional transformation, theorems, propositions and 
corollaries we obtained the exact solutions in parametric 
form. The solution of each equation  is not unique inside a 
main interval of the independent variable, but it may be 
divided into several solutions which are valid inside 
consecutive subintervals. Therefore, it is necessary to match  
the corresponding solutions in each point that solution 
changes in order to ensure the appropriate smoothness. 
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