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Abstract—In this paper, we consider, a finite dimensional
realization of Newton type iterative method for Lavrentiev
regularization of ill-posed equations. Precisely we consider the
ill-posed equation F (x) = f when the available data isfδ

with ‖f − fδ‖ ≤ δ and the operator F : D(F ) ⊆ X → X is a
nonlinear monotone operator defined on a real Hilbert spaceX.
The error estimate obtained under a general source condition
on x0− x̂ (where x0 is the initial guess andx̂ is the solution of
F (x) = f ) is of optimal order. The regularization parameter
α is chosen according to the adaptive method considered by
Perverzev and Schock (2005). An example is provided to show
the efficiency of the proposed method.

Index Terms—quartic convergence, Newton Lavrentiev
method, monotone operator, ill-posed problems, adaptive
method.

I. I NTRODUCTION

An iteratively regularized projection method has been
considered for apporoximately solving the ill-posed operator
equation

F (x) = f (1)

where F : D(F ) ⊆ X → X is a nonlinear monotone
operator (i.e.,〈F (x)−F (y), x−y〉 ≥ 0, ∀x, y ∈ D(F )) and
X is a real Hilbert space with the inner product〈., .〉 and the
norm‖.‖. It is assumed that (1) has a solution, namelyx̂ and
F possesses a locally uniformly bounded Fréchet derivative
F ′(x) for all x ∈ D(F ) (cf. [14]) i.e.,

‖F ′(x)‖ ≤ CF , x ∈ D(F )

for some constantCF .
In application, usually only noisy dataf δ are available,

such that
‖f − f δ‖ ≤ δ.

Then the problem of recovery of̂x from noisy equation
F (x) = f δ is ill-posed, in the sense that a small perturbation
in the data can cause large deviation in the solution. For
solving (1) with monotone operators (see [7], [12], [14],
[15]) one usually use the Lavrentiev regularization method.
In this method the regularized approximationxδα is obtained
by solving the operator equation

F (x) + α(x− x0) = f δ. (2)

It is known (cf. [15], Theorem 1.1) that the equation (2)
has a unique solutionxδα for α > 0, providedF is Fréchet
differentiable and monotone in the ballBr(x̂) ⊂ D(F )
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with radiusr = ‖x̂ − x0‖ + δ/α. However the regularized
equation (2) remains nonlinear and one may have difficulties
in solving them numerically.

In [1], George and Elmahdy considered an iterative reg-
ularization method which converges linearly toxδα and its
finite dimensional realization in [2]. Later in [3] George and
Elmahdy considered an iterative regularization method which
converges quadratically toxδα and its finite dimensional
realization in [4].

Recall that a sequence(xn) in X with limxn = x∗ is
said to be convergent of orderp > 1, if there exist positive
realsβ, γ, such that for alln ∈ N ‖xn − x∗‖ ≤ βe−γpn

.If
the sequence(xn) has the property that‖xn − x∗‖ ≤ βqn,
0 < q < 1 then (xn) is said to be linearly convergent. For
an extensive discussion of convergence rate (see [8]).

Note that the method considered in [1], [2], [3] and [4]
are proved using a suitably constructed majorizing sequence
which heavily depends on the initial guess and hence not
suitable for practical consideration.

In an attempt to avoid majorizing sequence to prove
the convergence of the method considered in [1], [2], [3]
and [4], the authors considered in [5], a two step iterative
method for solving (1), which converges linearly toxδα. Later
in [11], the authors considered an application of Newton
type iterative method, that converges quartically toxδα. In
this paper we consider, finite dimensional realization of the
method considered in [11].

The organization of this paper is as follows. Section 2
describes the method and its convergence. Section 3 deals
with the error analysis and parameter choice strategy. Section
4 gives the algorithm for implementing the proposed method.
Numerical example and computational results are given in
section 5. Finally in section 6 we summarize the key points
in the paper.

II. T HE METHOD AND ITS CONVERGENCE

Let {Ph}h>0 be a family of orthogonal projections onX.
Our aim in this section is to obtain an approximation forxδα,
in the finite dimensional spaceR(Ph), the range ofPh. For
the results that follow, we impose the following conditions.

Let

εh := ‖F ′(x)(I − Ph)‖, ∀x ∈ D(F )

and {bh : h > 0} is such thatlimh→0
‖(I−Ph)x0‖

bh
= 0 and

limh→0bh = 0. We assume thatεh → 0 as h → 0. The
above assumption is satisfied if,Ph → I pointwise and if
F ′(x) is a compact operator. Further we assume thatεh ≤ ε0,
bh ≤ b0 andδ ∈ (0, δ0].
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A. Projection Method

We consider the following sequence defined iteratively by

yh,δn,α = xh,δn,α −R−1
α (xh,δn,α)Ph[F (x

h,δ
n,α)− f δ +α(xh,δn,α − x0)]

(3)
and

xh,δn+1,α = yh,δn,α−R
−1
α (yh,δn,α)Ph[F (y

h,δ
n,α)−f

δ+α(yh,δn,α−x0)]
(4)

whereRα(x) := PhF
′(x)Ph + αPh andxh,δ0,α := Phx0, for

obtaining an approximation forxδα in the finite dimensional
subspaceR(Ph) of X . Note that the iteration (3) and (4)
are the finite dimensional realization of the iteration (3) and
(4) in [11]. We will be selecting the parameterα = αi from
some finite set

DN = {αi : 0 < α0 < α1 < α2 < · · · < αN}

using the adaptive method considered by Perverzev and
Schock in [12].
We need the following assumptions for the convergence
analysis.

Assumption 1: (cf. [14], Assumption 3) There exists a
constantk0 ≥ 0 such that for everyx, u ∈ D(F ) and
v ∈ X there exists an elementΦ(x, u, v) ∈ X such
that [F ′(x) − F ′(u)]v = F ′(u)Φ(x, u, v), ‖Φ(x, u, v)‖ ≤
k0‖v‖‖x− u‖.

Assumption 2: There exists a continuous, strictly mono-
tonically increasing functionϕ : (0, a] → (0,∞) with
a ≥ ‖F ′(x̂)‖ satisfying;

(i) limλ→0ϕ(λ) = 0,

(ii) supλ≥0
αϕ(λ)
λ+α

≤ cϕϕ(α) ∀λ ∈ (0, a] and
(iii) there existsv ∈ X with ‖v‖ ≤ 1 (cf. [10]) such that

x0 − x̂ = ϕ(F ′(x̂))v.

Let eh,δn,α := ‖yh,δn,α − xh,δn,α‖, ∀n ≥ 0 (5)

and for 0 < k0 <
2

3(1+
ε0
α0

)
, let g : (0, 1) → (0, 1) be the

function defined by

g(t) =
27k30
8

(1 +
ε0
α0

)3t3 ∀t ∈ (0, 1). (6)

Hereafter we assume thatδ ∈ (0, δ0] whereδ0 < α0.

Let b0 <

√

1 + 2k0

(1+
ε0
α0

)
(1 − δ0

α0
)− 1

k0
, ‖x̂− x0‖ ≤ ρ where

ρ <

√

1 + 2k0

(1+
ε0
α0

)
(1− δ0

α0
)− 1

k0
− b0 and

let γρ := (1 +
ε0
α0

)

[

k0
2
(ρ+ b0)

2 + (ρ+ b0)

]

+
δ0
α0
. (7)

Lemma 1: Let x ∈ D(F ). Then

‖R−1
α (x)PhF

′(x)‖ ≤ (1 +
ε0
α0

).

Proof. Note that,

‖R−1
α (x)PhF

′(x)‖

= sup
‖v‖≤1

‖(PhF
′(x)Ph + αPh)

−1PhF
′(x)v‖

= sup
‖v‖≤1

‖(PhF
′(x)Ph + αPh)

−1PhF
′(x)

(Ph + I − Ph)v‖

≤ sup
‖v‖≤1

‖(PhF
′(x)Ph + αPh)

−1PhF
′(x)(Ph)v‖+

sup
‖v‖≤1

‖(PhF
′(x)Ph + αPh)

−1PhF
′(x)(I − Ph)v‖

≤ (1 +
εh
α
)

≤ (1 +
ε0
α0

).

Lemma 2: Let e0 = eh,δ0,α andγρ be as in (7). Then
e0 ≤ γρ.
Proof. Note that,

e0 = ‖yh,δ0,α − xh,δ0,α‖

= ‖R−1
α (Phx0)Ph[F (Phx0)− f δ]‖

= ‖R−1
α (Phx0)Ph[F (Phx0)− F (x̂)− F ′(Phx0)

(Phx0 − x̂) + F ′(Phx0)(Phx0 − x̂) + F (x̂)− f δ]‖

= ‖R−1
α (Phx0)Ph

[

∫ 1

0

(F ′(x̂+ t(Phx0 − x̂))− F ′(Phx0))(Phx0 − x̂)dt

+F ′(Phx0)(Phx0 − x̂) + F (x̂)− f δ]‖

= ‖R−1
α (Phx0)PhF

′(Phx0)

[

∫ 1

0

Φ(x̂+ t(Phx0 − x̂), Phx0, Phx0 − x̂)dt

+(Phx0 − x̂)] +R−1
α (Phx0)Ph(F (x̂)− f δ)‖

and hence by Assumption 1, Lemma 1 and the relation
‖R−1

α (Phx0)‖ ≤ 1
α
, we have,

e0 ≤ (1 +
ε0
α0

)

[

k0
2
‖Phx0 − x̂‖2 + ‖Phx0 − x̂‖

]

+
δ

α

= (1 +
ε0
α0

)[
k0
2
‖Phx0 − x0 + x0 − x̂‖2

+‖Phx0 − x0 + x0 − x̂‖] +
δ

α

≤ (1 +
ε0
α0

)

[

k0
2
(ρ+ bh)

2 + (ρ+ bh)

]

+
δ

α

≤ (1 +
ε0
α0

)

[

k0
2
(ρ+ b0)

2 + (ρ+ b0)

]

+
δ0
α0

= γρ. (8)

Lemma 3: Let yh,δn,α, xh,δn,α and eh,δn,α be as in (3), (4) and
(5) respectively withδ ∈ (0, δ0]. Then

(a) ‖xh,δn,α − yh,δn−1,α‖ ≤ 3k0

2 (1 + ε0
α0

)(eh,δn−1,α)
2 and

(b) ‖xh,δn,α−x
h,δ
n−1,α‖ ≤ [1+ 3k0

2 (1+ ε0
α0

)eh,δn−1,α]e
h,δ
n−1,α.

Proof. Observe that,

xh,δn,α − yh,δn−1,α

= yh,δn−1,α − xh,δn−1,α −R−1
α (yh,δn−1,α)Ph

[F (yh,δn−1,α)− f δ + α(yh,δn−1,α − x0)] +R−1
α (xh,δn−1,α)

Ph[F (x
h,δ
n−1,α)− f δ + α(xh,δn−1,α − x0)]
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= yh,δn−1,α − xh,δn−1,α −R−1
α (yh,δn−1,α)Ph

[F (yh,δn−1,α)− F (xh,δn−1,α) + α(yh,δn−1,α − xh,δn−1,α)]

+[R−1
α (xh,δn−1,α)−R−1

α (yh,δn−1,α)]Ph[F (x
h,δ
n−1,α)− f δ

+α(xh,δn−1,α − x0)]

= R−1
α (yh,δn−1,α)Ph[F

′(yh,δn−1,α)(y
h,δ
n−1,α − xh,δn−1,α)

−(F (yh,δn−1,α)− F (xh,δn−1,α))] +R−1
α (yh,δn−1,α)Ph

(F ′(yh,δn−1,α)− F ′(xh,δn−1,α))(x
h,δ
n−1,α − yh,δn−1,α)

:= Γ1 + Γ2 (9)

where

Γ1 := R−1
α (yh,δn−1,α)Ph[F

′(yh,δn−1,α)(y
h,δ
n−1,α − xh,δn−1,α)

−(F (yh,δn−1,α)− F (xh,δn−1,α))]

and

Γ2 := R−1
α (yh,δn−1,α)Ph[F

′(yh,δn−1,α)− F ′(xh,δn−1,α)]

(xh,δn−1,α − yh,δn−1,α).

Note that,

‖Γ1‖

= ‖R−1
α (yh,δn−1,α)Ph

∫ 1

0

[F ′(yh,δn−1,α)− F ′(xh,δn−1,α

+t(yh,δn−1,α − xh,δn−1,α))](y
h,δ
n−1,α − xh,δn−1,α)dt‖

= ‖R−1
α (yh,δn−1,α)PhF

′(yh,δn−1,α)

∫ 1

0

[φ(xh,δn−1,α +

t(yh,δn−1,α − xh,δn−1,α), y
h,δ
n−1,α, x

h,δ
n−1,α − yh,δn−1,α)]dt‖

≤
k0
2
(1 +

ε0
α0

)‖yh,δn−1,α − xh,δn−1,α‖
2 (10)

the last step follows from the Assumption 1 and Lemma 1.
Similarly,

‖Γ2‖ ≤ k0(1 +
ε0
α0

)‖yh,δn−1,α − xh,δn−1,α‖
2. (11)

So, (a) follows from (9), (10) and (11). And (b) follows from
(a) and the triangle inequality;

‖xh,δn,α − xh,δn−1,α‖ ≤ ‖xh,δn,α − yh,δn−1,α‖+ ‖yh,δn−1,α − xh,δn−1,α‖.

THEOREM 1: Let yh,δn,α, xh,δn,α be as in (3) and (4) respec-
tively with δ ∈ (0, δ0] andeh,δn,α, g andγρ be as in equation
(5), (6) and (7) respectively. Then

(a) ‖yh,δn,α − xh,δn,α‖ ≤ g(eh,δn−1,α)e
h,δ
n−1,α;

(b) g(eh,δn,α) ≤ g(γρ)
4n , ∀n ≥ 0;

(c) eh,δn,α ≤ g(γρ)
4n−1

3 γρ ∀n ≥ 0.

Proof. We have,

yh,δn,α − xh,δn,α

= xh,δn,α − yh,δn−1,α −R−1
α (xh,δn,α)Ph

[F (xh,δn,α)− f δ + α(xh,δn,α − x0)] +R−1
α (yh,δn−1,α)

Ph[F (y
h,δ
n−1,α)− f δ + α(yh,δn−1,α − x0)]

= xh,δn,α − yh,δn−1,α −R−1
α (xh,δn,α)Ph

[F (xh,δn,α)− F (yh,δn−1,α) + α(xh,δn,α − yh,δn−1,α)]

+[R−1
α (yh,δn−1,α)−R−1

α (xh,δn,α)]Ph[F (y
h,δ
n−1,α)− f δ

+α(yh,δn−1,α − x0)]

= R−1
α (xh,δn,α)Ph[F

′(xh,δn,α)(x
h,δ
n,α − yh,δn−1,α)

−(F (xh,δn,α)− F (yh,δn−1,α))] +R−1
α (xh,δn,α)Ph

[F ′(xh,δn,α)− F ′(yh,δn−1,α)]× (yh,δn−1,α − xh,δn,α)

:= Γ3 + Γ4 (12)

where

Γ3 := R−1
α (xh,δn,α)Ph[F

′(xh,δn,α)(x
h,δ
n,α − yh,δn−1,α)

−(F (xh,δn,α)− F (yh,δn−1,α))]

and

Γ4 := R−1
α (xh,δn,α)Ph[F

′(xh,δn,α)− F ′(yh,δn−1,α)]

(yh,δn−1,α − xh,δn,α).

Analogous to the proof of (10) and (11) one can prove that

‖Γ3‖ ≤
k0
2
(1 +

ε0
α0

)‖xh,δn,α − yh,δn−1,α‖
2 (13)

and

‖Γ4‖ ≤ k0(1 +
ε0
α0

)‖xh,δn,α − yh,δn−1,α‖
2. (14)

Now (a) follows from the Lemma 3, (12), (13) and (14).
Again, since forµ ∈ (0, 1), g(µt) = µ3g(t), for all t ∈
(0, 1), by (a) we get,

g(eh,δn,α) ≤ g(e0)
4n (15)

and

eh,δn,α ≤ g(eh,δn−1,α)e
h,δ
n−1,α

≤ g4
n−1

(e0)g(e
h,δ
n−2,α)e

h,δ
n−2,α

≤ g4
n−1

(e0)g
4n−2

(e0)g(e
h,δ
n−3,α)e

h,δ
n−3,α

≤ g(e0)
4n−1+4n−2+···+1e0

≤ g(e0)
4n−1

3 e0 (16)

providedeh,δn,α < 1. But eh,δn,α < 1 by Lemma 2, (6) and (16).
Now (b) and (c) follow from (8), (15), (16) and the relation
g(e0) ≤ g(γρ). This completes the proof of the theorem.

THEOREM 2: Suppose0 < g(γρ) < 1 , r = ( 1
1−g(γρ)

+
3k0

2 (1+ ε0
α0

)
γρ

1−g2(γρ)
)γρ and let the assumptions of Theorem

1 hold. Thenxh,δn,α, y
h,δ
n,α ∈ Br(Phx0) for all n ≥ 0.

Proof. Note that by (b) of Lemma 3 we have,

‖xh,δ1,α − Phx0‖ = ‖xh,δ1,α − xh,δ0,α‖

≤ [1 +
3k0
2

(1 +
ε0
α0

)e0]e0 (17)

≤ [1 +
3k0
2

(1 +
ε0
α0

)γρ]γρ

< r

i.e.,xh,δ1,α ∈ Br(Phx0). Again note that from (17) and (a) of
Theorem 1 we get,

‖yh,δ1,α − Phx0‖ ≤ ‖yh,δ1,α − xh,δ1,α‖+ ‖xh,δ1,α − Phx0‖

≤ g(e0)e0 + [1 +
3k0
2

(1 +
ε0
α0

)e0]e0

≤ [1 + g(e0) +
3k0
2

(1 +
ε0
α0

)e0]e0

≤ [1 + g(γρ) +
3k0
2

(1 +
ε0
α0

)γρ]γρ

< r
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i.e., yh,δ1,α ∈ Br(Phx0). Further by (17) and (b) of Lemma 3
we have,

‖xh,δ2,α − Phx0‖

≤ ‖xh,δ2,α − xh,δ1,α‖+ ‖xh,δ1,α − Phx0‖

≤ [1 +
3k0
2

(1 +
ε0
α0

)eh,δ1,α]e
h,δ
1,α + [1 +

3k0
2

(1 +
ε0
α0

)e0]e0

≤ [1 +
3k0
2

(1 +
ε0
α0

)g(e0)e0]g(e0)e0

+[1 +
3k0
2

(1 +
ε0
α0

)e0]e0

≤ [1 + g(e0) +
3k0
2

(1 +
ε0
α0

)e0(1 + g2(e0))]e0 (18)

≤ [1 + g(γρ) +
3k0
2

(1 +
ε0
α0

)γρ(1 + g2(γρ))]γρ

< r

and by (18) and (a) of Theorem 1
we have,

‖yh,δ2,α − Phx0‖

≤ ‖yh,δ2,α − xh,δ2,α‖+ ‖xh,δ2,α − Phx0‖

≤ g(eh,δ1,α)e
h,δ
1,α + [1 + g(e0) +

3k0
2

(1 +
ε0
α0

)e0

(1 + g2(e0))]e0

≤ g5(e0)e0 + [1 + g(e0) +
3k0
2

(1 +
ε0
α0

)e0

(1 + g2(e0))]e0

≤ [1 + g(e0) + g5(e0) +
3k0
2

(1 +
ε0
α0

)e0

(1 + g2(e0))]e0

≤ [1 + g(e0) + g2(e0) +
3k0
2

(1 +
ε0
α0

)e0

(1 + g2(e0))]e0

≤ [1 + g(γρ) + g2(γρ) +
3k0
2

(1 +
ε0
α0

)γρ

(1 + g2(γρ))]γρ

< r

i.e., xh,δ2,α, y
h,δ
2,α ∈ Br(Phx0). Continuing this way one can

prove thatxh,δn,α, y
h,δ
n,α ∈ Br(Phx0), ∀n ≥ 0. This completes

the proof.
The main result of this section is the following Theorem.
THEOREM 3: Let 0 < g(γρ) < 1, yh,δn,α andxh,δn,α be as

in (3) and (4) respectively withδ ∈ (0, δ0] and assumptions
of the Theorem 2 hold. Then(xh,δn,α) is Cauchy sequence
in Br(Phx0) and converges toxh,δα ∈ Br(Phx0). Further
Ph[F (x

h,δ
α ) + α(xh,δα − x0)] = Phf

δ and

‖xh,δn,α − xh,δα ‖ ≤ Ce−γ4n

whereC = ( 1
1−g(γρ)4

+
3k0γρ

2 (1 + ε0
α0

) 1
1−g2(γρ)4

g(γρ)
4n)γρ

and γ = − log g(γρ).
Proof. Using the relation (b) of Lemma 3 and (c) of Theorem
1, we obtain,

‖xh,δn+m,α − xh,δn,α‖

≤

m−1
∑

i=0

‖xh,δn+i+1,α − xh,δn+i,α‖

≤
m−1
∑

i=0

[

1 +
3k0e0
2

(1 +
ε0
α0

)g(e0)
4n+i

]

g(e0)
4n+i

e0

≤ [(1 + g(e0)
4 + g(e0)

42 + · · ·+ g(e0)
4m)

+
3k0e0
2

(1 +
ε0
α0

)(1 + g2(e0)
4 + g2(e0)

42 + · · ·

+g2(e0)
4m)g(e0)

4n ]g(e0)
4ne0

≤ [(1 + g(γρ)
4 + g(γρ)

42 + · · ·+ g(γρ)
4m)

+
3k0γρ
2

(1 +
ε0
α0

)(1 + g2(γρ)
4 + g2(γρ)

42 + · · ·

+g2(γρ)
4m)g(γρ)

4n ]g(γρ)
4nγρ

≤ Cg(γρ)
4n

≤ Ce−γ4n .

Thusxh,δn,α is a Cauchy sequence inBr(Phx0) and hence it
converges, say toxh,δα ∈ Br(Phx0).
Observe that,

‖Ph[F (x
h,δ
n,α)− f δ + α(xh,δn,α − x0)]‖

= ‖Rα(x
h,δ
n,α)(x

h,δ
n,α − yh,δn,α)‖

≤ ‖Rα(x
h,δ
n,α)‖‖x

h,δ
n,α − yh,δn,α‖

= ‖(PhF
′(xh,δn,α)Ph + αPh)‖e

h,δ
n,α

≤ (CF + α)g(γρ)
4nγρ. (19)

Now by lettingn→ ∞ in (19) we obtain

Ph[F (x
h,δ
α ) + α(xh,δα − x0)] = Phf

δ. (20)

This completes the proof.

III. E RROR BOUNDS UNDER SOURCE CONDITIONS

The objective of this section is to obtain an error estimate
for ‖xh,δn,α − x̂‖ under a source condition onx0 − x̂.

Proposition 1: Let F : D(F ) ⊆ X → X be a monotone
operator inX. Let xh,δα be the solution of (20) andxhα :=
xh,0α . Then

‖xh,δα − xhα‖ ≤
δ

α
.

Proof. The result follows from the monotonicity ofF and
the relation;

Ph[F (x
h,δ
α )− F (xhα) + α(xh,δα − xhα)] = Ph(f

δ − f).

THEOREM 4: Let ρ < 2
k0(1+

ε0
α0

)
and x̂ ∈ D(F ) be a

solution of (1). And let Assumption 1, Assumption 2 and
the assumptions in Proposition 1 be satisfied. Then

‖xhα − x̂‖ ≤ C̃(ϕ(α) +
εh
α
)

where C̃ := max{1,ρ+‖x̂‖}

1−(1+
ε0
α0

)
k0
2
ρ
.

Proof. Let M :=
∫ 1

0 F
′(x̂ + t(xhα − x̂))dt. Then from the

relation

Ph[F (x
h
α)− F (x̂) + α(xhα − x0)] = 0

we have,

(PhMPh+αPh)(x
h
α− x̂) = Phα(x0− x̂)+PhM(I−Ph)x̂.

IAENG International Journal of Applied Mathematics, 42:3, IJAM_42_3_07

(Advance online publication: 27 August 2012)

 
______________________________________________________________________________________ 



Hence,

xhα − x̂

= [(PhMPh + αPh)
−1Ph − (F ′(x̂) + αI)−1]α(x0 − x̂)

+(F ′(x̂) + αI)−1α(x0 − x̂)

+(PhMPh + αPh)
−1PhM(I − Ph)x̂

= (PhMPh + αPh)
−1Ph[F

′(x̂)−M +M(I − Ph)]

(F ′(x̂) + αI)−1α(x0 − x̂)

+(F ′(x̂) + αI)−1α(x0 − x̂)

+(PhMPh + αPh)
−1PhM(I − Ph)x̂

:= ζ1 + ζ2 (21)

where

ζ1 := (PhMPh + αPh)
−1Ph[F

′(x̂)−M +M(I − Ph)]

(F ′(x̂) + αI)−1α(x0 − x̂)

and

ζ2 := (F ′(x̂) + αI)−1α(x0 − x̂) + (PhMPh + αPh)
−1

PhM(I − Ph)x̂.

Observe that,

‖ζ1‖

≤ ‖(PhMPh + αPh)
−1Ph

∫ 1

0

[F ′(x̂)− F ′(x̂

+t(xhα − x̂))]dt(F ′(x̂) + αI)−1α(x0 − x̂)‖

+‖(PhMPh + αPh)
−1PhM(I − Ph)

(F ′(x̂) + αI)−1α(x0 − x̂)‖

≤ ‖(PhMPh + αPh)
−1Ph

∫ 1

0

[F ′(x̂+ t(xhα − x̂))(Ph + I − Ph)

φ(x̂, x̂+ t(xhα − x̂), (F ′(x̂) + αI)−1α(x0 − x̂))]dt‖

+
εh
α
ρ

≤ (1 +
εh
α
)
k0
2
ρ‖xhα − x̂‖+

εh
α
ρ

≤ (1 +
ε0
α0

)
k0
2
ρ‖xhα − x̂‖+

εh
α
ρ (22)

and
‖ζ2‖ ≤ φ(α) +

εh
α
‖x̂‖. (23)

The result now follows from (21), (22) and (23).
THEOREM 5: Let xh,δn,α be as in (4). And the assumptions

in Theorem 3 and Theorem 4 hold. Then

‖xh,δn,α − x̂‖ ≤ Ce−γ4n +max{1, C̃}(ϕ(α) +
δ + εh
α

).

Proof., Observe that,

‖xh,δn,α − x̂‖ ≤ ‖xh,δn,α − xh,δα ‖+ ‖xh,δα − xhα‖+ ‖xhα − x̂‖

so, by Proposition 1, Theorem 3 and Theorem 4 we obtain,

‖xh,δn,α − x̂‖ ≤ Ce−γ4n +
δ

α
+ C̃(ϕ(α) +

εh
α
)

≤ Ce−γ4n +max{1, C̃}(ϕ(α) +
δ + εh
α

).

Let

nδ := min

{

n : e−γ4n ≤
δ + εh
α

}

(24)

and
C0 = C +max{1, C̃}. (25)

THEOREM 6: Let nδ and C0 be as in (24) and (25)
respectively. And letxh,δnδ ,α

be as in (4) and the assumptions
in Theorem 5 be satisfied. Then

‖xh,δnδ,α
− x̂‖ ≤ C0(ϕ(α) +

δ + εh
α

). (26)

A. A priori choice of the parameter

Note that the error estimateϕ(α) + δ+εh
α

in (26) is of
optimal order ifαδ := α(δ, h) satisfies,ϕ(αδ)αδ = δ + εh.

Now using the functionψ(λ) := λϕ−1(λ), 0 < λ ≤ a
we haveδ + εh = αδϕ(αδ) = ψ(ϕ(αδ)), so thatαδ =
ϕ−1(ψ−1(δ + εh)). In view of the above observations and
(26) we have the following.

THEOREM 7: Let ψ(λ) := λϕ−1(λ) for 0 < λ ≤ a, and
the assumptions in Theorem 6 hold. Forδ > 0, let αδ =
ϕ−1(ψ−1(δ + εh)) and letnδ be as in (24). Then

‖xh,δnδ,α
− x̂‖ = O(ψ−1(δ + εh)).

B. An adaptive choice of the parameter

In this subsection, we present a parameter choice rule
based on the balancing principle studied in [9], [12]. In this
method, the regularization parameterα is selected from some
finite set

DN (α) := {αi = µiα0, i = 0, 1, · · · , N}

whereµ > 1, α0 > 0 and let

ni := min

{

n : e−γ4n ≤
δ + εh
αi

}

.

Then for i = 0, 1, · · · , N, we have

‖xh,δni,αi
− xh,δαi

‖ ≤ C
δ + εh
αi

, ∀i = 0, 1, · · ·N.

Letxi := xh,δni,αi
. In this paper we selectα = αi fromDN(α)

for computingxi, for eachi = 0, 1, · · · , N.
THEOREM 8: (cf. [14], Theorem 3.1) Assume that there

existsi ∈ {0, 1, 2, · · · , N} such thatϕ(αi) ≤
δ+εh
αi

. Let the
assumptions of Theorem 6 and Theorem 7 hold and let

l := max

{

i : ϕ(αi) ≤
δ + εh
αi

}

< N,

k := max{i : ‖xi−xj‖ ≤ 4C0
δ + εh
αj

, j = 0, 1, 2, · · · , i}.

Thenl ≤ k and‖x̂−xk‖ ≤ cψ−1(δ+ εh) wherec = 6C0µ.

IV. I MPLEMENTATION OF ADAPTIVE CHOICE RULE

Finally the balancing algorithm associated with the choice
of the parameter specified in Theorem 1 involves the follow-
ing steps:

• Chooseα0 > 0 such thatδ0 < α0 andµ > 1.
• Chooseαi := µiα0, i = 0, 1, 2, · · · , N.
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A. Algorithm

1. Set i = 0.
2. Chooseni := min

{

n : e−γ4n ≤ δ+εh
αi

}

.

3. Solvexi := xh,δni,αi
by using the iteration (3) and (4).

4. If ‖xi − xj‖ > 4C0
δ+εh
αj

, j < i, then takek = i − 1
and returnxk.

5. Else seti = i + 1 and go to 2.

V. NUMERICAL EXAMPLE

In this section we consider the example considered in [14]
for illustrating the algorithm considered in section IV. We
apply the algorithm by choosing a sequence of finite dimen-
sional subspace(Vn) of X with dimVn = n+ 1. Precisely
we chooseVn as the linear span of{v1, v2, · · · , vn+1} where
vi, i = 1, 2, · · · , n+1 are the linear splines in a uniform grid
of n + 1 points in [0, 1]. Note thatxh,δn,α, y

h,δ
n,α ∈ Vn. So

yh,δn,α =
∑n+1

i=1 ξ
n
i vi andxh,δn,α =

∑n+1
i=1 η

n
i vi, whereξni and

ηni , i = 1, 2, · · · , n + 1 are some scalars. Then from (3) we
have

(PhF
′(xh,δn,α) + α)(yh,δn,α − xh,δn,α) = Ph[f

δ − F (xh,δn,α)

+α(xh,δ0,α − xh,δn,α)]. (27)

Observe that(yh,δn,α−x
h,δ
n,α) is a solution of (27) if and only

if (ξn − ηn) = (ξn1 − ηn1 , ξ
n
2 − ηn2 , · · · , ξ

n
n+1 − ηnn+1)

T is the
unique solution of

(Qn + αBn)(ξn − ηn) = Bn[µ̄n − Fh1 + α(X0 − η̄n)] (28)

where

Qn = [〈F ′(xh,δn,α)vi, vj〉], i, j = 1, 2 · · · , n+ 1

Bn = [〈vi, vj〉], i, j = 1, 2 · · · , n+ 1

µ̄n = [f δ(t1), f
δ(t2), · · · , f

δ(tn+1)]
T

Fh1 = [F (xh,δn,α)(t1), F (x
h,δ
n,α)(t2), · · · , F (x

h,δ
n,α)(tn+1)]

T

X0 = [x0(t1), x0(t2), · · · , x0(tn+1)]
T

and t1, t2, · · · , tn+1 are the grid points. Further from (4) it
follows that

(PhF
′(yh,δn,α) + α)(xh,δn+1,α − yh,δn,α) = Ph[f

δ − F (yh,δn,α)

+α(xh,δ0,α − yh,δn,α)] (29)

and hence(xh,δn+1,α−y
h,δ
n,α) is a solution of (29) if and only if

(ηn+1 − ξn) = (ηn+1
1 − ξn1 , η

n+1
2 − ξn2 , · · · , η

n+1
n+1 − ξnn+1)

T

is the unique solution of

(Tn+αBn)(ηn+1 − ξn) = Bn[µ̄n−Fh2+α(X0−ξ̄n)] (30)

where

Tn = [〈F ′(yh,δn,α)vi, vj〉], i, j = 1, 2 · · · , n+ 1

Fh2 = [F (yh,δn,α)(t1), F (y
h,δ
n,α)(t2), · · · , F (y

h,δ
n,α)(tn+1)]

T .

Note that (28) and (30) are uniquely solvable asQn andTn
are positive definite matrix (i.e.,xQnx

T > 0 andxTnxT > 0
for all non-zero vectorx) andBn is an invertible matrix.

EXAMPLE 4: (see [14], section 4.3) LetF : D(F ) ⊆
L2(0, 1) −→ L2(0, 1) defined by

F (u) :=

∫ 1

0

k(t, s)u3(s)ds,

where

k(t, s) =

{

(1− t)s, 0 ≤ s ≤ t ≤ 1
(1− s)t, 0 ≤ t ≤ s ≤ 1

.

Then for allx(t), y(t) : x(t) > y(t) :

〈F (x) − F (y), x− y〉 =

∫ 1

0

[
∫ 1

0

k(t, s)(x3 − y3)(s)ds

]

×(x− y)(t)dt ≥ 0.

Thus the operatorF is monotone. The Fréchet derivative of
F is given by

F ′(u)w = 3

∫ 1

0

k(t, s)u2(s)w(s)ds. (31)

Note that foru, v > 0,

[F ′(v)− F ′(u)]w = 3

∫ 1

0

k(t, s)u2(s)ds

×

∫ 1

0 k(t, s)[v
2(s)− u2(s)]w(s)ds

∫ 1

0
k(t, s)u2(s)ds

:= F ′(u)Φ(v, u, w)

whereΦ(v, u, w) =

∫

1

0
k(t,s)[v2(s)−u2(s)]w(s)ds
∫

1

0
k(t,s)(u(s))2ds

.

Observe that

Φ(v, u, w) =

∫ 1

0
k(t, s)[v2(s)− u2(s)]w(s)ds

∫ 1

0 k(t, s)u
2(s)ds

=

∫ 1

0
k(t, s)[u(s) + v(s)][v(s) − u(s)]w(s)ds

∫ 1

0 k(t, s)u
2(s)ds

.

So Assumption 2 satisfies withk0 ≥

∥

∥

∥

∥

∫

1

0
k(t,s)[u(s)+v(s)]ds
∫

1

0
k(t,s)u2(s)ds

∥

∥

∥

∥

.

In our computation, we takef(t) = 6sin(πt)+sin3(πt)
9π2 and

f δ = f + δ. Then the exact solution

x̂(t) = sin(πt).

We use

x0(t) = sin(πt) +
3[tπ2 − t2π2 + sin2(πt)]

4π2

asour initial guess, so that the functionx0 − x̂ satisfies the
source condition

x0 − x̂ = ϕ(F ′(x̂))
1

4

whereϕ(λ) = λ.

For the operatorF ′(.) defined in (31),εh = O(n−2) (cf.
[6]). Thus we expect to obtain the rate of convergenceO((δ+
εh)

1
2 ).

We chooseα0 = (1.1)(δ + εh), µ = 1.1, ρ = 0.11, γρ =
0.7818 andg(γρ) = 0.99. The results of the computation are
presented in Table 1. The plots of the exact solution and the
approximate solution obtained are given in Figures 1 and 2.
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Fig. 1. Curves of the exact and approximate solutions
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Fig. 2. Curves of the exact and approximate solutions
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TABLE I
ITERATIONS AND CORRESPONDING ERROR ESTIMATES

n k nk δ + εh α ‖xk − x̂‖
‖xk−x̂‖

(δ+εh)1/2

8 2 4 0.0135 0.0180 0.0356 0.3065

16 2 4 0.0134 0.0178 0.0432 0.3736

32 2 4 0.0133 0.0178 0.0450 0.3897

64 2 4 0.0133 0.0177 0.0455 0.3938

128 2 4 0.0133 0.0177 0.0456 0.3948

256 2 4 0.0133 0.0177 0.0456 0.3950

512 19 5 0.0133 0.0897 0.0456 0.3951

1024 27 6 0.0133 0.1923 0.0456 0.3951

VI. CONCLUSION

We have suggested and analyzed the finite dimensional
realization of the iterative method considered in[11] for
obtaining an approximate solution for nonlinear ill-posed
operator equationF (x) = f when the operatorF : D(F ) ⊆
X → X defined on a real Hilbert spaceX is monotone, and
the available data isf δ with ‖f − f δ‖ ≤ δ. Using a general
source condition onx0 − x̂ we obtained an optimal order

error estimate. The regularization parameterα is chosen
according to the balancing principle considered by Perverzev
and Schock (2005). The numerical results provided confirm
the efficiency of the method.
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