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An Application of Newton Type Iterative Method
for Lavrentiev Regularization for lll-Posed
Equations: Finite Dimensional Realization

Santhosh George and Suresan Pareth

Abstract—In this paper, we consider, a finite dimensional with radiusr = || — x¢|| + /. However the regularized

realization of Newton type iterative method for Lavrentiev equation (2) remains nonlinear and one may have difficulties
regularization of ill-posed equations. Precisely we consider the ; solving them numerically

il-posed equation F(z) = f when the available data is f° . . .
with |[f — f3|| < 6 argd)the operator F: D(F) C X — X is a In [1], George and Elmahdy considered an iterative reg-

nonlinear monotone operator defined on a real Hilbert spaceX. glgriza’Fion method WhiCh. converges Iinef'irly 4§ and its
The error estimate obtained under a general source condition finite dimensional realization in [2]. Later in [3] George and

on zo — & (where o is the initial guess andz is the solution of Elmahdy considered an iterative regularization method which

F(x) = f) is of optimal order. The regularization parameter nver raticall § and its fini imensional
« is chosen according to the adaptive method considered by f(galizeaggrS] |gu[2? atically tor, and its te dimensiona

Perverzev and Schock (2005). An example is provided to show . . . .
the efficiency of the proposed method. Recall that a sequender,,) in X with limz, = z* is

. . said to be convergent of order> 1, if there exist positive
Index Terms—quartic convergence, Newton Lavrentiev N Zopn
method, monotone operator, ill-posed problems, adaptive '€@S/3;7, such that for alln € N [z, — a*[| < fe™77"If
method. the sequencéz,,) has the property thatz, — z*|| < ¢",
0 < ¢ < 1 then(z,) is said to be linearly convergent. For
an extensive discussion of convergence rate (see [8]).
i ) _ o Note that the method considered in [1], [2], [3] and [4]
An iteratively regularized projection method has beegye proved using a suitably constructed majorizing sequence
consu_jered for apporoximately solving the ill-posed operatQfich heavily depends on the initial guess and hence not
equation suitable for practical consideration.
Fla)=f (1) In an attempt to avoid majorizing sequence to prove
where F : D(F) € X — X is a nonlinear monotone the convergence of the method considered in [1], [2], [3]
operator (i.e.{F(z)—F(y),z—y) > 0, Vz,y € D(F))and and [4], the authors considered in [5], a two step iterative
X is a real Hilbert space with the inner prodct) and the Method for solving (1), which converges linearlyath. Later
norm||.|. It is assumed that (1) has a solution, namegnd I [1}], th_e authors considered an appllcapon of Newton
F possesses a locally uniformly bounded Fréchet derivatidPe iterative method, that converges quarticallyzfp In

I. INTRODUCTION

F'(z) for all z € D(F) (cf. [14]) i.e., this paper we consider, finite dimensional realization of the
, method considered in [11].
[ F'(2)]| < Cp, 2 € D(F) The organization of this paper is as follows. Section 2

describes the method and its convergence. Section 3 deals
with the error analysis and parameter choice strategy. Section
4 gives the algorithm for implementing the proposed method.
If — £9|| < 4. Numerical gxamp!e and_computational re_sults are givep in
- section 5. Finally in section 6 we summarize the key points
Then the problem of recovery of from noisy equation in the paper.
F(z) = f9isill-posed, in the sense that a small perturbation
in the data can cause large deviation in the solution. For
solving (1) with monotone operators (see [7], [12], [14], i o
[15]) one usually use the Lavrentiev regularization method. L€t {F’»}r>0 be @ family of orthogonal projections ok.
In this method the regularized approximatieh is obtained ©ur aim in this section is to obtain an approximation @y

for some constan€'.
In application, usually only noisy dat#’ are available,
such that

Il. THE METHOD AND ITS CONVERGENCE

by solving the operator equation in the finite dimensional spack(F,), the range ofP,. For
s the results that follow, we impose the following conditions.
F(x) + a(r —z9) = f°. (2)  Let
It is known (cf. [15], Theorem 1.1) that the equation (2) en = |F'(2)(I — Py)||, Va e D(F)

has a unique solutiom’, for o > 0, provided F' is Fréchet . T
differentiable and monotone in the balt.(i) ¢ D(F) and{b, : h > 0} is such thatiimy, LU=l — ¢ and
limp—oby, = 0. We assume that;, — 0 ash — 0. The

Santhosh George and Suresan Pareth, Department of Mathemgyoye assumption is satisfied i, — I pointwise and if
ical and Computational Sciences, National Institute of Technology,,

Karnataka, Surathkal, India-575025, e-mail: sgeorge@nitk.ac.in, sure ‘() is a compact operator. Further we assumedhat e,
pareth@rediffmail.com br, < by andd € (0, o).
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A. Projection Method

We consider the following sequence defined iteratively by

yht, = ald — Ry @b PulF(alb) — £ + a(zh?, — z0)]
(3)
and

h5 _
n+1a yna

Ry (ymd) Pl F (yi2) = 2+ alyy o — o))
(4)
where R, (z) := P, F'(z)P, + aP, and :cgg := Py, for
obtaining an approximation for®, in the finite dimensional
subspaceR(FP;,) of X. Note that the iteration (3) and (4)

are the finite dimensional realization of the iteration (3) and

(4) in [11]. We will be selecting the parameter= «; from
some finite set

Dy={{a;:0<ap<a; <ag <---<an}

using the adaptive method considered by Perverzev and

Schock in [12].

We need the following assumptions for the convergence

analysis.

Assumption 1: (cf. [14], Assumption 3) There exists a
constantk, > 0 such that for everyr,u € D(F) and
v € X there exists an elemenb(z,u,v) € X such
that [F'(z) — F'(u)jv = F'(u)®(z,u,v), ||®(z,u,v)]] <
kollvlll| — wl|

Assumption 2: There exists a continuous, strictly mono-

tonically increasing functiony :
a > ||F'(z)| satisfying;

(0,a] — (0,00) with

() limx—op(A) =0,
(i) supr=03E2L < cpp(a) VX € (0,a] and

(iii) there existsv € X with ||v]] <1 (cf. [10]) such that

o — & = o(F'(2))v.

Let  end = lywa —anal, ¥n >0 (5)
and for0 < ko < m, letg : (0,1) — (0,1) be the
function defined by

27k}
g(t) = 521+ £0 )33 Vte (0,1).  (6)
Qo

Hereafter we assume théte (0, o] wheredy < «p.

\/H‘%( — )1
Let by < “"k & — xo|| < p where
0
2k
\/1+(1+90) ao)*l
— by and
ko

(p+b0)*+ (p+bo)| + 2—0 (7)

€ k
let ~,:=(1+ =2 [—O
(67 0

2

Lemma 1: Letx € D(F). Then

IRS (@) P () < (

(Advance online publica

Proof. Note that,

IRS (@) P (x)

H51”1p |(PnF' (z) Py + aPy) ' P F' (x)v||
v||<1

sup ||(PLF'(x) Py + aPy) Py F'(z)
[vll<1

(P, +1— By

HSIH1p |(PLF'(z)Py + aPy) ' Py F' () (P,
v||<1

sup [(PuF’ (z) Py + aPy) " Py F' (2) (1 — Py
v||<1

1+

Joll +

<

€h
a)

3
(1+=2).
7))

<

Lemma 2: Leteg = eO andvp be as in (7). Then

€0 S ’Yp
Proof. Note that,
_ h,6 h,s
€o H?Jo,a o,aH
= || RS (Pawo) PulF (Phao) — ]|
= [IR; " (Pazo) PuF (Pazo) — F(&) — F'(Pyo)

(Prao — &) + F'(Pawo)(Pawo — &) + F(&) — f°]|
= ||R."(Przo) Py
[/ (F'(3 + t(Pazo — £)) — F'(Pao))(Pazo — &)t
0

+F/(Phx0)(Ph$0 — .f}) + F(.f}) -
IR, (Phao) Py F' (Phao)

£

[/O O(& + t(Pro — 1), Prwo, Phzo — o)dl
(Puwo) Pu(F(2) — f2)]|

and hence by Assumption 1, Lemma 1 and the relation

+(Prxo — )] + R

| R (Pro)|l < %, we have,
9 k R R 5
eg < (1+_0) [_OHP}LIE():L'|2+|Pth$|] + =
(%)) 2 Q
€0 . ki .
= (1+a_00)[?0”Ph$0*$0+$07xH2
. 0
+Pazo — w0 + 20 — 2] + =
€0\ | ko 2 5
< (1+=) |+ b b 2
< +a0)[2(p+ R+ (p+ h)]+a
€0 ko 2 50
< (1+=) |+ b b %0
< 42| Rlo P+ (o)) + 2
- €S)

Lemma 3: Let g5, /% andeld, be as in (3), (4) and
(5) respectively Wlth$ € (0,d0]. Then

@ [~ oyl < 4 (0 )7 and
() [l —ah?, )| < [+ (14 2a)eld, e,
Proof. Observe that,
Z i - ?JZ 51 ey
= yZ 51 a QCZ 51 o B (nyLa)Ph
[F(yn—l,a) -+ a(yn Lo — o) + R;l(l’ﬁ’fl,a)
PalF(2p?1,0) = f° + aly?y o = 20)]

tion: 27 August 2012)
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= y'Z 610( _‘rzéla _R (y'rl?él a)Ph = R;l(l',ﬁ’i)P [FI( )( h6 yn 1(1)
5 5
[F(ynfl,a) - F@Z 1, a) + a(yn l,ao x'}rlz 1, a)] 7(F("Ez,i) F(ynfl,a))] + R ( i )Ph
+[R;1(‘r’}rlzfl,a) R, 1(yn 1 a)]Ph[F( n 1 a) f§ [F/(.I'Z:i) F/(y’rhzlfl,a)] (yn l,a ‘r’ill i)
+a(an?, . — o)) = T3+ (12)
= Rgl(yn 1, a)Ph[F/(yn 1, a)(yzfl,a - xzfl,a) Where
—(Flynr0) = @y )]+ B (uny,0) Po Ty = RyMald)Pu[F (ah?)(ahd, — yi?) )
h,6 h,6
(F/(yn 1 a) F/(‘rn 1 a))(wn—l,oz - yn—l,a) —(F(xfl:i) F(yZ 61 a))]
= I+ 9) and
_ 8
where Ty = RNl PalF'(ald) — F'(yn?y )]
_hg
D= B PP S )W — ot ) (nZr0 — )
_(F(yh,él ) — F(xh,él Nl Analogous to the proof of (10) and (11) one can prove that
& k
and . g Inall < A+ D) lall -yt WP (13)
FQ = R; (yn;l,a)Ph[F/(yn;l,a) F/( n— 1 a)] 0
h,8 h,s and
(:Cn—l,oz - yn—l,a)' h,8 2
[Tall < ko(1+ )Hxna*yn Lal® (14)
Note that, Now (a) follows from the Lemma 3, (12), (13) and (14).
I | Again, since foru € (0,1), g(ut) = p3g(t), for all ¢t €
! . (0,1), by (a) we get,
1y, h,6 h,6 n
= ||Ra1(yn—1,a)Ph/0 [Fl(yn—l,a) FI( n 1 NeY g(eﬁ:‘;) S g(€0)4 (15)
W10~ 2001 D)W — 20l o)t and
1 h,6
- 0 <
= IR P ) [ 6l e S s
0
h,5 h,5 h,5 h,8 d S ( )g(en 204) Cn— 2,
t(yn La — Tp— 1,o¢)7yn—1,ou$n—1,oz yn 1,a ] t” gqn—2 h,8 h,o
kO h.o hs 5 < ( )g ( ) (en—3,oz)€n—3,oz
< 2 (1 + _)H Yn— 1, _‘rnfl.,aH (10) < g(eo)4n tpqn— 2+---+160
the last step follows from the Assumption 1 and Lemma 1. < g(eo)%eo (16)

Similarly, providede”%, < 1. But e, < 1 by Lemma 2, (6) and (16).

Do) < ko(1+ E_O)HnyLa _ 552’51@”2- (11) Now (b) and (c) follow from (8), (15), (16) and the relation
Qo g(eo) < g(v,). This completes the proof of the theorem.
So, (a) follows from (9), (10) and (11). And (b) follows from
(a) and the triangle inequality; THEOREM 2' Suppose) < g(7,) <1, 7= (1555 +
3k € ;
ol = ot all < N = o ol Il 0 =iyl G =gl g S et The sseumbtons of Theorem
’ 1 hold. Them: % Yn'a € Br(Pro) for all n > 0.
THEOREM 1: Lety?, Z‘; be as in (3) and (4) respec-Proof. Note that by (b) of Lemma 3 we have,

tively with ¢ € (0, do] and el?, g and~, be as in equation 12" — Paao| = [ S _ghd)|
(5), (6) and (7) respectively Then La = Th%0 - T0,0
3
(@ [lynd —ahll < glen®s wen’s o < [+ 700 +Deoleo (@7)
()  glend) < g(%) : vn > 0;
4n 3]{30 €0
c ehd < glv,) 7 Sy Yn > 0. < [T+ =0+ =)
Enia P P 2 (%)
Proof. We have, < r
yld — i.e., 2} € B,(Pyzo). Again note that from (17) and (a) of
_ zZi — = R;l( h75 5P, Theorem 1 we get,
8
[F( ) f5+a( —:CO)] +R;1(ysf1 ) Hyi'Q*PhIE()” < ||y1a7x1 aH + ||:E *PhZE()”
” 3k
Ph[F(yn La) =S+ a(yn_l,a — )] < gleo)eo +[1+ —0(1 + —) oleo
h.s h,o
= "Enafyn 1a7R ( )Ph 3l€0
< |1+4+g(eo) + —(1+ —)egle
Fh0) - P, ) + ol — %, ) L glen) + 520+ ko
_ o 7 3k €
HIR Wn10) = B I PlF (i 0) = F° < [t gln) + 5 A+ 2%l
+a(yn’y o — o)) < r
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: h,d m—1
i.€., Y1, € Br(Pnxo). Further by (17) and (b) of Lemma 3 3koeo o gt qni
we have < ; I+ (I+ ao)g(eo) gleo)” eo
275, = Paoll < (1 +g(en)* +g(e0)” + -+ g(e)™)
3k 2
< ezt —atall + la — Paaol + 2( 0+ (o) 4
Sko €0\ h, 3k0 €o n
< [+ = Zenialenio + 1+ 52 (1 + Zheoleo +gea)™ gfeo)"Ig (c > o
3k < 1+ + -+
< [1 + T0(1 + _) (60)60]9(60)60 [( 3]{03(7/7) i (IYP g(’YP) )
3k + QP( )(1+92( D) g2 )"
+[1+—(1+—)€0] €0 n
2 ko +9%(7p )(%)4]()%
< [ +g(eo)+70<1+—)eo<1+g (eo))leo  (18) < Cg(w
3ko < Ce .
< gt + 221+ 2y, (1 + g2 ()
| (%) 2 ( ag a () Thusz]-d, is a Cauchy sequence i, (P,z) and hence it
< T converges, say te"° € B,.(Pyxo).
and by (18) and (a) of Theorem 1 Observe that,
we have,
- 1P [F (a:2) — f‘5+a( ||
Y20 — Paoll = [|Ra(a? )(zn U a)ll
< lyaa — @all + 50 — Pazol < N Ralap )z — viall
3k, _ / h,é
< glen)ela+ [T+ gleo) + 57 (1 + _) = I(IéPhF (:;:n,(a)l;fr aPy)lens, -
< F+a)g(7)" Ve 1
(14 g*(eo))leo S
3ko Now by lettingn — oo in (19) we obtain
< gleo)en +[1+ gleo) + (1 + D)y ietingn = oo in (49
0 h,s h,s )
Py F (x> 0 — = P, f°. 2
(1+92(60))]60 W[ F(20°) + alzg o)) hf (20)
3ko i
<[4 gleo) + ¢°(eo) + (1 i _) This completes the proof.
Qo
2
(1+97(eo))]eo o Ill. ERRORBOUNDS UNDER SOURCE CONDITIONS
0
< [+ g(eo) + g%(eo) + 7(1 + _0) The objective of this section is to obtain an error estimate
B A o o
(1 + ¢%(e0))]eo for [|2y% — 2| under a source condition ory — .
3k
< [+g(y) +92() + 70(1 + E—O)vp Proposition 1: Let F': D(F) C X — X be a monotone
9 @0 operator inX. Let % be the solution of (20) and” :=
L+ 97 (vp))]e 20 Then
<
' ke — kil < 2
ie., ah?, yg‘g € B (Pyxo). Continuing this way one can
prove thatrn 0. yn % € B.(Pyzo),¥n > 0. This completes Proof. The result follows from the monotonicity of and

the proof. the relation;
The main result of this section is the following Theorem. h.o h h.o S s
THEOREM 3: Let 0 < g(v,) < L, g4 andz"? be as 1 »1 (@e’) = Flaa) Fratea® —za)l = Fu(f" = ).
in (3) and (4) respectively witkd € (0, o] and assumptions  THEOREM 4: Let p <
of the Theorem 2 hold. Thefu/-?) is Cauchy sequence
in B,(Py,zo) and converges ta"’ ¢ B,.(P,xo). Further
PulF(zl®) + a(al’® — o)) = Py f° and

k(Hao) and & € D(F) be a

solution of (1). And let Assumptlon 1, Assumption 2 and
the assumptions in Proposition 1 be satisfied. Then

h 4 A €h
n — < —_—
sz,’i o IEZ,SH < 06774 Hxa .I}” = C((p(a) + o )
ko7, n ~ . max{l,p+|3|}
whereC' = (17 + 252 (1 + £2) —79(7,) " )y, WhereC:= 1—(+2)k,
and y = __10g9(%) _ Proof. Let M := fol F'(& + t(zh — 2))dt. Then from the
Proof. Using the relation (b) of Lemma 3 and (c) of Theoremyation
1, we obtain,
e Py[F(zg) = F(2) + a(zg, — 20)] =0
Hxn-i—m a ; H
we have,

< Z H‘rnJerrl a Zfza” N N
' (P,MPy+aPy)(z — ) = Pra(zo— )+ Py M (I — Py).

(Advance online publication: 27 August 2012)
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Hence, Let 5
s ns 1= min {n ce T < —zeh} (24)
= [(PhMPh + aPh)_lph — (F/(i’) + Oé[)_l]a(l’o — ) and
+H(F'(#) + o) ta(zo — 2) Co = C +maz{1,C}. (25)
1
(PR MP), + aph)l PrM / ( Pu)e THEOREM 6: Let ns; and C, be as in (24) and (25)
= (PaMPy + b)) Py[F'(2) = M + M(I - Pp)] respectively. And |efﬁn5 ., be as in (4) and the assumptions
(F'(2) + od) oz — ) in Theorem 5 be satisfied. Then

+(F'(2) + al) L a(zg — 1) 0+en

atd  — 3| < Colp(a) + : 26
ML £ aPy P - P ot =2l < Colpla) +=75). (26)
Gt 6 1) A. A priori choice of the parameter
where Note that the error estimatg(a) + == in (26) is of
— (P MP PP (5) — M+ M(I— P optimal orQer ifos := a(_(S, h) satisfiesp(as)as = § + ep.
G ( }; A g +a_f) bl A () + M el Now using the functionp()) := Ap™1(A),0 < A < a
(F"(2) + al) ™ alz — &) we haved + ¢, = asp(as) = P(p(as)), so thatas =
and 0 Y (xp71(d + ). In view of the above observations and
G o= (F'(®)+al) ‘a(zg — &) + (PuMP, + aP,)~! (26) we have the following.
P.M(I — Py)i THEOREM 7: Let ¢(\) := Ap~1()\) for 0 < A < a, and
h h) the assumptions in Theorem 6 hold. For> 0, let a5 =
Observe that, e 1§+ sh)) and letns be as in (24). Then
Il [ = & = O™ (6 +en))-
1
—1 /(A /(A
< (PaMPy + o) Ph/o [ (@) — F'(2 B. An adaptive choice of the parameter
+t(zh — &) dt(F' (&) + o) La(zg — 1) In this subsection, we present a parameter choice rule
+|(PaM Py + aPy) Py M(I — ) based on the balancing principle studied in [9], [12]. In this
(F'(2) + al)ta(zy — 3)| method, the regularization paramedeis selected from some
0 finite set
< |(PoaMPy+aPy)" ' Py .
1 Dn(a) :={a; = p'ap,i=0,1,---,N}
/ [F'(3 + t( — 2))(Py + 1 — Py)
0 wherep > 1, ag > 0 and let
¢(&, & + t(xy, — 2), (F'(2) + o) alzo — 7)))dt| 5
Eh e 0 e < +én
+_ N; ;== MIN<N:e < _ .
Q
< (1+5h kOPHCU _:CHJF Then fori = 0,1,---, N, we have
o+ Eh .
h,6
< =) pllah — &l + = %, — walll S C——=,  Vi=0,1,---N.
< 1+ )P lel -]+ 2 (22) o
Letx; := 2™ _ . In this paper we seleet = a; from Dy («)
and for computmgxl, for eachi =0,1,---, V.
€h ) THEOREM 8: (cf [14], Theorem 3.1) Assume that there
< =z 23
lGall = 6(e) + a Iz (23) existsi € {0,1,2,---, N} such thatp(o;) < ‘”8’1 . Let the
The result now follows from (21), (22) and (23). assumptions of Theorem 6 and Theorem 7 hold and let
THEOREM 5: Let ach % be as in (4). And the assumptions S+e¢
o . < 0*Fen N
in Theorem 3 and Theorem 4 hold. Then Li=max i () < o <H,
. g ~ 0 +ep
h,0 v4 1)
[zne — 2| < Ce +maz{l, C}(p(a) + )- k= max{i : |zi—a;] < 4Co + Eh j=0,1,2,---,i}.

Proof., Observe that, ’

Thenl < k and ||z — zx|| < ey~ 1(6 +¢ep,) wheree = 6Cou.

ks, — 2| < |lahd, — aho 2|+ |2t — 2

.. . IV. IMPLEMENTATION OF ADAPTIVE CHOICE RULE
so, by Proposition 1, Theorem 3 and Theorem 4 we obtain,

Finally the balancing algorithm associated with the choice

foﬂi —i < ce 4 ) + C(p(a) + E_h) of the parameter specified in Theorem 1 involves the follow-
« G4e ing steps:
< Ce " 4 maz{1,C}e(a) + Th). o Chooseqy > 0 such thatyy < ap andp > 1.

« Chooseq; := plag,i=10,1,2,---, N.

(Advance online publication: 27 August 2012)
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A. Algorithm where
1. Seti=0.
1—-1)s, 0<s<t<1
2. Choosen; :=min{n:e 7" < 5+€h . k(t,s) = { Elfs)t 0<t<s<l1
3. Solvez; := z" by using the |terat|on (3) and (4).
4.1 ||z — x4 > 400‘”? ,j < i, then takek = i — 1 Then for allz(t), y(t) : z(t) > y(t) :

and returnzy,. 1r pl
5. Else set =i+ 1 and go to 2. (F(z)— F(y),z —y) = / {/ k(t,s)(x® —y*)(s)ds
0 0

V. NUMERICAL EXAMPLE

In this section we consider the example considered in [14]
for illustrating the algorithm considered in section IV. We x(z —y)(t)dt > 0.

apply the algorithm by choosing a sequence of finite dimen-
sional subspacéV,) of X with dimV,, = n + 1. Precisely Thus the operatof’ is monotone. The Fréchet derivative of

we choosd/ as the linear span dfvy, vs, - - -, v11 } Where F' IS given by
v, i =1,2,--- ,n+1 are the linear splines in a uniform grid 1
of n + 1 pomts in [0,1]. Note thatz"?, yhd € V,. So F'(u)w = 3/ k(t, s)u?(s)w(s)ds. (31)
yhd = Z"“g% and 2% = S "o, wheree? and 0
n,i=12,---,n+1are some scalars. Then from (3) wenote that foru, v > 0,
have
1
(PP (ah8) + )0t = i) = Puly® — Flald) )~ Fwlw =3 [ ks (s)ds
he R 0
Folro, — i)l (@7) Jo 8, 5)[0%(5) — w?(s)}w(s)ds
Observe thaty!3 — 229 is a solution of (27) if and only % f()l k(t, s)u2(s)ds
if (&'n *77”> = (5? 771752 772)"'7§n+1 77n+1)T is the = F'(u)(l)(v,u7w)

unique solution of

o - - 1k ,S v2(s)—u?(s)]w(s)ds
(Qn + aBy)(E" — ™) = B[ — Fr + a(Xo — 1)) (28)  where® (v, u, w) = I (}1)L(t( ))( ( )()2)31 Sy
o ,8) (u(s s

where Observe that

Qn = [(F'(z )vl,vj)],i,j=1,2---,n+1 a( )7f k(t, s)[v?(s) — u?(s)]w(s)ds

B, = [<U17“J>] J=152mn+1 o= f k(t, s)u?(s)ds

= 100 ), )] S k(t, ) us) + v($)][o(s) — u(s)|w(s)ds

Fu = [F@hd)(), ki) (t), - Pk ) = Tt o2 -
. fo k(t, s)u?(s)ds

Xo = [|xo(t )l’o(t2) ;0 (tnt1)]

k(t,s)[u(s)+v(s)]ds

So Assumption 2 satisfies wifly >
P it f k(t,s)u?(s)ds

andtq,ts,---,t,o1 are the grid points. Further from (4) it )
follovés t2hat i gnap “) In our computation, we take (t) = 6”"(”;# ard
hs f% = f + 6. Then the exact solution
(PhF/(yna)+a)( n—&-laiy?}ii)*Ph[fgiF(yZ:i) R .
—|—a(azh’6 B yzg)] (29) z(t) = sin(wt).
and hence{an o—Yh%) is a solution of (29) if and only if Ve use
(=€) = (it =gyt =g — 6 )T , 3[tr? — 272 + sin?(7t)]
is the unique solut|0n of zo(t) = sin(mt) + A2
(Tn+aBy,) ("1 =€) = Bu[u"—Fra+a(Xo—£")] (30)  asour initial guess, so that the function, — # satisfies the
where source condition
1
T, = [(F/(QZ’g)Ui7“j>]vi7j =12---,n+1 To— T = @(Fl(jwz
Fro = [Flypd) () Flypa)(t2), - Flypo) (tns)] "

where p(\) = A
Note that (28) and (30) are uniquely solvabletas andT;, For the operatof(.) defined in (31)g), = O(n~2) (cf.

are positive definite matrix (i.ex@nz" > 0 andzT,z" >0 [g]). Thus we expect to obtain the rate of convergeR¢e+
for all non-zero vector) and B,, is an invertible matrix. Eh)%)_

2EXAMPLE 42: (see [14], section 4.3) LeF : D(F) C We chooseag = (1.1)(5 + &), o= 1.1, p = 0.11, 4, =
L*(0,1) — L*(0,1) defined by 0.7818 andg(vy,) = 0.99. The results of the computation are
1 presented in Table 1. The plots of the exact solution and the
F(u) = /0 k(t, s)u®(s)ds, approximate solution obtained are given in Figures 1 and 2.

(Advance online publication: 27 August 2012)



TAENG International Journal of Applied Mathematics, 42:3, [JAM 42 3 07

Fig. 1.

Curves of the exact and approximate solutions
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n=64

Curves of the exact and approximate solutions
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TABLE |
ITERATIONS AND CORRESPONDING ERROR ESTIMATES

no k[ sta ] o [le-al | g
8 | 2| 4 00135 00180 00356 | 0.3065
16 | 2 | 4 | 00134[00178] 00432 | 03736
32 | 2] 4 | 00133]00178] 00450 | 03897
64 | 2| 4 | 00133]00177| 00455 | 0.3938
128 | 2 | 4 | 00133 00177 0.0456 | 0.3948
256 | 2 | 4 | 00133 00177 | 0.0456 | 0.3950
512 [ 19| 5 | 0.0133] 0.0897 | 0.0456 | 0.3951
1024 27| 6 | 00133] 0.1923| 0.0456 | 0.3951

VI. CONCLUSION

We have suggested and analyzed the finite dimensiorﬁ’ﬁ
realization of the iterative method considered [i] for

error estimate. The regularization parameteris chosen
according to the balancing principle considered by Perverzev
and Schock (2005). The numerical results provided confirm
the efficiency of the method.
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