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Abstract— A  decomposition method[5] based upon orthonor- 

mal representations  is reviewed and improved to express any 

anisotropic engineering tensor showing the effect of the 

material properties on the structures. A new decomposed form 

for the stress tensor (example for symmetric second rank 

tensor) different from the one available in the literature where 

the engineering understanding is improved, is presented.  
Numerical examples from different engineering materials serve 

to illustrate and verify the decomposition procedure. The norm 

concept of elastic constant tensor and norm ratios are used to 

study the anisotropy of these materials. It is shown that this 

method allows to investigate the elastic and mechanical 

properties of an anisotropic material possessing any material 

symmetry and determine anisotropy degree of that material. 

For a material given from an unknown symmetry, it is possible 

to determine its material symmetry type by this method. 

 

Index Terms— stress  tensor,  elastic constant tensor, 

decomposition, form invariant, orthonormalized basis 

elements,  norm. 

 

I. INTRODUCTION 

material is isotropic if its mechanical and elastic 

properties are the same in all directions. When this is 

not true, the material is anisotropic. 

Many materials are anisotropic and inhomogeneous due 

to the varying composition of their constituents. Every day 

passed, the number of anisotropic materials is increasing by 

the addition of man-made anisotropic single crystals and 

technologically developed anisotropic materials. In order to 

understand the physical properties of the anisotropic 

materials, use of tensors by decomposing them is inevitable. 

Tensors are the most important mathematical entities to 

describe direction dependent physical properties of solids 

and the tensor components characterizing physical 

properties which must be specified without reference to any 

coordinate system. 

The constitutive relation for linear anisotropic elasticity, 

defined by using stress and strain tensors, is the generalized 

Hooke's law [1] 

.klijklij C                    (1) 
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This formula demonstrates the well known general linear 

relation between the stress tensor whose components are 

ij and the strain tensor (symmetric second rank tensor)  

whose components are .kl ijklC are the components of 

elastic constant tensor (elasticity tensor) ijklC  satisfies three 

important symmetry restrictions. These are 

,klijijklijlkijkljiklijkl CCCCCC            (2) 

which follow from the symmetry of the stress tensor, the 

symmetry of the strain tensor and the elastic strain energy. 

These restrictions reduce the number of independent elastic 

constants 
ijklC from 81 to 21. Consequently, for anisotropic 

materials (with triclinic symmetry) the elastic constant 

tensor has 21 independent components. 

The indices are abbreviated according to the replacement 

rule given in the following TABLE [1]: 
TABLE I 

    ABBREVIATION OF INDICES FOR FOUR AND DOUBLE   
                    INDEX NOTATIONS 

four index notation 11 22 33 23, 32 13, 31 12, 12 

double index notation 1 2 3 4 5 6 

 In literature, the works for orthonormal representation of 

any rank tensors can be summarized as; it was first proposed 

by [2], developed by [3] who gave name as integrity basis 

treated the strain energy function as a polynomial in the 

strain components and lead to determination integrity basis 

for invariant functions of the strain components for each one 

of the 32 crystallographic point groups. Using the integrity 

basis, orthonormal tensor basis which spans the space of 

elastic constants was derived. Orthonormal tensor basis is 

also obtained by another way which is form invariant. 

Reference [4] identified invariant elastic constants for each 

crystal class. 

The purpose of the work is to review and develop the 

decomposition method presented in [5] for both stress tensor 

and elastic constant tensor. The other aim of this paper  is to 

prove that this method is applied to even rank tensors such 

as symmetric second rank tensors and fourth rank tensors. 

In the present paper, the decomposition method is 

developed for stress tensor. Next, this method is extended 

and applied to anisotropic elastic symmetries such as cubic, 

tetragonal and trigonal. As applications, numerical examples 

are given from the materials which exhibit  cubic, tetragonal  

and trigonal symmetries. Norm concept and anisotropy 

degrees for those symmetry types are presented. Finally, in 
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the last section, the results of numerical analysis are 

discussed and conclusions pertinent to this work are stated. 

II. DECOMPOSITION PROCESS FOR STRESS TENSOR 

    Stress tensor as an example to symmetric second rank 

tensor is decomposed. In the mechanics of continuous media 

i.e. in elasticity studies; the stress and strain tensors are 

decomposed into spherical (hydrostatic) and deviatoric parts 

each of which have important meanings. Besides, stress 

tensor is decomposed into six orthonormal parts by this 

method.  Decomposition process is mainly based on two 

steps; form invariant and orthonormalized basis elements. 

   A.  Form Invariant 

A physical property of tensor is resolved along the triads 

32,1 ,vvv denoting the unit vectors along the crystallographic 

axis [4]. The symmetry properties of the material, due to the 

geometric or crystallographic symmetry, can be defined by 

the group of orthonormal transformations which transform 

any of these triads 
 a  into its equivalent positions. When 

forming invariant, a physical property of tensor is also 

resolved along those triads. The process of resolution yields 

the invariants. Forming invariant is an indispensable step to 

construct orthonormal tensor basis needed for 

decomposition process, the procedure is as follows:  

The form invariant expression for symmetric second rank 

tensor as stress tensor is,  

 ,abbjaiij Avv                            (3) 

where summation is implied by repeated indices. This 

expression is referred to a Cartesian system Oxyz; 
ai   are  

the components of the unit vectors 
a  ( 3,2,1a ) along the 

crystallographic axes. 
abA  is invariant in the sense that 

when the Cartesian system is rotated to a new orientation  

,́´´ zyOx   then (3) takes the following form; 

 ,''' abbjaiij Avv                                  (4) 

Where 
321 ,,    form a linearly independent basis in three 

dimensions but they are not necessarily always orthogonal 

(it is a general case). The orthogonality condition used in 

this work, is a particular case for both stress and elastic 

constant tensors so the corresponding reciprocal triads must 

satisfy the following relation 

ijajai                          (5) 

The expression given in (5) can be rewritten as 

IT                          (6) 

Where I is identity matrix which is  
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Since  1ij   ( ji   ) or  0ij  ( ji   ). These are 

the orthogonality relations which are also defined in (5). 

As an illustration, for the uniaxial crystal system, (3)  takes 

the form 

,3321 jiijij vv                                                  (8) 

where 3v is the unique axis and 1 corresponds to isotropy.  

The first step for constructing the orthonormalized basis 

elements is to write the ai  in the place of aiv  in (3). So the 

following form is obtained: 

.abbjaiij A                                                                  (9) 

Instead of the form invariant expression given in (3) for any 

given class and it is possible to replace the aiv  by the ai  to 

obtain the elements of the basis. According to the expression 

in (8), the elements of the basis are ij and .33 ji Similar 

to (8), for monoclinic system, with 2v normal to the 13vv  

plane, the form-invariant expression is 

),( 311331

333322221111

jiji

jijijiij
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


                                                                                          

                       (10) 

By making the replacement to the above expression, the 

elements; ,11 ji ,22 ji ,33 ji jiji 3113    are 

obtained. 

   B.   Orthonormalized Basis Elements 

   By using the (5) and orthonormalization by well known 

Gram-Schmidt scheme, the basis elements are
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   In constructing this basis, following identity is used 

     .332211 ijjijiji                                      (12) 

   This is a particular case of a more general identity which  

is 

      .sin)(sin

)(cos

2
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                      (13) 

with aiv
 is replaced by ai  and .90o   

     Hence the orthonormal basis elements present in (11) are 

obtained.  

          A complete orthonormal basis for the second rank 

symmetric tensor (i.e., stress tensor) will be the set 
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{I,II,..,VI} the decomposition of ij  is given in terms of 

these basis  elements as

),....,,(,),( VIIIIkTT k

ij

k

ij

k

ij               (14) 

where  ),( k

ijT   represents the inner product of  ij   and 

the  
thk   elements,  

k

ijT   of the basis. It is well known that 

inner product is different from multiplication of two 

matrices. For second rank tensors, it is defined by  

.),(
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3
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ijij
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k

ij TT 
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

                                                 (15) 

The orthonormal of the decomposed parts can be proved by 

taking inner products of orthonormalized basis elements  

),( II

ij

I

ij TT  i.e., 0),( II

ij

I

ij TT   and  1),( I

ij

I

ij TT   and the 

results of inner products for other elements are the same. So 

this method is an orthonormal method. By using (15) and 

matrix forms of the orthonormalized basis elements, 

decomposed parts can be obtained and by adding all 

decomposed parts, we obtain the stress tensor which is 
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In  (16),  
k

ijT    ),....,,( VIIIIk    are the matrix parts of 

the orthonormalized basis elements. They are orthonormal 

to each other.  

Furthermore stress tensor is virtually decomposed into two 

parts 

,
3

1
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

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
 ijppijijppij                                (17) 

where   

,332211  pp   

 
ppijij

D 
3

1
  (deviatoric part) and

ppij

S 
3

1
  

(spherical part). 

Deviatoric space D consists of pure shear tensors 

constructing by requiring orthonormal basis which are 

orthogonal to each other. 
D  can be decomposed into five 

parts by orthonormal tensor basis method. 

It is well known in literature that when  ji   ,  ,0D

ij   

which means that the deviatoric part  
D   is traceless. 

When  
D 0  , (17)  reduces to the form: 

 .
3

1
ppijij                                                              (18) 

Here  ,
3

1
ppp    where p  is the hydrostatic pressure 

and  ijij p    is called pure hydrostatic state of stress. 

   C.   Illustrative Applications 

    The pure shear tensors play a significant role in 

continuum mechanics. The elastic strain caused by such a 

pure shear stress may not be a pure shear especially in the 

case of elastic anisotropy. Pure shear stress fields arise in 

many practical cases; for example, in the torsion of linearly 

elastic rods or elastic-plastic bars. So it is worthwhile to pay 

attention to some remarkable properties of the pure shear 

tensors. 

     In the language of matrix algebra, it is equivalent to the 

problem of constructing sets of five mutually orthogonal 

singular traceless matrices. The problem is not only  one of 

theoretical interest, it may also have some practical 

significance, for instance, in computational plasticity of 

polycrystalline metals. It might be easier to perform 

computer modeling of randomly oriented crystalline grains 

if there exists many sets of five orthogonal shears. More 

detailed investigation of the sets of such basis may promise 

mathematically motivated weight functions for the modeling 

of anisotropic random distributions of the oriented grains. 

III. DECOMPOSITION PROCESS FOR ELASTIC CONSTANT 

TENSOR 

In analyzing the elastic and mechanical properties of 

anisotropic linear materials, elastic constant tensor is 

required to make up a linear constitutive relation between 

stress and strain tensors, each of which represents some 

directly detectable and measurable effect in the material 

(Recall Hooke's law, given in (1)). Elastic constant tensor is 

introduced in specification of physical properties for many 

anisotropic materials.  

Decomposition of the elastic constant tensor into 

orthonormal parts, offer not only valuable insight into the 

tensor structure but also simplify immensely the calculations 

of sums, products, inverses and inner products. The 

decomposition method developed can be carried out for 

materials possessing symmetry classes such as isotropic, 

cubic, transversely isotropic, tetragonal (classes: mm4 ,  

,24 m ,422 mmm/4 ), trigonal (classes: ,32 ,3m m3 ), 
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orthorhombic and triclinic [1]. In this work, materials 

possessing isotropic, cubic, transversely isotropic, 

tetragonal, trigonal are selected for applications since 

important engineering materials exhibit those symmetries. 

 

For isotropic materials, an expression for the elastic 

constant tensor which is different from the traditional form 

is also presented. 

 A.  Form Invariant 

The form invariant expression for the components of 

elastic constant tensor, the elastic stiffness coefficients is, 

abcddlckbjaiijkl AC               (19) 

Where summation is implied by repeated indices, 
ai   are 

the components of the unit vectors 
a  ( 3,2,1a ) along the 

material direction axes. 
abcdA  is invariant in the sense that 

when the Cartesian system is rotated to a new orientation  

,́´´ zyOx   then (19) takes the following form; 

abcddlckbjaiijkl AC ´´´´´                 (20) 

Where 
321 ,,    form a linearly independent basis in three 

dimensions but they are not necessarily always orthogonal 

(it is a general case). The orthogonality condition used in 

this work, is a particular case for elastic constant tensor so 

the corresponding reciprocal triads must satisfy the relation 

given in (5). 

   B.   Orthonormalized Basis Elements 

Form invariant is the necessary step in constructing 

orthonormal tensor basis of elasticity tensors. By 

appropriate use of  ij  , elements of the orthonormal tensor 

basis can be constructed for each symmetry types [6]. 

Furthermore symmetry in crystal means simply invariance 

of the properties with respect to the transforms of some 

subgroup of the orthogonal group, whereas the properties of 

an isotropic medium are invariant with respect to all the 

transforms of the orthogonal group. In other words, it 

explains the form of ijklC tensor for any isotropic medium 

and it is invariant with respect to the all transforms of the 

orthogonal group. However there is a unique tensor that is 

not affected by all orthogonal transforms, it is a unique 

tensor, apart from a scalar factor, so ijklC   can be expressed 

as combinations of the components ij  of that tensor with 

certain coefficients. There are only three different such 

combinations which contain four subscripts lkji ,,,   namely

klij , ,jlik jkil [6]. Because of the symmetry of  

,ijklC   i  and j   are permuted. So the elements takes the 

new form; klij  and jkiljlik   . For other symmetry 

types, these elements are used in a suitable form, when 

constructing  orthonomalized basis. Form-invariant 

expression of isotropic symmetry is formed by the following 

two basis elements: 

jkiljlikklij  ,                 (21) 

    So, the decomposition of ijklC  for triclinic system with 

no elastic symmetries is given in terms of its 

orthonormalized basis elements as 

),...(,),( XXIIKAACC K

ijkl

K
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K

ijkl            (22) 

     Where ),( K

ijklAC   represents the inner product of ijklC   

and
thK elements,

K

ijklA , the orthonormalized basis elements 

and given for each elastic symmetry types, besides, the inner 

products for triclinic symmetry are  

C.   Cubic Materials 

The form invariant expression is defined for cubic 

material as [4] 

alakajaiijklijklijklC             (23) 

  where klijijkl   , jkiljlikijkl   and 

alakajaiijkl    , ijkl   is also rewritten in terms of  

ij   as  
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,   and  are invariant elastic constants for cubic 

materials. 

For cubic materials, the decomposition of ijklC for cubic 

system is given in terms of the orthonormalized basis 

elements as 
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Where ),( K

ijklAC  denotes the inner product of ijklC and  
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ijklA   which  are 

orthonormalized basis elements for cubic materials. The 

inner products are 
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D.  Tetragonal Materials 

The form invariant expression for tetragonal materials [4] 

ijklijklijklijklijklijklijklC  654321 

                                                             (28) 

Where
lkjiijkl 3333   , kljilkijijkl  3333     

and ).)(())(( 1331133123322332 lklkjijilklkjijiijkl     

 ,1 ,2 ,3 4 5, and  
6  

are invariant elastic 

constants for tetragonal system. The representation of  ijklC  

for tetragonal materials is given in terms of the 

orthonormalized basis elements as 
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Which are orthonormalized basis elements for tetragonal 

materials.

 Since first two orthonormalized basis elements of 

tetragonal materials are the same as isotropic symmetry[5], 

inner products are also identical, the other inner products for 

tetragonal symmetry are 

],4442221233[
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 E.  Trigonal Materials 

For trigonal materials, the form invariant expression is [4] 

ijklijklijklijklijklijklijklC  654321    

                       (31) 

 where  
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),)(())(( 2332221122112332 lklkjijilklkjiji         

,1 ,2 ,3 54 ,
 
and

6  are invariant elastic constants 

for trigonal system. The decomposition of ijklC
 
for trigonal 

materials is given in terms of its orthonormalized basis 

elements as 

)...(,),( VIIKAACC K

ijkl

K

ijkl

K

ijkl                        (32) 

where ijkl

VI

ijklA 
4

1
 which is the last orthonormalized 

basis elements for trigonal system. 

Since first five orthonormalized basis elements of trigonal 

system are the same as transversely isotropic symmetry [5], 

inner products are also common, the last inner product for 

trigonal system are 

 .2),( 241456 CCCAC VI                                     (33) 

IV. NUMERICAL ANALYSIS 

Let us consider the decomposition of the elastic constant 

tensor in the following materials. 

A. For Aluminium Antimonide(AlSb) 

       AlSb possesses cubic symmetry. In this symmetry, four 

three-fold axes arranged like the body diagonals of a cube. 

There are three independent elastic constants for cubic 

symmetry which are .,, 441211 CCC The elastic coefficients in 

GPa for AlSb are presented as[7]  

     





























8.4000000

08.400000

008.40000

0007.874.434.43

0004.437.874.43

0004.434.437.87

ijC

              (34)

 

     By using this method, the formula given in (24) should 

be applied. For this reason inner products must be calculated 

as 

,5.174),( IAC ,1.149),( IIAC .86.40),( IIIAC           (35)
 

The symmetric fourth rank tensor for AlSb can be 

represented in the form
III

ijkl

II

ijkl

I

ijklijkl AAAC 86.401.1495.174 
                   (36)

 

If the orthonormalized basis elements for cubic symmetry 

are inserted into the right-hand side of (36), the identical 

matrix in (34) can be obtained, which shows the validity of 

the decomposed terms.  

Isotropic part of AlSb is 

II

ijkl

I

ijkl AAI 1.1495.174 
                                          (37)

 

If the related orthonormalized basis elements are put into 

(37), isotropic part is found in matrix form as 





























34.3300000

034.330000

0034.33000

0006.1029.359.35

0009.356.1029.35

0009.359.356.102

I

   (38)

 

The cubic part of the material is 

III

ijklAC 86.40
                                                               (39) 
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When the corresponding basis element is inserted into (39), 

cubic part is found as
 

.

5.700000

05.70000

005.7000

0009.145.75.7

0005.79.145.7

0005.75.79.14

































C

              (40)

 

If the matrices given in (38) and (40) are added, the original 

matrix for Aluminium Antimonide given in (34) can be 

constructed.  

B. For Zircon 

   Zircon is an example for tetragonal symmetry. There are 

six independent elastic constants for tetragonal symmetry 

which are .,,,,, 664433131211 CCCCCC
 
The elastic 

coefficients in GPa for it are given as[8] 





























7.4700000

05.770000

005.77000

000309119119

00011928473

00011973284

ijC

            (41)

 

     The formula given in (29) is used to apply the method. 

For this reason inner products must be calculated as 

presented below 

,67.499),( IAC  ,350),( IIAC ,64.58),( IIIAC

,4.20),( IVAC ,12.53),( VAC 66.48),( VIAC   

                       (42) 

The symmetric fourth rank tensor for Zircon can be 

represented in the form 

VI

ijkl

V

ijkl

IV

ijkl

III

ijkl

II

ijkl

I

ijklijkl

AA

AAAAC

66.4812.53

4.2064.5835067.499





 

                                                (43) 

If the orthonormalized basis elements of tetragonal 

symmetry are substituted into (43), identical matrix in (41) 

is obtained, which exhibits the validity of the decomposed 

terms. Isotropic part of Zircon is 

II

ijkl

I

ijkl AAI 35067.499 
                                          (44)

 

If  the corresponding orthonormalized basis elements are put 

into (44), isotropic part is found as 





























27.7800000

027.780000

0027.78000

00092.27037.11437.114

00037.11492.27037.114

00037.11437.11492.270

I

   (45) 

The cubic part of the material is 

III

ijklAC 64.58
                                                           (46) 

If the orthonormalized basis element stands for cubic 

symmetry, substituted into (46), cubic part is found as    

.

7.1000000

07.100000

007.10000

0004.217.107.10

0007.104.217.10

0007.107.104.21







































C

    (47)

 

Lastly, the tetragonal part of the material is 

VI

ijkl

V

ijkl

IV

ijkl AAATet 66.4812.534.20 
                            (48)

 

If the corresponding orthonormalized basis elements for 

tetragonal symmetry are put into (48), tetragonal part is 

found as 

.

87.1900000

093.90000

0093.9000

00067.1633.1533.15

00033.1533.867.30

00033.1567.3033.8

































Tet

     (49)

 

If the matrices given in (45), (47) and (49) are summed up, 

the original matrix for Zircon in (41) is represented in terms 

of its orthonormal decomposed parts. 

C. For Haematite 

    Haematite is a trigonal material which exhibits trigonal 

symmetry. There are six independent elastic constants for 

trigonal symmetry which are  .,,,,, 443314131211 CCCCCC    

 The elastic constant data for Haematite  are presented      

as[7]                 





































55.937.120000

7.123.850000

003.8507.127.12

0002287.157.15

007.127.152429.54

007.127.159.54242

ijC

            (50)

 

      By using the formula given in (32), inner products are 

calculated as 

,87.294),( IAC ,8.422),( IIAC ,08.4),( IIIAC

,77.57),( IVAC ,5.16),( VAC .8.50),( VIAC  

                      (51) 

The symmetric fourth rank tensor for Haematetite can be 

represented in the form    

 
VI

ijkl

V

ijkl

IV

ijkl

III

ijkl

II

ijkl

I

ijklijkl

AA

AAAAC

8.505.16

77.5708.48.42287.294




                                                                 

                      (52) 

 When orhonormalized basis elements for trigonal 

materials are substituted into the right-hand side of (52), 
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identical matrix in (50), which shows the validity of the 

decomposed terms.  

Isotropic part of Haematite is 
II

ijkl

I

ijkl AAI 8.42287.294                                           (53) 

If the related orthonormalized basis elements are put into 

(53), isotropic part is found as 





























54.9400000

054.940000

0054.94000

00035.22426.3526.35

00026.3535.22426.35

00026.3526.3535.224

I

            (54)

 

The transversely isotropic part of the material is
V

ijkl

IV

ijkl

III

ijkl AAATI 5.1677.5708.4                            (55) 

When orthonormalized basis elements stands for 

transversely isotropic part are substituted into (55)  

transversely isotropic part is found as 

.

99.000000

024.90000

0024.9000

00065.356.1956.19

00056.1965.1764.19

00056.1964.1965.17







































TI

              (56)

 

The trigonal part of the material is 

VI

ijklATR 8.50                                                              (57) 

If we put the appropriate values into (57), trigonal part is 

found as 

.

07.120000

7.1200000

00007.127.12

000000

007.12000

007.12000



































TR

                    (58)

 

The matrices given in (54), (56),and (58) are the 

decomposed parts of the original matrix for Haematite given 

in (50). So (50) is represented by summation of (54), (56) 

and (58). 

V. THE NORM CONCEPT AND ANISOTROPY DEGREE  

    The norm concept for elastic constant tensor is described, 

norm and norm ratios as well as the measure of  `nearness' 

of the nearest isotropic tensor are computed for several 

examples from various anisotropic materials possessing 

elastic symmetries such as cubic, tetragonal and trigonal. 

These computations are used to compare and assess the 

anisotropy in various anisotropic materials by means of 

strength or magnitude and also determine the `nearness' of 

the nearest isotropic tensor for the materials with lower 

symmetry types. 

      Norm is an invariant of the material. Because of this 

property, it can be used as a parameter representing and 

comparing the overall effect of a certain property of 

anisotropic materials of the same or different symmetry. So 

comparison of magnitudes of the norms give a valuable 

information about the origin of the physical property under 

examination. If the norm value of a material is large, it has 

more effective property than the other materials of the same 

symmetry type. Euclidean norm is used for computations as 

a measure in this work. Euclidean norm also represents the 

stiffness effect in the material like fiber-reinforced 

composites. 

 Euclidean norm of a Cartesian tensor is defined as the 

square root of the contracted product over all the indices 

with itself, which is given as follows 

2
1

}{ ...... ijklijkl CCCN                  (59) 

     Since the basis constructed in this thesis is orthonormal 

and ...ijklC  is in the space spanned by that orthonormal basis

}{ KA , it is straightforward to see that, now the norm 

2
1

}),({ 2K

ijkl
K

ACCN               (60) 

The norm of nearest isotropic tensor, denoted by ,o

iiklC  of 

ijklC is therefore 

),(,}),({ 2
1

2 IIIKACCN K

ijkl

o

IK

o

i 


        (61) 

 In similar way, with respect to the tensor
ijklC , the nearest 

tensors of other symmetry classes within the class spanned 

by the basis }{ KA can be read off from the representation 

and their norms may be computed according to (60). By 

using the norms, the nearest isotropic tensors of lower 

symmetries such as cubic, tetragonal and trigonal can be 

found via the following formula [3] 

C

CC o

o


                (62) 

    Where 
o  is a scalar constant independent of the 

rotation of the axes. It is a measure of `nearness' of the 

nearest isotropic tensor. 

It is obvious that the anisotropy of the material, for 

instance, the symmetry group of the material and the 

anisotropy of the measured property depicted in the same 

materials may be quite different. Clearly, the property tensor 

must show, at least, the symmetry of the material. For 

instance, a property which is measured in a material can 

almost be isotropic but the material symmetry group itself 

may have very few symmetry elements. We know that, for 

isotropic materials, the elastic constant tensor has two scalar 

(isotropic) parts, so the norm of the elastic constant tensor 

for isotropic materials depends only on the norm of the 

scalar parts, i.e., .iNN  so the ratio 1/ NN i
for 

isotropic materials. For cubic materials, the elastic constant 

tensor has the same two parts that consisting the isotropic 

symmetry and a third which is designated as the anisotropic 

part, hence we define two ratios: NN i /  for the isotropic 

parts and NNa /  for the anisotropic part. For lower 

symmetry type materials such as tetragonal and trigonal, the 

elastic constant tensor additionally contains more 
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anisotropic parts, so we can define NNa /  for all the 

anisotropic parts. 

Although the norm ratios of different parts represent the 

anisotropy of that particular part, they can also be used to 

asses and compare the anisotropy degree of a material 

property as a whole. 

The following significant notes are taken into account 

when we have evaluated the computed results in following 

tables. These notes are: 

1. It can be used as a parameter representing and 

comparing the overall effect of a certain property of 

anisotropic materials of the same or different symmetry. If 

the norm value of a material is large, it has more effective 

property than the other materials of the same symmetry 

type. 

2. When
iN is the largest among norms of the decomposed 

parts, if the norm ratio NN i /  is closer to one, the material 

property is closer to isotropic. 

3. When 
iN  is not the largest or not present, norm of the 

other parts can be used as a criterion. But in this case the 

situation is reverse; if the norm ratio value is larger than the 

others, the material property is more anisotropic. 

In following sections, several examples from cubic, 

tetragonal and trigonal symmetries are presented. 

A. Materials from Cubic Symmetry 

Elastic constants of cubic materials are given in TABLE 

II. The units are in GPa. 
 

TABLE II 
ELASTIC CONSTANT DATA OF CUBIC MATERIALS  

Cubic Media  11C    12C    44C   

AlSb[7]  87.7  43.4  40.8 

Indium Phosphide(InP)[7]  102  58  46 

Gallium Arsenide(GaAs)[7]  118  53.5   59.4 

Gallium Antimonide(GaSb)[7]  88.4  40.3  43.4 

Indium Arsenide(InAs)[7]  84.4  46.4  39.6 

Gallium Phosphide(GaP)[7]  142  63  71.6 

For cubic materials, the norm and norm ratios, 
o (the 

anisotropy degrees) are computed in order to determine 

which one is close to isotropy or anisotropy. The results for 

norm, norm ratios and the measure of `nearness' of the 

nearest isotropic tensor are presented in the following 

TABLE. 
 

 

 

 
 

 

 
 

 

 
 

 

 
 

 

TABLE III 

THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR  
CUBIC MATERIALS 

Cubic 

Media 
 iN    aN    N   

 
N

N i
   

N

N a
  
 

o   

AlSb  229.5  40.9  233.1  0.985  0.175  0.016 

InP  272.1   52.6  277.1  0.982  0.190  0.018 

GaAs  312.6   59.5  318.3  0.982  0.187  0.018 

GaSb  232.4   42.4  236.2  0.984  0.180  0.016 

InAs  226   45.1  230.5  0.981  0.196  0.019 

GaP  375.3  70.3  381.9  0.983  0.184  0.017 

According to the calculated results in TABLE III, the most 

isotropic material among the other six materials is 

Aluminium Antimonide (AlSb). Since mathematically,  

N

N i
 for AlSb is so close to 1 that implies the closeness to 

the isotropic behaviour of the cubic materials which agrees 

with the physical understanding of the materials with cubic 

symmetry. This case is also verified by taking into account 

the results of 
o  which is closer to 0  than those of other 

five materials which indicates that AlSb is nearest to 

isotropy among the other materials. The most anisotropic 

material is selected as Indium Arsenide (InAs). Since the 

value of 
N

N i  for InAs is the smallest and in reverse manner, 

the value of 
N

N a  for InAs is the largest among the cubic 

materials. This case shows that the property of Indium 

Arsenide is the most anisotropic. 

B. Materials from Tetragonal Symmetry 

      Elastic constants of tetragonal materials are given in     

 TABLE IV. The units are in GPa. 
TABLE IV 

ELASTIC CONSTANT DATA OF TETRAGONAL MATERIALS  

Tetragonal Media  11C    12C   13C   33C   44C   66C   

Zircon, ZrSiO4   

(metamict)[8] 

 284  73  119  309  77.5 47.7 

Indium-cadmium alloy, 

 In-3.42 at %Cd[9] 

 44.8  41 40.5  44.1  6.86 11.3 

Ammonium 

dihydrogen 

 arsenate (piezoel.),  

NH4 H2 ASO4  [10] 

 62.2  8.6 18.4  29.6  6.69 6.22 

Rolled steel[7]  284  96  112  269  82.1 68.9 

Indium 

bismuth(InBi)[7] 

 51.1  37  32  34.6  19.8 15.9 

     

     The norm and norm ratios,  
o   (the anisotropy degrees)  

 for tetragonal materials are calculated in order to 

 determine the effect of anisotropy in other words which 

 one is more anisotropic or isotropic. The results for norm, 
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 norm ratios and the measure of  `nearness' of the nearest 

 isotropic tensor are summarized in TABLE V. 
TABLE V 

THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR 

TETRAGONAL MATERIALS 

 

Due to the numerical results in TABLE V, rolled steel 

exhibits the most isotropic property among the others. On 

the other hand, by taking into account the ratio 
N

N a , 

Ammonium dihydrogen arsenate (piezoel.) shows the most 

anisotropic property among the other tetragonal materials. 

C. Materials from Trigonal Symmetry 

     Elastic constants of trigonal materials are presented in 

TABLE VI. The units are in GPa. 

TABLE VI 
ELASTIC CONSTANT DATA OF TRIGONAL MATERIALS  

Trigonal Media  11C    12C    13C    14C    33C   44C   

Haematite,Fe2O3  

[7] 

 242  54.9  15.7  -12.7  228  85.3 

Antimony[11]  99.4   30.9  26.4  21.6  44.5  39.5 

Magnesite,MgCO3 

[12] 

 259  75.6  58.8  -19  156  54.8 

As-Sb at % As 

25.5[13] 

 106.7  48.4  28.5  18.8  48  40.8 

Arsenic[14]  130.2  30.3  64.3  -3.71  58.7  22.5 

The norm and norm ratios,
o (the anisotropy degrees) for 

trigonal materials are calculated in order to determine the 

effect of anisotropy in other words which one is more 

anisotropic or isotropic. The results for norm, norm ratios 

and the measure of `nearness' of the nearest isotropic tensor 

are summarized in TABLE VII. 
 
 

 

 
 

 

 
 

 

 
 

 

TABLE VII 

THE NORM AND NORM RATIOS (THE ANISOTROPY DEGREES) FOR TRIGONAL 

MATERIALS 

Trigonal 

Media 
 iN    aN    N   

 
N

N i
  

N

N a
  
 

o   

Haematite,Fe2

O3 

 515.5  78.8 521.5  0.989 0.151  0.012 

Antimony  202.3  100.9  226  0.895 0.446  0.105 

Magnesite,Mg

CO3 

 457.5  116.5 472.1  0.969 0.247  0.031 

As-Sb at % 

As 25.5  

 214.4  97 235.3  0.911 0.412  0.089 

Arsenic  250.4  85.4 264.5  0.946 0.323  0.054 

       From TABLE VII, it is understood that Haematite is the 

most isotropic material among the others by comparing the 

ratio 
N

N i
 and .o Besides among trigonal materials, 

Antimony is the most anisotropic material by investigating 

the effect of the ratio .
N

N a
 

VI. RESULTS AND CONCLUSION 

     The decomposition methods of tensors have many 

applications in different subjects of engineering. In the 

mechanics of continuous media, for instance, in elasticity 

studies; the stress and strain tensors are decomposed into 

spherical (hydrostatic) and deviatoric parts each of which 

have important meanings. From (17), it is obvious that stress 

tensor is decomposed into spherical (hydrostatic pressure) 

part which is the first term of (16) and the deviatoric part 

which is the sum of the other five terms of (16). It is 

decomposed into traceless tensors, each of them is related to 

shearing which represents a general symmetric second rank 

tensor (stress and strain tensors).  

     Each of the six tensor parts has physical meanings and all 

decomposed parts form an orthonormal set. The first part of 

equation (16) represents the spherical (hydrostatic pressure) 

effect which is connected to the change of volume without 

change of shape through the bulk modulus. The second and 

third part represent combined simple extension or 

contraction along the various symmetry axes. The second 

part is a special case of biaxial stress which is plane stressed 

state. This part could be, for example, the stresses which are 

produced by torsional loading in a shaft. For Mohr's circle 

construction, the center coincides with the origin of axes and 

a rotation of 
o90  (on the circle) leads to a state of stress in 

which the normal stresses are zero. This rotation is 

equivalent to a 
o45  rotation in the body (real space). The 

magnitude of the shear stress at this orientation is equal to 

the radius of the circle. It shows at once that if the axes are 

turned through  
o45  about  3Ox  (the axis of shear) then, 

the normal stresses vanish.  

 

 

 

 

 

 

Tetragonal Media  iN   aN    N   
 

N

N i
   

N

N a
  

 
o   

Zircon, ZrSiO4  

(metamict) 

 610.08   95.1  617.45  0.988  0.154 0.012 

Indium-cadmium 

alloy, In-3.42 at 

%Cd 

 128.5  15.7  129.48  0.993  0.121 0.007 

Ammonium 

dihydrogen  

arsenate (piezoel.), 

NH4 H2ASO4 

 95.7  38.5  103.1  0.928  0.373 0.070 

Rolled steel  611.5  36.1  612.5  0.998  0.059 0.002 

Indium 

bismuth(InBi) 

 128  31.77  131.9  0.971  0.241 0.029 
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This is why the stress is named as pure shear stress and the 

tensor takes the form of  fourth, fifth and sixth parts 

respectively[15]. Pure shear stress fields arise in many 

practical cases; for example, these type of stresses occur in 

the torsion of linearly elastic rods[16]. Furthermore the 

components of the third part are proportional to 1, 1, -2. 

This case may be an example for cylindrical shear. It is 

axisymmetric with respect to the  3Ox   axis which means 

invariant under a rotation about it. Thick walled cylindrical 

pressure vessels are one of the most typical applications of  

these type of stresses. The internal pressure will cause 

stresses in the material such that the hoop stress component 

is twice as much as the axial stress components (radial 

stresses and longitudinal stresses) for the cylindrical 

pressure vessel[17]. But the hoop stress and axial stresses 

are in different directions. This cause an advantage for 

engineering materials that can be made stronger in one 

direction than another (the property of anisotropy). Last 

three parts represent simple shearing in the symmetry 

planes. The sum of these three parts correspond to state of 

pure shear stresses which is Cauchy stress tensor. It is 

traceless and symmetric. Pure shear stress state has been 

widely described in recent studies such as Blinowski and 

Rychlewski[16], Hayes and Laffey[18].It should be noted 

that symmetric second rank tensors such as stress tensor and 

strain tensors are important subjects to understand the idea 

behind mechanics and elasticity. This is why decomposing 

them into orthonormal parts plays a significant role. 

    This method helps us to figure out the physical meanings 

of these tensors by decomposing them into six parts which 

introduces a new form of decomposition.  

This decomposition method for elastic constant tensor 

have many applications in various subjects of science 

(atomic and molecular physics and the physics of condensed 

matter) and engineering.  

Moreover, for very valuable materials (diamonds, quartz) 

used in mining, it is difficult to measure its elastic constants 

because of its small samples. Applying this decomposition 

procedure, it is possible to specify the elastic constants of 

these types of materials. 

Representation of elastic constant tensor in terms of its 

orthonormal parts by this method provides a deeper 

understanding about elastic and mechanical behavior of 

anisotropic engineering materials. It also has more 

significant effects on many applications in different fields 

such as  

1) investigation of the pure shear and pure longitudinal 

wave propagation in different anisotropic engineering 

materials. 

2) study the effect of angle orientation of fibers and the 

material properties of fibers and the material properties of 

fiber and matrix on the stiffness of the composite. 

3) determination of material symmetry type. 

4)  computation of norm and norm ratios for assessing and 

comparing the anisotropic properties of materials. 

Finally, I hope this paper prepares interested readers to 

appreciate a deep understanding of application of this 

method to stress tensor as an example of symmetric second 

rank tensor and general review of the method [5] based upon 

orthonormal representations.  
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