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Some Fixed Point Theorems for a Pair of
Selfmaps of a Cone Metric Space

Akbar Azam and B.E. Rhoades

Abstract— We obtain common fixed points of a pair of
mappings satisfying a generalized contractive type condition in
TVS valued cone metric spaces. Our results generalize some
well-known recent results in the literature.

Index Terms— contractive type mapping, cone metric space
fixed point ,non-normal cones

I. INTRODUCTION

( ‘ ommon fixed point theorems deals with the guarantee
that a system of operator equations

x=Tx({eQ)

has one or more simultaneous solutions. Huang and Zhang
[8] generalized the notion of metric space by replacing the
set of real numbers by ordered Banach space and defined
cone metric space and extended Banach type fixed point
theorems for contractive type mappings. Subsequently,
some other authors [1,4,5,7,10,12,13,14,15,17,20] studied
properties of cone metric spaces and fixed points results of
mappings satisfying contractive type condition in cone
metric spaces. Recently Beg, Azam and Arshad [6],
introduced and studied topological vector space(TVS)
valued cone metric spaces which is bigger than that of
introduced by Huang and Zhang [8]. TVS valued cone
metric spaces were further considered by some other authors
in [3,9,11,16,18]. In this paper we obtain common fixed
points of a pair of mappings satisfying a generalized
contractive type condition without the assumption of
normality in TVS-valued cone metric spaces. Our results
improve and generalize some significant recent results.

II. PRELIMINARIES

We need the following definitions and results, consistent
with [3,6] .
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Let (E,7) be always a topological vector space (TVS)

and P asubsetof E .Then, P is called a cone
whenever :

(i) P isclosed, non-empty and P # {0} ,

(i) ax+by e P forall x,y € P and non-negative real

numbers a,b ,
(iii) If x belongs to both P and —P , then x=0

We shall always assume that the cone P has a nonempty

interior int P (such cones are called solid). Each cone P
induces a partial ordering < on E by x<y ifand

onlyif y—xe P, x<y willstand for x <y and
X#y ,while x <<y willstand for y—xeintP ,
where int P denotes the interior of P .

Definition 1 Let X be a non-empty set. Suppose the
mapping d : X x X — E satisfies:

(d,) 0<d(x,y) forall x,ye X and
d(x;J/)=0 ifand only if x=y,

(d,)d(x,y)=d(y,x) forall x,ye X,

(d;) d(x,y)<d(x,z)+d(z,y) forall

x,y,z€ X.
Then d is called a TVS-valued cone metricon X and
(X,d) is called a TVS-valued cone metric space. If E isa
real Banach space then (X,d) is called cone metric space
(8].

Definition 2 Let (X,d) bea TVS-valued cone metric

space, x € X and {x,},., asequencein X .Then

(i) 1X,},s convergesto x whenever forevery c €k
with 0 << ¢ there is a natural number N such that
d(x,,x)<<c forall n> N .We denote this by

lim

n—0

no’

X, =X or X, —>X.

(i) {x,},, isa Cauchy sequence whenever for every

ce E with 0<<c thereis anatural number N such
that d(x,,x,)<<c forall n,m=N .
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(iii) (X,d) isa complete cone metric space if every
Cauchy sequence is convergent.

Note that the results concerning fixed points and other
results, in the case of cone metric spaces with non-normal
solid cones, cannot be proved by reducing to metric spaces,
because in this case neither of the conditions from Lemma
2.6 [9] holds. Further, the vector valued function cone
metric is not continuous in the general case, i.e., from

X, > Xy, >y it that
d(x,.,) > d(x,y) (see [9]).

need not follow

III. MAIN RESULTS

The following theorem improves/generalizes the results in
[2, 8, and 14]

Theorem 3 Let (X,d) be a complete TVS-valued cone

metric space, P be a solid cone and 0< h <1 . Ifthe
mappings S, T : X —> X satisfy:

d(Sx,Ty) < hu(x, y) @
Jorall x,y € X , where
d(x,y),d(x,8x),d(x,Ty),

u(x,y) €d(y,Tx)+d(x,Sy) ;
2

then S and T have a unique common fixed point.

Proof We shall first show that fixed point of one map is a
fixed point of the other. Suppose that p =Tp and that

p # Sp. Then from (1)

d(Sp, p)=d(Sp,Tp)< hu(p, p).
Case L.
d(Sp,p)S hd(p, p) =0, and p = Sp.
Case II.
d(Sp. p)<hd(p.Sp).
which, since we have assumed that
p # Sp yields p = Sp,
Case I1I.
d(Sp, p)< hd(p,Tp) =0, and p = Sp
Case IV.

d(sp p)gh[d(p,Tp)ﬁLd(p’Sp)}

2
which implies that d(Sp, p)<2d(p,Sp), and hence
p = Sp . In a similar manner it can be shown that any

fixed point of S is also the fixed point of 7. Let
x, € X. Define

We shall assume that x, # X for each n. For,

n+l

suppose there exists an 7 such that x,, = x,,,,. Then
x,, =1Ix,, and X, isafixedpointof 7', hencea
fixed point of S. Similarly, if x,,,, =X,,,, forsome

n ,then X, ,, iscommon fixed pointof S and 7.
From (1)

d(x,,,%y,,,) < hud(x,, ,,X,,).
Case I.
d(x,,,%,,.,) Shd(x,,,,X,,).
Case II.
d(Xy,, X301) S hd(Xy, 1, 8%y, 1) S hd(X,, 1, %,,).
Case I1I.
d(Xy,,%5,,1) < hd(xy,,Tx,,) = hd (x,,, %5,,,1)s
which implies that
X,, = X,,,,» a contradiction to our assumption.

Case IV.

h
d(x,,,%,,,,) < 5 [d(x2n—1 ,Ix,,) +d(x,,,8%,, )]

h 1
= Ed(xz”_1 ,X,,)+ Ed(xz,, 3 X001 )

which implies that
d(‘x2n H x2n+1 ) < hd ('x2nfl H 'x2n )

Thus in all cases, we have
d(x,,,%,,,,) < hd(x,, |,X,,). Similarly, one can show

that d(x,,,,X,,,,) < hd(x,,,x,,, ). Thus, forall n ,

d(x,,x,,,)<hd(x,_,x,)< hzd(x”fz,xnfl)... <h'd(x,,x,)

Now for any m > n,
d('x 'xn) S d('xn > xn+1 ) + d('xn+1 >

<l )d e, x)
2”1
< {n} d(x,,x,).

Let 0 << c be given, choose a symmetric neighborhood
V' of 0 suchthat c+V < intP . Also, choose a

X))+ +d(x, |, x,)

m?

natural number N, such that [lf—Jd (x4,X,) €V, forall
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n= N, . Then
Thus,

, £d(x,,x,)<<c ,forall n=N, .

n

d(x,, x,)< [I/I/Jd(xo,xl) <<c,

forall m > n . Therefore, {x,} ., isa Cauchy sequence.

Since X is complete, there exists # € X such that

X, = u. In casel, choose a natural number N , such
that

d(x,,u) <<§ forall n> N,.

Then forall n=N,
du,Tu) < d(u,x,,,,)+d(x,,,,,Tu)
< d(u’x2n+2) + d(Sx2n+l ,TM)
S d(u’x2n+2) + hd(x2n+1 > u)
S d(uy x2n+2 ) + d(x2n+1 ’u)

c c
<K—+—=c.
2 2

For case II choose a natural number N 5 such that for all

nzN,

d(x xn)<<§ and d(x u)<<§.

n+l2 n+1°

Then forall n> N,
d(u,Tu) < d(u,x,,,,) +d(x,,,,,Tu)
<d(u,x,,,,)+d(Sx,,, ,Tu)
<d(u,x,,,)+hd(x,,.,, X,,.,)

SdW,Xy,5) +d(Xy,005%,.2)
c c
<—+—=c
2 2

In case III choose a natural number N, such that

d(x,,,,u)<<c(l-h)forall n=N,.

n+l2

Hence, forall n= N,

d(u,Tu) < d(usx2n+2) + d(x2n+2’Tu)
S d(uax2n+2)+d(Sx2n+l’Tu)
<d(u,x,,,,)+hdu,Tu)

1
< Ed(u,xmwz) <<ec.

In case IV choose a natural number N s such that

c(1-h)

d(x, . ,u) <<Tforalln2N5.

n+l2

Then forall n= N,

d(u,Tu) < d(u,x,,.,) +d(x,,,,,Tu)
< d(u,x,,,,)+d(Sx,,,,. Tu)
< d(u,x,,.,)+hld W, Sx,,,) +d(x,,,,Tu)]
< d(U,x,,.0)+ Hd (x5 1) +d (x,,, 1) +d (1, Tu)]

1
< - [d(u,x,, )+ h(d(x,,.,,u)+d(x,,,u))]

c ¢ ¢
<< —+—+—=c.
3 3 3

Thus
d(u,Tu) << i,for all m=>1,
m

so ~—d(u,Tu)e P, forall m>1. Since
<—>0(asm—>») and P isclosed
, —d(u,Su) e P. But d(u,Tu)e P. Therefore,

dw,Tu)=0, and u =Tu. Similarly, by using
dwu,Tu)<d(u,x,,,,)+d(x,,,,,Tu),

we can show that 1 = Tu, which implies that u isa

common point of S and T .

Example 4 Let X = [0,1] and E be the set of all real

valued functions on X which also have continuous
derivatives on X. Then E is avector space over R

under the following operations:

(r+9)(e)=x(0)+ »(0). (ax)(e)=cexle),

forall x,ye E,a €R. Let T be the strongest vector

(locally convex) topology on E. Then (X, T) is a

topological vector space which is not normable and is not
even metrizable. Define d © X x X — E as follows:

(d(x,y))(e)=x—»[3",

P={(xeE : x=>0}.

Then , (X ,d ) is a TVS-valued cone metric space. Let
O<h<l and S, T : X > X besuch that

|Sx—Ty| < hu|x—y|
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Jorall x,ye€ X , where

o6 —Sx|,|x =Ty Then

‘yfofoSy‘ }
s 5 2

ulx—yle {x -y
S, T satisfies all conditions of the above theorem.

Theorem 5 Let (X,d) be a complete TVS-valued cone

metric space, P be a solid coneand 0 < h<1 .Ifa
mapping T : X = X satisfies:

d(Tx,Ty) < hu(x, y)
Jorall x,ye€ X , where
d(x,y),d(x,Tx),d(x,Ty),

u(x,y) €4 d(y,Tx)+d(x,Ty) )
2

then T has a unique fixed point.

Corollary 6 Let (X,d) be a complete cone metric

space, P be asolid cone and 0 < h <1 .Ifa mapping
S,T : X > X satisfies:

d(Sx,Ty) < hu(x, y)
Jorall x,y € X , where
d(x,y),d(x,8x),d(x,Ty),

u(x,y) €d(y,Tx) +d(x,Sy) ;
2

then S and T have a unique common fixed point.

The following example shows that the above corollary is an
improvement and a real generalization of results [8,
Theorems 1, 3, 4 ] and [5, Theorems 2.3, 2.6, 2.7].

Example 7 Ler X ={1,2,3}, E=R’> and
P= {(x,y)eE : X,y 20}, Define
d: XxX—>R> asfollows:

(0,0
4,2) ifx#yandx,ye X —{2}
)

L)y if x#yandx,ye X —{1}.

2074

ifx=y
if x#yandx,ye X —{3}

Defineamapping T : X —> X as follows:

3 ifx=2

T(x) =
=1 ifeen.

Note that

d(T().TQ)=d(G.1) = é,%)

(i). For a <1, we have
ad(3,2)<d(T(3),7(2))
(ii). For <3
Bld(3.T(3)+d(2,T(2))]<d(T(3).T(2))
(iv). For y <%,
Yd(3.T(2)+d(2.T(3)]< d(T(3).T(2)).

Therefore the results in [8] and [14] are not applicable to
obtain fixed point of T.

In order to apply the above corollary consider the mapping
Sx=3 foreach x€X. Then,

(0,0) if y=2
(#,2) ify=2

727

d(Sx,Ty) =
and for h= %

hd(y,Ty) = g,% if y=2.

It follows that S and T satisfy all conditions of the
above corollary and we obtain T'(3) =3 = S(3).
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