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Systems of Singularly Perturbed Fractional
Integral Equations Il

Angelina M. Bijura

Abstract—The solution of a singularly perturbed nonlinear and references see O’'Malley [19]-[20], Smith [26], Lager-
system fractional integral (differential) equations of order strom [11], Kevorkian and Cole [9], Kauthen [8], Verhulst
s, 0 < ¢ < 1is investigated. The leading order formal 1591 itelski and Bowen [28], and most recently Skinner
asymptotic solution is derived and proved to have the required . . .
properties. [24] gave the_ analysis of the mat<_:hed a§ymptot|(? expansion

method on singularly perturbed differential equations.

The algebraic decay (behaviour) displayed by solutions
of singularly perturbed Volterra equations with weakly sin-
gular kernels resembles the asymptotic behaviour of higher

I. INTRODUCTION transcendental functions of fractional calculus. Fractional
ONSIDER the nonlinear singularly perturbed system (ﬁalcul_us is a rese_arc_h topic that i§ currently receiving .huge
fractional order equations, attention fro_m smenn;ts_and engineers. The complexny of
the algebraic decay in inner layer solutions of singularly
ep(t) = Y(te)+oJif(t, o), 0<t<T, perturbed Volterra equations with weakly singular kernels,
T>0 0<c<1, 0<e<<l. (1) and the increased popularity of fractional order models
incites the study in this paper. The novelty of the paper
The vector functiory is assumed to be smooth with arlies in the application of the Mittag-Leffler stability to prove

Index Terms—singular perturbation, fractional calculus,
\olterra integral equations

asymptotic expansion of the form algebraic decay and asymptotic correctness. The origin, the-
) ory and applications of fractional differential (and integral)
P(t;e) = Zs%i(t), e—0, (2) equations, can be found in Oldham and Spanier [18], Eskin
i=0 [5], Hilfer [7], Miller [17], Samko [23], Igor [22], Kilbas [10]

and Ortigueira [21]. For specific applications for example,
bioengineering see Magin [15]; transportation modeling see
P,(t):0<t<T —>R"e C®R"), ¢,(0)=0,V1i. Schumer, Meerschaert and Baeumer [25]; control applica-
o o , ) tions and system modeling see Caponetto, Dongola, Fortuna
_The ope_rator_aJt, a_nq_lateraDt are d_eflned using the and Petras [3]; applications in viscoelasticity see Mainardi
Riemann-Liouville definition. For a continuous functian [16]; applications in dynamics of particles, fields, media and
and fora <a <1, a>0, complex systems see [27]; and references therein.
1 ¢ In the next section, mathematical preliminaries used
adi O(t) = T(a) / (t—s)*""¢(s)ds, t > a, (38) throughout the paper are presented. In Section Ill, the formal
1 J ‘L asymptotic solution of (1) is derived. The derivation is
7—/ (t—s)"%¢(s)ds, t > a. (3b) limited to the leading order since higher order terms of the
I(l-a)dt J, inner layer solution depend on the actual valuesoft is
The analysis of the formal asymptotic solution of (1) iralso shown in Section Ill, using the existing literature on
this paper follows that of a linear version studied in [2]. Sinvolterra integral equations and fractional calculus, that the
gular perturbation is a widely studied research area for bdthrmal solution has the required properties. A basic matrix
differential and integral equations. For ordinary differentiglgebra is applied to accomplish this. In particular, it is shown
equations and integral equations, with continuous kernel, tih@t the inner layer solution decays to zero as the stretched
study is extensive. For singularly perturbed Volterra equsariable approaches infinity, like the Mittag-Leffer function -
tions with weakly singular kernels and fractional differentiz special function in fractional calculus. This property of the
(integral) equations, the study is far from comprehensive. Thener layer solution is then used to prove that the remainder
disparity between the two lies in the fact that the formderm, obtained when the formal solution satisfies (1) ap-
have formal solutions whose inner layer functions decgyoximately, is asymptotically small and therefore validates
exponentially and the latter have inner solutions that dectiye solution. To demonstrate the methodology developed in
algebraically. Exponential decay is easier to analyse, Woection Ill, an example of a nonlinear singularly perturbed
there are some limitations in the analysis when algebrdi@ctional equation is presented and solved in Section IV.
decay is encountered. The problem studied in this paper
exhibits an inner layer algebraic decay. For a detailed study
on singular perturbation theory including practical problems

where

oD o(t) :=
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Il. MATHEMATICAL PRELIMINARIES To obtain the formal solution, one forms the partial sum
The following will be assumed throughout the paper: N N ;
S -0<¢<1 On(tie) =D ¢ +p(e) Y e€(=), e =0,
S, - The vector functiong D5 : [0,00) — R™,f : i=0 i=0 ‘

([0,0) x R™) — R™ are bothC> with ¥ (0;¢) =
0.
S; - There exists a number > 0 such that

Re(\)} < —
Ao (A oy RN} < =

S; - For every\ € ¢{92f(0,u(0))} the algebraic
multiplicity of X is equal to the dimension of its  This implies the following formal asymptotic solution,
eigenspace

Analogous to exponential stability, the Mittag-Leffler

stability is a common property used to prove stability

and boundedness of solutions of fractional differential

(and integral) equations. The following definition of Since the inner layer solution is negligible outside the layer

the Mittag-Leffler stability is a special case of the onéegion, one requires that for eack 0, lim, . §;(7) = 0.

given in [14]: In particular, as it will later be shown,

and substitute it into (5). Expressing all terms in the
resulting equation in terms af and applying the dominant
balance argument, it follows that

1
ple)= 0Ord(1), e—0, and y=-, 0<c¢<1.
S

N N
bx(69) = 60+ ;m@ £ 0. ()

— —< ;
Definition 11.1. The Mittag-Leffler Stability §(r) = 0rd(r™), 700, Viz0 (8)

Consider the solutiory of To derive the formal solution, substitute (7) into (5) giving

DIy = 8(t,y), y(to) = yo,
O<a<l, ty<t<oo, 4) N N " 7
() + () = o {*(1:))
Lipschitz iny. The operatorD® is either Caputo or a = +oJs {p(te) +alt, o)), (9)
Riemann-Liouville fractional derivative.
The solution of(4) is said to be Mittag-Leffler stable if where,

i . Ei-i—l )
whereg : [ty, 00) x R" — R™ is continuous and locally ; G

[y (t)]] < m(y0) Bat (At —t0)*), A>0, . o
m(yo) >0, m(0)=0 P(tie) = ZE «i(t), =0, (10a)
i ) ) 1:0
and wherem is locally Lipschitz iny. The function N
E..3, known as the generalized Mittag-Leffler function, p(t;e) = f <t,251g‘i(t)> , €—0, (10b)
is defined by i=0
0 i N ) N )
z . _ 7 Yt
Ea. zZ) = e a,/@ > 072 e (C q(taT7€> - f (tv € C'L(t) + ZE 61(7_))
= 2 tae)
N
IIl. FORMAL SOLUTION —f (t,zesici(t)> : (10c)
A. Derivation i=0
The fact thaty(0; ) = 0, equation (1) can be written as  From above,
20(t) = o5 {*(t:e) + /(1. $(1)} N .
0<t<T, 0<c¢<l, (5) p(t;s):Ze:lpi(t)Jr Ord(e ), €—0.
1=0
where, i .
*b(t:€) = o DSap(t; ). The coefficienty,(¢) are given by
The solution of (1) (and hence (5)) is thought in the form po(t) = f(t,¢(1)),
of

pi(t) = 0af(t,¢o(1))¢C1(2)- In general

P:) = Goulli) +¢(E)Pn(T2), Pilt) = a8 CoO)CD) + wilt)

where ¢, represents the outer solutiop(c) scales the . )

amplitude of the inner layer ani,, represents the inner layer  Wherew;(t) is determined byw(t) for 0 < k < i —1.
solution. Bothe,, and¢,, are assumed to be expandable ifhe first two terms otv;(t) are:

powers ofe: 1

wit) =0, walt) = RF(E GBI 0)

Using the mean value theorem and (8), one can show that
the functiong(t, T; ¢) in (10c) satisfies

Goui(t;e) = Zsi(’i(t), e —0, (6a)
i=0

On(7:c) ga%m, T=, e 0. (6b)

q(t,m5¢) = Ord(r™°), 7 — oo. (11)
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The equation governing the outer solution is obtained frolrevin [12] proved that solutions of the unperturbed and
(9) by letting e — 0 and equating coefficients of equalperturbed systems are asymptotically equivalent. Therefore,

powers ofe. Using (8) and (11) gives the solution&,(7) of (15) approaches zero asapproaches
infinity. To show that indeed this solution satisfies condition
0 = 0‘]2 Letbo(t) + f (1. Co (1))} (12a) (8) which is used in the derivation of the formal solution, it
Cio1(t) = oJi {xvs(t) + 021 (1, Co(t))Gi(t) + wit)} ., will be shown that the solutiog, () is Mittag-Leffer stable.
0<t<T, i>1. (12b) Equation (15) is sub-linear. To determine the asymptotic

) ) ) ) __behaviour, one may suppress the dependenteaf¢, and
To derive the equation governing the inner layer solutiof)sites the equation as

express (9) in terms of and equate coefficient of equal
powers ofe. Using (12a), the leading order inner layer€,(r) = —¢,(0) + oJ5 {92(0,$,(0))&0(7) + x(7)},
equation becomes >0, (18)

where
§(1) = —Co(0) +0J5 {f(0,¢o(0) +&o(7))} x(7) = O(&y (7)), T7—0, T — . (19)

— 052 {f(0,¢{,(0)}, 7>0. 13 . .
o+ 470,60} 7 13) Taking the Laplace transform on both sides of (18) one has

Higher order equations depend on the actual values of . 1 ) 1
E(s)=—=s"" (L, — M) " ¢y(0) + (s°I, — M)~ X(s),

B. The Outer Solution where,
an‘l(;hii Igei?/gi:?n?gﬁ;;}cl)li)tjr solutiafy (¢), follows from (12a) =(s) L (& (7)),

. X(s) = Lx(),

F(t,Co(t) = —"1hy(2). (14) I, is the identity matrix of size n
For higher order terms of the outer equation, the solution M = 0;f(0,¢((0)), ann x n matrix,
¢;(t), for i > 1 follows from (12b) and is given by L is the laplace operator
Cic1(t) = o {*9i(t) +wi(t) + 02 (¢, (o (1) (1)} By conditionSy, M is diagonalisable. IA is an eigenvalue
0<t<T. of M with corresponding eigenvector then ﬁ is an

. ¢ . -1 .
This is a nonlinear \Volterra equation of the first kindglgenvalue Of(s*1, — M) ~ corresponding to the same

. . < . -1 .

Since*v,, w; andf are continuously differentiable Vectorelgenv_ectory._ It follows that the matr_lx(s I" M) s
. : . also diagonalisable and therefore an invertible maltiand

functions, the existence and uniquenesggf) for ¢ > 0 a diagonal matrixD(s) exist such that

and allz > 1 is guaranteed only if;_,(0), ¢« > 1. For a 9 5

detailed discussion on this see for example, [6] or [13]. In the

context of fractional calculus, the existence and uniqueness 2(s) = fSS'—lpD(S)p—lCO(O) + PD(s)P~'X(s),

theorems can be found in [17], [22] and [10].

where
C. The Inner Layer Solution ﬁ (1) 0
The application of the Taylor theorem is used to write (13) D(s) = 0 = 0 0
as . .
Eo(T) = —Co(0) +0J5 {02£(0,¢0(0))€0(T)} 0 0 .
+ o5 {h(&()}, >0, (15) Here, \; is ani-th eigenvalue ofAMf and s‘i/\i is an i-th
whereds f € R™" andh(&,(r)) = Ord(€,(r)) eigenvalue of(s°I,, — M)fl. The matricesP and P~! are

0, T — oo mdependent ofs.- N .
Following the assumptions in Section 2, the existing YSINg 93, the infinity norm of a matrix and the supremum

literature of fractional calculus can be applied to shofiorm Of & vector, one obtains
that equation (13) has a unique solutigg(7) which is _ st 1
continuous and bounded for atl> 0. For details see [10], IE(s)lloo = a0ll€o(0)llo s+ T UHX(S)HOO’
[17] and [22]. where
The remainder of this subsection demonstrates that indegd.
the solution¢,, satisfies (8), the main result that was assumed
in the derivation of the formal solution. Let K(s) be a positive vector function such that there is
Equation (15) is a perturbed linear equation. The unpef-positive vectoik(r) which satisfies
turbed equation,
L k(7)) = K(s).

o(1) = e(0) +oJ5Ae(7), 720, (16)

where A € R™*™ has been shown in [2] to satisfy

a0 = || Pl [P -

Then

571
or) = O}, 70 17y 56l = 00l6o(0) a0 X () K (o)

(Advance online publication: 21 November 2012)



TAENG International Journal of Applied Mathematics, 42:4, [JAM 42 4 01

Applying the inverse Laplace transform on both sides, oneThe Taylor theorem then yields,

oes, poltie) = 05 {02f (1. Colt)) — 02(0,Co(0))} €(t/7)
B [€0(T)lloe = 0|0 (0) oo Ec(—=n7°) + + o(&(t/e7)), & — 0.
Oéo/0 (1= 0) Eq o (=n(1 = 0))[Ix(0) |0 do — k(7), From this equation it is clear that for fixed> 0,

p(t;e) — 0, ase — 0. To prove the theorem, apply (21)
whereE, 5, a, 3 > 0 is the Mittag-Lefler function defined inio the above equation to get

in Section 2. It then follows that, lpo(t:0)] 1¢0(0) e (1 + T(<)
i Po(t;€)|lcoc < apl|Co ol +1(g
. HSO(T)HOO < a0||C0(0)||00 Ec(in'r ) + ()Ji”@zf(t,C()(t)) N 82f(07CO(O))HOOEc.,l(*ntC/‘C;)a e — 0.
aO/O (T - U)g_l Ec,s’(_n(T - U)g)HX(U)HOO do. (20) Using the formula

Using (17), (19) and Levin's [12] result, one can show A / (@ — )% Bay (M) = Ea1(Ae®) — 1,
0

that, I'(a)
IX(T)llso < €0 (0)lloc7™*, 7 — o0 a>0, \eC,
Applying this inequality in (20) yields, one obtains
[€0(T)lloc < @0[1€o(0)[|oo Ec(=n7%) + lpo(tie)llee < %aoalllco(o)llm(l +1(<))
aoHCo(O)Iloo/ (1 —0) "0 Eqo(—n(T — 0)°) do. {1 —Eca(=nt*/e)}, e > 0.
0
The integration of the Mittag-Leffler function, see forere,
example [22], gives the required result, ar = [|0af (£, Co(t) =02 £ (0,0 (0))]los, 0 E<T, T > 0.

An equivalent inequality is
1€0(T) oo < a0ll€o(0)[oo (1 +T'(<)) Eq 1 (=n7%).  (21)

9
: . Lo te)lloo < — 0)lloe (1 +I'(<)),
This proves that the solution of the leading inner layer lleo(t: )l 77040041||C0( oo (<))
equation (13) is Mittag-Leffler stable. The asymptotic eXyhich is the required result. Therefore the formal asymptotic
pansion of the Mittag-Leffler function, originally from [4] so|ution is asymptotically correct.
and later in several research articles including [22] and [1]

validates (8). IV. EXAMPLE
) Consider the following example of a singularly perturbed
D. The Remainder Term nonlinear fractional integral equation of ordér
Letug(t;e) = ¢o(t)+€(L ). Swppose that vectamy (¢; )
satisfies (1) approximately with a remaindpg,(t; ). Then NG
1 2
cug(t;e) = h(tie) +oJif(tuo(tie)) — po(t;e), e¢(t) = oJ¢ { ( 0 ) }+
0<t<T, T>0,0<e<<1. 2
. . —¢1(t) + ¢2(t)
Equivalently o} { ( 0.561(t) — 62(t) — o1(D6s(t) | o, (23)
po(tie) = (t;e) +oJ] f(t,uo(t;e)) —euo(t; ), —¢3(t) + d1(t)2(t)
0<t<T, T>0, 0<e<<l. (22) where 5
The asymptotic correctness of the derived formal solution, &= ¢; and ¢> 0.
in terms of the leading order solution, is presented in the b3 N

theorem below. . - . . .
It is not difficult to check that all assumptions in Section 2

Theorem Ill.1. Supposes;, S;, S3 and Sy hold. Then the gre satisfied by equation (23).
residual p, (t; £) given in(22) satisfies,
A. Formal Solution
The leading order outer solution is given, from (14), by

lpo(t;e)] < ko e, €—0,

uniformly forall 0 < ¢ < T, T > 0, for some fixed positive

constants, which does not depend an ( T ) ( -1 1 0
Proof 0 = 0.5 -1 Co(t)
Consider (22), 3 0o 0 -1
: 0
po(t;e) = P(t;e) +oJif(t,Co(t) +&o(t/e™)) + ( —Co1(t)Cos (1) ) ,
—e(Co(t) + & (t/e7)). Co1(t)Go2(t)
Using (14) and (13) expressed inone obtains where, C
po(t:€) = 05 {F(8.Co(t) + E(t/€)) — F(1,Co(1))} Co = ( o ) _
—0J3 {£(0,¢0(0) +&(t/27)) — f(0,¢0(0))} - Cos

(Advance online publication: 21 November 2012)
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The solution of this system is unique and is given by
VT
VT
2
0
Since {o(t) # 0, ¢i(t), ¢ > 1 cannot be determined.
Therefore, to all orders, the outer solution is given by (24).

Using (24), the leading order inner layer equation follows
from (13) as,

Co(t) = t>0. (24)

3

/T ) 0
fo(r) = Y| T2 —&01(7)&03(7)
0 o1(7)&02(7)
. -1 1 0
+ 0JZ 0.5 —1 —/7 | &o(r)p (25)
FovE -l
for = > 0 where,
o1
o= | &o2
o3

Taking the laplace transform on both sides of (28) gives,

oq 1

EZ‘S: =+
0i(s) s%(s%—i-l) (s%—i—l)

Woi(s),

WhereE(S)Oi = ﬁ(fol (T)) and \II(S)O»L = L(’l/)()z(T))
The inverse laplace transform then yields,

€0i(r) = w0 By 1 (-72) +

(—(7 = 7))o (o) do.

(r— 0)_% E
0

=

11
272

It follows that,

1€0i(T)l < |V0i|E%71(*T%) +

/0 (7 - 0) * By 1 (~(r — 0)})|[os(0)]| do,

Using (26), one can show that,

1 ..
|V0i (7)|| < |voilooj72, T— 00, 1,5 =1,2,3.

Here,oy; is a constant which depends ég (7) for j # i.
Substituting this inequality into the integral and perform

integration yields the required result, that

Similar to (23), this equation is nonlinear, but it is simpler
than (23) in the sense that the parametedoes not appear
explicitly in the equation.

The eigenvalues of the matrix in (25)
—1.53626, —0.73187+ 1.69035i, and —0.73187 — 1.69035i.
This implies that the matrix in equation (25)
diagonalisable, the property used in Section III-C to
prove the asymptotic behaviour of the inner layer solution.

The solution&,(7) of (25) is unique, continuous and [1]
bounded. Asymptotically, by Levin [12], this solution is
equivalent to the solution of the linear version which decayg;
to zero asr approaches infinity. The linear version satisfies,

1€6(T)]] < 1€ (0)][7~%, 7 — . (26) 1

To show that the solutiogo(r) satisfies (21) and hence 4]
(8), one can show that each componentég{r) satisfies

(21). Do to this, express equation (25) in an equivalent form[:]
5

En(r) = —Va+oIE{~&n(r) +én(n}, @78)
fo(r) = ~ YTt (~talr) + = ()} (@Tb)
€)= oJF {~&n(r) +0(7)}, (27¢) [0
where 8]
w(r) = 0.5&n(7) — V7 &o3(T) — &or(T)&03(7), el
0r) = YT en(r) + VT o) + En(on(r).

It follows that eaché&y; is continuous and bounded agi1]
7 — oo and so arew andd. Thus each of these functions;[lz]
o1, €02, &o3, w and ¥ has a laplace transform. Now

[13]

consider a more general form of (27),
§o0i(T) = voi + 0J 2 {—&0i(T) + Poi(7)}, i=1,2,3, (28) [4
where [15]

[16]

(Advance online publication:

1€0i (Dl < lvoil (1 + 00 v/T) Ey 4 (=72), i=1,2,3.

Although the solution of (25) could not be determined
areexplicitly, the solution of (23) for values of > 0, away
iSfrom the inner layer is given by (24).
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