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Abstract—In this paper, an efficient method for
solving numerically stochastic Volterra integral equa-
tion is proposed. Here, we consider triangular func-
tions and their operational matrix of integration. This
method has several advantages in reducing computa-
tional burden and is more accurate than the BPFs.
An error analysis is valid under fairly restrictive con-
ditions. The method is applied to examples to illus-
trate the accuracy and implementation of the method.
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1 Introduction

Wide variety of problems in physics, mechanics,
economics, sociology, biological lead to the Stochastic
Volterra Integral Equations (SVIEs). These systems are
dependent on a noise source, on a Gaussian white noise,
so modeling such phenomena naturally requires the use
of various stochastic Volterra integral equations.

Most SVIEs can not be solved analytically and hence it
is of great importance to provide numerical solution. So,
there has been a growing interest in numerical solutions
of stochastic Volterra integral equations for the last years
[1,7,14,15,17,18].

In the present work, we consider

u(t) = u0(t) +

∫ t

0

k1(s, t)u(s)ds+

∫ t

0

k2(s, t)u(s)dB(s),

(1)
t ∈ [0, T ),

where, u(t), u0(t), k1(s, t) and k2(s, t), for s, t ∈ [0, T ),
are the stochastic processes defined on the same proba-
bility space (Ω,F, P ) with a filtration {Ft, t ≥ 0} that
is increasing and right continuous and F0 contains all P-
null sets. u(t) is unknown random function and B(t) is
a standard Brownian motion defined on the probability
space and

∫ t

0
k2(s, t)u(s)dB(s) is the Itô integral.

Triangular Functions (TFs) have been introduced by Deb
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et al. (2006) in [8], and TF approximation were success-
fully applied for analysis of dynamic systems [8], vari-
ational problems [6], integral equations [3,5], integro-
differential equations [4], Nonlinear Constrained Opti-
mal Control Problems [9], and Volterra-Fredholm integral
equations [2,12,13].

This paper is organized as follows: In the next section
we review one-dimensional triangular functions. Section
3, presents stochastic concept that is used in this paper.
Section 4, introduces stochastic integration operational
matrix related to TFs. In Section 5, TF method is applied
to solve stochastic Volterra integral equations. Section
6, investigates error analysis of method. In Section 7,
numerical results are shown. Finally, Section 8, provides
the conclusion.

2 Triangular functions(TFs)

In this section definitions of the TFs and their prop-
erties are reviewed. Two m-sets of triangular functions
are defined over the interval [0, T ) as

T 1
i (t) =

{
1− t−ih

h ih ≤ t < (i+ 1))h,
0 elsewhere.

(2)

T 2
i (t) =

{
t−ih
h ih ≤ t < (i+ 1))h,

0 elsewhere.
(3)

where, i = 0, ...,m − 1. m is the number of elementary
functions and h = T

m . In this paper, it is assumed that
T = 1, so, TFs are defined over [0, 1), and h = 1

m . More-
over,

T 1
i (t) + T 2

i (t) = φi(t), (4)

where, φi(t) is the ith block pulse function:

φi(t) =

{
1 (i)h ≤ t < (i+ 1)h,
0 elsewhere.

(5)

From the definition of TFs, it is clear that TFs are dis-
joint, orthogonal, and complete [8]. Therefore it can be
written ∫ 1

0

T p
i (t)T

q
j (t)dt = δij�p,q, (6)
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where, δij is Kronecker delta and

�p,q =

{
h
3 p = q ∈ {1, 2},
h
6 p �= q.

(7)

The set of TFs may be written as a vector T1(t) and
T2(t) of dimension m

T1(t) = [T 1
0 (t), ..., T

1
m−1(t)]

T ,

T2(t) = [T 2
0 (t), ..., T

2
m−1(t)]

T , (8)

and
T (t) = [T1(t), T2(t)]T , (9)

where, T (t) is called the 1D-TF vector.

From the above representation and disjointness property,
it follows:

T (t).TT (t) � diag(T (t)) = T̂ (t), (10)

where, T̂ is a 2m× 2m diagonal matrix.
The expansion of a function f(t) over [0, T ) with respect
to 1D-TFs, i = 0, ...,m− 1 is given by

f(t) �
m−1∑
i=0

C1iT
1
i (t) +

m−1∑
i=0

C2iT
2
i (t)

= C1T .T1(t) + C2T .T2(t)

= [C1, C2]T .[T1(t), T2(t)] = CT .T (t), (11)

where, C1i and C2i are samples of f , for example C1i =
f(ih) and C2i = f((i+ 1)h) for i = 0, 1, ..,m− 1, and as
a result there is no need for integration. The vector C is
called the 1D-TF coefficient vector.

Now, integration operational matrix of TFs is considered∫ t

0

T1(s)ds = P1.T1(t) + P2.T2(t), (12)

∫ t

0

T2(s)ds = P1.T1(t) + P2.T2(t), (13)

where,

P1 =
h

2

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎠

m×m

, (14)

P2 =
h

2

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1

⎞
⎟⎟⎟⎟⎟⎠

m×m

. (15)

Therefore, ∫ t

0

T (s)ds � P.T (t), (16)

where, P is operational matrix of integration that is given
by

P =

(
P1 P2
P1 P2

)
. (17)

So, we can approximate the integral of every function as

∫ t

0

f(s)ds �
∫ t

0

CT .T (s)ds � CT .P.T (t). (18)

Assuming that k(s, t) is a function of two variables. It
can be expanded with respect to TFs as follows

k(s, t) = TT (t)KT (s), (19)

where, T (s) and T (t) are 2m1-dimensional and 2m2-
dimensional triangular vectors and K is a 2m1 × 2m2

coefficient matrix of TFs. For convenience, we put m1 =
m2 = m. So, matrix K can be written as

K =

(
K11 K12
K21 K22

)
, (20)

where, K11, K12, K21, and K22 can be computed by
sampling the function k(s, t) at points si and ti such that
si = ti = ih, for i = 0, 1, ...,m. Therefore

(K11)i,j = k(si, tj); i = 0, 1, ...,m− 1, j = 0, 1, ...,m− 1,

(K12)i,j = k(si, tj); i = 0, 1, ...,m− 1, j = 1, ...,m,

(K21)i,j = k(si, tj); i = 1, ...,m, j = 0, 1, ...,m− 1,

(K22)i,j = k(si, tj); i = 1, ...,m, j = 1, ...,m.

Now, let B be a 2m× 2m matrix. So, it can be similarly
concluded that

TT (t)BT (t) � B̂T (t), (21)

in which, B̂ is a 2m-vector with elements equal to the
diagonal entries of matrix B. Furthermore,

T (t)TT (t)X � X̃T (t),

where, X̃ = diag(X) is 2m × 2m diagonal matrix. The
following integral can be computed∫ 1

0

T (t)TT (t)dt � D, (22)

where, D is the following 2m× 2m matrix

D =

(
h
3 Im×m

h
6 Im×m

h
6 Im×m

h
3 Im×m

)
. (23)
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3 Stochastic concepts and Ito integral

Definition 3.1. (Brownian motion process). Brownian
motion B(t) is a stochastic process with the following
properties.

(i) (Independence of increments) B(t) − B(s), for t > s,
is independent of the past.

(ii) (Normal increments) B(t)−B(s) has Normal distribu-
tion with mean 0 and variance t− s. This implies (taking
s = 0) that B(t)−B(0) has N(0, t) distribution.

(iii) (Continuity of paths) B(t), t ≥ 0 are continuous func-
tions of t.

Definition 3.2. Let {N(t)}t≥0 be an increasing family
of σ-algebras of sub-sets of Ω. A process g(t, ω) from
[0,∞)× Ω to Rn is called N(t)-adapted if for each t ≥ 0
the function ω −→ g(t, ω) is N(t)-measurable [16].

Definition 3.3. Let ν = ν(S, T ) be the class of functions
f(t, ω) : [0,∞)× Ω −→ R such that,

(i) (t, ω) −→ f(t, ω), is B × F-measurable, where B de-
notes the Borel σ-algebra on [0,∞) and F is the σ-algebra
on Ω.

(ii) f(t, ω) is Ft-adapted, where Ft is the σ-algebra gen-
erated by the random variables B(s); s ≤ t.

(iii) E
[ ∫ T

S
f2(t, ω)dt] < ∞.

Proof. see [16]

Definition 3.4. (The Itô integral), [16]. Let f ∈ ν(S, T ),
then the Itô integral of f (from S to T) is defined by∫ T

S

f(t, ω)dB(t)(ω) = lim
n→∞

∫ T

S

φn(t, ω)dB(t)(ω),

(limit in L2(P ))

where, φn is a sequence of elementary functions such that

E
[ ∫ T

S

(f(t, ω)− φn(t, ω))
2dt

] → 0, as n → ∞.

Theorem 3.5. (The Itô isometry). Let f ∈ ν(S, T ),
then

E
[
(

∫ T

S

f(t, ω)dB(t)(ω))2
]
= E

[ ∫ T

S

f2(t, ω)dt
]
.

Proof. [16]

Definition 3.6. (1-dimensional Itô processes), [16]. Let
B(t) be 1-dimensional Brownian motion on (Ω,F , P ).
A 1-dimensional Itô process (stochastic integral) is a
stochastic process X(t) on (Ω,F , P ) of the form

X(t) = X(0) +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dB(s),

or
dX(t) = udt+ vdB(t), (24)

where

P
[ ∫ t

0

v2(s, ω)ds < ∞, for all t ≥ 0
]
= 1,

P
[ ∫ t

0

| u(s, ω) | ds < ∞, for all t ≥ 0
]
= 1.

Theorem 3.7. (The 1-dimensional Itô formula). Let
X(t) be an Itô process given by (1) and g(t, x) ∈
C2([0,∞)×R), then

Y (t) = g
(
t,X(t)

)
,

is again an Itô process, and

dY (t)

=
∂g

∂t

(
t,X(t)

)
dt+

∂g

∂x

(
t,X(t)

)
dX(t)+

1

2

∂2g

∂x2

(
t,X(t)

)(
dX(t)

)2
,

(25)

where (dX(t))2 = (dX(t))(dX(t)) is computed according
to the rules,

dt.dt = dt.dB(t) = dB(t).dt = 0, dB(t).dB(t) = dt.
(26)

Proof. see [16].
Furthermore, we will apply several times the usual ele-
mentary equalities

(
m∑
i=1

ai)
r ≤ mr−1

m∑
i=1

ari , ai > 0, r ∈ N, (27)

and

|a+ b|r ≤ (2r−1 ∨ 1)(|a|r + |b|r), r ≥ 0. (28)

Also ‖.‖ is notation of

‖f(t)‖2 =

∫ 1

0

|f(t)|2dt.

Lemma 3.8. (The Gronwall inequality) Let α, β ∈
[t0, T ] → R be integral with

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

α(s)ds.

for t ∈ [t0, T ] where, L > 0. Then

α(t) ≤ β(t) + L

∫ t

t0

eL(t−s)β(s)ds, t ∈ [t0, T ].

For more details see [10,11,16,19].
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4 Stochastic integral operational matrix
for triangular functions

The Ito integral of each T 1
i and T 2

i is defined by

∫ t

0

T 1
i (s)dB(s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0 ≤ t < ih,

(i+ 1)[B(t)−B(ih)]− ∫ t

ih
s
hdB(s)

ih ≤ t < (i+ 1)h,

(i+ 1)[B((i+ 1)h)−B(ih)]− ∫ (i+1)h

ih
s
hdB(s)

(i+ 1)h ≤ t < T,
(29)

for i = 0, ...,m− 1.

∫ t

0

T 2
i (s)dB(s)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0

0 ≤ t < ih,

−i[B((t)−B(ih)] +
∫ t

ih
s
hdB(s)

ih ≤ t < (i+ 1)h,

−i[B((i+ 1)h)−B(ih)] +
∫ (i+1)h

ih
s
hdB(s)

(i+ 1)h ≤ t < T,

(30)

for i = 0, ...,m− 1.
We approximate B(t) − B(ih), by B((i + 0.5)h) −
B(ih), at mid-point of [ih, (i + 1)h)]. Also,

∫ t

ih
s
hdB(s)

with
∫ (i+0.5)h

ih
s
hdB(s). As a result,

∫ t

0
T 1
i (s)dB(s), and∫ t

0
T 2
i (s)dB(s) with 1D-TF are taken in the vector form

as ∫ t

0

T 1
i (s)dB(s)

� [0, 0, . . . , 0,

(i+ 1)[B((i+ 0.5)h)−B(ih)]−
∫ (i+0.5)h

ih

s

h
dB(s),

(i+ 1)[B((i+ 1)h)−B(ih)]−
∫ (i+1)h

ih

s

h
dB(s), . . . ,

(i+1)[B((i+1)h)−B(ih)]−
∫ (i+1)h

ih

s

h
dB(s)](T1+T2),

in which the ith component is (i + 1)[B((i + 0.5)h) −
B(ih)]− ∫ (i+0.5)h

ih
s
hdB(s) and∫ t

0

T 2
i (s)dB(s)

� [0, 0, . . . , 0,−i[B((i+0.5)h)−B(ih)]+

∫ (i+0.5)h

ih

s

h
dB(s),

−i[B((i+ 1)h)−B(ih)] +

∫ (i+1)h

ih

s

h
dB(s), . . . ,

−i[B((i+ 1)h)−B(ih)] +

∫ (i+1)h

ih

s

h
dB(s)](T1 + T2).

Considering following definitions,

α(i) := (i+1)[B((i+0.5)h)−B(ih)]−
∫ (i+0.5)h

ih

s

h
dB(s),

β(i) := (i+ 1)[B((i+ 1)h)−B(ih)]−
∫ (i+1)h

ih

s

h
dB(s),

γ(i) := −i[B((i+ 0.5)h)−B(ih)] +

∫ (i+0.5)h

ih

s

h
dB(s),

ρ(i) := −i[B((i+ 1)h)−B(ih)] +

∫ (i+1)h

ih

s

h
dB(s),

stochastic operational matrix of integration is given by

P1S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α(0) β(0) β(0) . . . β(0)

0 α(1) β(1) . . . β(1)

0 0 α(2) . . . β(2)

...
...

...
. . .

...

0 0 0 . . . β(m− 2)

0 0 0 . . . α(m− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

, (31)

P2S =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

γ(0) ρ(0) ρ(0) . . . ρ(0)

0 γ(1) ρ(1) . . . ρ(1)

0 0 γ(2) . . . ρ(2)

...
...

...
. . .

...

0 0 0 . . . ρ(m− 2)

0 0 0 . . . γ(m− 1)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

m×m

, (32)

∫ t

0

T1(s)dB(s) = P1s.T1(t) + P1s.T2(t), (33)
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∫ t

0

T2(s)dB(s) = P2S .T1(t) + P2S .T2(t). (34)

Therefore

∫ t

0

T (s)dB(s) � PS(T1 + T2) = PS .T (t), (35)

where, PS the stochastic operational matrix of integra-
tion in the 1D-TF domain, can be represent as

PS =

(
P1S P1S
P2S P2S

)
. (36)

So, the Itô integral of every function f(t) can be approx-
imated as follows

∫ t

0

f(s)dB(s) �
∫ t

0

CTT (s)dB(s) � CTPST (t). (37)

.

5 Application of TFs to solve SVIEs

Here this method is applied for Eq.(1)

u(t) = u0(t) +

∫ t

0

k1(s, t)u(s)ds+

∫ t

0

k2(s, t)u(s)dB(s)

t ∈ [0, T ],

we approximate function u(t), u0(t), k1(s, t), k2(s, t) by
TFs,

u(t) � ū(t) = UTT (t) = TT (t)U, (38)

u0(t) � UT
0 T (t) = TT (t)U0, (39)

k1(s, t) � TT (t)K1T (s), (40)

k2(s, t) � TT (t)K2T (s), (41)

where, the vectors U,U0, and matrices K1,K2 are TFs
coefficient of u, u0, k1 and k2 respectively.
Substituting (38-41) into (1), we get

TT (t)U � TT (t)U0 +

∫ t

0

TT (t)K1T (s)T
T (s)Uds+

∫ t

0

T (t)TK2T (s)T
T (s)UdB(s).

Using previous relations

TT (t)U � TT (t)U0 + TT (t)K1

∫ t

0

T (s)TT (s)Uds+

TT (t)K2

∫ t

0

T (s)TT (s)dB(s)

= TT (t)U0+TT (t)K1ŨPT (t)+TT (t)K2ŨPST (t), (42)

where, Ũ = diag(U), K1ŨP and K2ŨPS are 2m × 2m
matrices. Eq.(21) gives

TT (t)K1ŨPT (t) � B̂1

T
T (t) = TT (t)B̂1,

TT (t)K2ŨPST (t) � B̂2

T
T (t) = TT (t)B̂2

T
,

in which, B̂1 and B̂2 are 2m-vectors with components
equal to the diagonal entries of the matrices K1ŨP ,
K2ŨPS respectively. B̂1, B̂2 can be written as

B̂1 = ΠU,

B̂2 = ΠSU,

where, Π and ΠS are 2m×2m matrices with components

Πi,j = (K1)i,jPj,i, i, j = 1...m,

(ΠS)i,j = (K2)i,j(PS)j,i, i, j = 1...m.

Then,

TT (t)U � TT (t)U0 + TT (t)Π.U + TT (t)ΠS .U,

by replacing � with =, it gives

(I −Π−Πs)U = U0. (43)

After solving the linear system (43) U is calculated and
as a result u(t) of (38) is approximated.

6 Error analysis

In following theorems for simplicity we assume T = 1
and h = 1

m . Moreover

f(x) � f̂m(x) =
m−1∑
i=0

C1iT1i(x) + C2iT2i(x)

= [f(0), f(h), ..., f((m−1)h)]T1+[f(h), f(2h), ..., f(mh)]T2

= C1TT1 + C2TT2. (44)

Theorem 6.1. Assume that:

(1) f(x) is continuous on [0, 1] and twice differentiable in
(0, 1),

(2) fm(x) are correspondingly to TFs,

(3) |f ′′(x)| < M for every x ∈ [0, 1].

Then
‖ f(x)− fm(x) ‖= O(h2).
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Proof: Suppose ti = i
m = ih and Ii = [ti, ti+1]. The

representation error when f(x) is represented in a series
of TFs over every subinterval [ti, ti+1], i = 0, ...,m− 1 is

ei(x) = f(x)− C1Ti T1i(x)− C2Ti T2i(x),

where

C1i = f(ih), C2i = f((i+ 1)h).

Base on Taylor’s series, the error for f(x) = C(constant)
and f(x) = x, f(x) = x2 are computed.

It is obvious that f(x) = C; ei(x) = 0.
So, this error for f(x) = x in interval [ti, ti+1], is
computed by

ei(x)[ti,ti+1] = |x− C1iT1− C2iT2|

= |x− [ih(1− (x− ih)

h
)− ((i+ 1)h)

(x− ih)

h
]| = 0.

Then the error for f(x) = x2 is

ei(x)[ti,ti+1]

= |x2 − [(ih)2(1− (x− ih)

h
)− ((i+ 1)h)2

(x− ih)

h
]|

= |x2 + i2h2 − 2hxi− hx+ ih2|

≤ h2

4
.

So, the error with TFs is h2M, x ∈ [ih, (i+ 1)h].

‖ ei(x) ‖2=
∫ ti+1

ti

|ei(x)|2dx =

∫ ti+1

ti

h4M2dx = M2h5,

‖ e ‖2

=

∫ 1

0

e2(x)dx =

∫ 1

0

(
m−1∑
i=0

ei(x))
2dx =

m−1∑
i=0

∫ 1

0

e2i (x)dx

=

m−1∑
i=0

‖ ei ‖2= m.M2h5 = M2h4.

Hence,
‖ f(x)− fm(x) ‖= O(h2).

Now we assume that f(x, y) is a twice differentiable func-
tion on D = [0, 1) × [0, 1) such that second partial dif-
ferential is bounded. We define the error between f(x,y)
and its 2D-TFs expansion, fi,j , over every subregion Dij ,
as follows:

eij(x, y) = f(x, y)− fij .

where,

Dij := {(x, y)|ti ≤ x ≤ ti+1, tj ≤ x ≤ tj+1}.

For f(x, y) = C(constant), this error is zero, and also,
for f(x, y) = ax+ by, a, b ∈ R.
Now, we compute the error for

f(x, y) = ax2 + by2 + Cxy.

Using previous relation, error for f(x, y) = x2 and
f(x, y) = y2 are Mh2. Then error for f(x, y) = xy is

|xy−(ih(1− (x− ih)

h
)+((i+1)h)

(x− ih)

h
)(jh(1− (y − jh)

h
)+

((j + 1)h)
(y − jh)

h
)| = 0.

This leads

‖ eij(x, y) ‖2=
∫ ti+1

ti

∫ tj+1

tj

|ei,j(x, y)|2dydx

=

∫ ti+1

ti

∫ tj+1

tj

h4M2dydx = M2h6.

‖ e(x, y) ‖2=
∫ 1

0

∫ 1

0

e2(x, y)dydx

=

∫ 1

0

∫ 1

0

(
m−1∑
i=0

m−1∑
j=0

eij(x, y))
2dydx

=

∫ 1

0

∫ 1

0

(

m−1∑
i=0

m−1∑
j=0

e2ij(x, y))dydx+

2
∑
i<i1

∑
j<j1

∫ 1

0

∫ 1

0

ei,j(x, y)ei1,j1(x, y)dydx.

Since for i < i1, j < j1, we have

Di,j ∩Di1,j1 = {},
then

‖ e(x, y) ‖2=
m−1∑
i=0

m−1∑
j=0

∫ 1

0

∫ 1

0

e2ij(x, y))dydx

=

m−1∑
i=0

m−1∑
j=0

‖ eij ‖2≤ m2M2h6 = M2h4.

Hence,
‖ e(x, y) ‖2= O(h2),

where, e(x, y) = fm(x, y)− f(x, y).

Theorem 6.2. Let u(t) and ū(t) be solution of equation
(1) and (38), respectively, and assume
1. ‖ u(t) ‖< C.
2. ‖ ki ‖< C i = 1, 2.
Then

sup0≤t≤T (E(‖ (u(t)− ū(t)) ‖)2)1/2 = O(h2), t ∈ [0, 1].
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Table 1: Mean, standard deviation and confidence interval for error mean in Example 1 with m=8.

n xE sE %95 confidence interval for mean of E
Lower Upper

30 0.0037718893 0.0027234708 0.0027973078 0.0047464708
50 0.0036791366 0.0019663909 0.0031340808 0.0042241924
100 0.0037348421 0.0024004921 0.0032643456 0.0042053386
200 0.0038060617 0.0020049289 0.0035281927 0.0040839307
500 0.0036943720 0.0021958184 0.0035019000 0.0038868440
1000 0.0037556983 0.0022554441 0.0036159044 0.0038954922

Table 2: Mean, standard deviation and confidence interval for error mean in Example 1 with m=16.

n xE sE %95 confidence interval for mean of E
Lower Upper

30 0.0030521307 0.0018854114 0.0023774449 0.0037268165
50 0.0032942542 0.0019295053 0.0027594226 0.0038290858
100 0.0030189793 0.0023418020 0.0025599861 0.0034779725
200 0.0030228432 0.0020486679 0.0027389123 0.0033067741
500 0.0032408144 0.0023818067 0.0030320398 0.0034495890

Proof: We have

u(t)− ū(t) = u0(t)− ū0(t)+∫ t

0

k1(s, t)u(s)− k̄1(s, t)ū(s)ds+

∫ t

0

k2(s, t)u(s)− k̄2(s, t)ū(s)dB(s).

So,

E(‖ u− ū ‖2) ≤

3[E(‖ (u0 − ū0) ‖2) + E(‖
∫ t

0

(k1u− k̄1ū)ds ‖2)

+E(‖
∫ t

0

(k2u− k̄2ū)dB(s) ‖2)] (45)

≤ 3[E(‖ (u0 − u0) ‖2) + (

∫ t

0

E(‖ k1u− k1u ‖2)ds)+

(

∫ t

0

E(‖ k2u− k2u) ‖2)ds],

by the Cauchy-Schwartz inequality and the linearity of
Ito integrals in their integrands.
The first term satisfies by last theorem,

E(‖ u0 − u0) ‖2) ≤ E(C2h4) = O(h4),

now,

‖ (ki(s, t)u(t)− ki(s, t)u(t) ‖2≤
2 ‖ (ki − ki)u ‖2 +2 ‖ ki(u− u) ‖2≤

C.(‖ ki − ki ‖2) + C.(‖ (u− u) ‖2), i = 1, 2,

furthermore,

‖ ki − ki ‖2= O(h4) i = 1, 2.

Hence
E(‖ u− u ‖2) ≤

3[E(‖ (u0 − u0) ‖2) +
∫ t

0

E(‖ (k1u− k1u) ‖2 ds)+

∫ t

0

E(‖ (k2u− k2u) ‖2)ds] ≤

CE(‖ u0 − u0 ‖2) + C

∫ t

0

E(‖ k1 − k1 ‖2)ds+

C

∫ t

0

E(‖ k2 − k2 ‖2)ds+ C

∫ t

0

E(‖ (u− u) ‖2)ds,

then by Gronwall’s inequality, we get

E(‖ (u− u)2 ‖)) ≤ Ch4.

7 Numerical examples

In this section, the theoretical results of the previous
sections are used for numerical examples. Let Xi denote
the triangular coefficient of exact solution of the given
example, and Yi be the triangular coefficient of computed
solution by the presented method. In these examples
error is taken as

‖E‖∞ = max
1≤i≤m

|Xi − Yi|.

Example 1. Consider the following linear stochastic
Volterra integral equation,

u(t) =
1

3
+

∫ t

0

ln(s+1)u(s)ds+

∫ t

0

√
ln(s+ 1)u(s)dB(s),
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Table 3: Mean, standard deviation and confidence interval for error mean in Example 2 with m=8.

n xE sE %95 confidence interval for mean of E
Lower Upper

30 0.0071270253 0.0009796141 0.0067764748 0.0074775757
50 0.0070807614 0.0009460076 0.0068185414 0.0073429813
100 0.0071393177 0.0007080540 0.0070005391 0.0072780962
200 0.0071454450 0.0008471962 0.0070280295 0.0072628604
500 0.0070885786 0.0007660474 0.0070214315 0.0071557256
1000 0.0070377540 0.0007304459 0.0069924804 0.0070830275

Table 4: Mean, standard deviation and confidence interval for error mean in Example 2 with m=16.

n xE sE %95 confidence interval for mean of E
Lower Upper

30 0.0059570103 0.0007245428 0.0056977360 0.0062162846
50 0.0060677570 0.0006453775 0.0058888675 0.0062466465
100 0.0060400389 0.0005996983 0.0058254355 0.0060605173
200 0.0059407980 0.0007160603 0.0058415571 0.0060400389
500 0.0059240266 0.0006894356 0.0058635949 0.0059844583

t ∈ [0, 0.5), (46)

with the exact solution

u(t) =
1

3
e−

1
2 t+

1
2 tln(t+1)+ 1

2 ln(t+1)+
∫ t
0

√
ln(s+1)dB(s),

for 0 ≤ t < 0.5.

The numerical results are shown in Table 1 and Table
2. In tables, n is the number of iterations, xE is error
mean, and sE is standard deviation of error.

Example 2. [15] Consider the following linear stochastic
Volterra integral equation,

u(t) =
1

12
+

∫ t

0

cos(s)u(s)ds+

∫ t

0

sin(s)u(s)dB(s)

t ∈ [0, 0.5), (47)

with the exact solution

u(t) =
1

12
e−

t
4+sin(t)+

sin(2t
8 +

∫ t
0
sin(s)dB(s),

for 0 ≤ t < 0.5.

The numerical results are shown in Table 3 and Table 4.

8 Conclusion

As some SVIEs can not be solved analytically, in
this article we present a new technique for solving SVIEs
numerically. Here, triangular functions and their opera-
tional matrix of integration are considered. The benefits

of this method are lower cost of setting up the system of
equations without any integration, moreover, the compu-
tational cost of operations is low. Also, convergence of
this method is faster than BPFs [15] and order of con-
vergence is O(h2). These advantages make the method
easier to apply. Efficiency of this method and good rea-
sonable degree of accuracy is confirmed by two numerical
examples.
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