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Abstract—Employing an improved numerical method, we
approach solutions for the Dirichlet boundary value forward
problem of the Electrical Impedance Equation in the plane.
Some of the considered conductivity functions posses an exact
mathematical representation. The rest arise from geometrical
figures. Both classes of conductivity functions are analyzed
within bounded domains, emphasizing the results correspond-
ing to non-smooth boundaries, for which not any additional
regularization method was required.

Index Terms—Bers, Impedance, Non-smooth, Pseudoanalytic,
Vekua.

I. INTRODUCTION

THE elements of the modern Pseudoanalytic Function
Theory have allowed to establish the relation between

the two-dimensional Electrical Impedance Equation (1), and
a special class of Vekua equation [12].

More precisely, we are able to write the general solution
of the equation:

div (σgradu) = 0, (1)

where σ is the conductivity function, and u denotes the
electric potential, in terms of the so-called Taylor series in
formal powers [2]. The relation was first noticed in [8] and
[1], independently. After that, a variety of works dedicated
to the exact and numerical mathematical analysis, appeared
in the literature (see e.g. [7], [9] and [10]).

This new approach is very important because solving the
forward problem is fundamental if we are to understand the
inverse problem, commonly known as Electrical Impedance
Tomography [13].

These pages are dedicated to analyze the numerical solu-
tions for the Dirichlet boundary value forward problem of
(1) in the plane, employing an improved numerical method
presented in [10], and based upon a conjecture proposed in
[9].

The work includes a wide variety of examples, both ana-
lytic and geometrical, for representing electrical conductivity
functions. Indeed, every example is illustrated taking into
account a long enough quantity of parameters, thus we can
assert that we proposed a more detailed characterization
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of the improved numerical method, than those published
previously in [10] and [11].

The experimental results reported in further pages, can
be classified from two different points of view. The first
perspective would separate the results in two classes: Those
that correspond to exact mathematical representations of con-
ductivity functions, and those whose conductivity functions
arise from geometrical distributions. A second point of view
is to classify the results according to the domain within their
conductivity functions were defined. Hence, we would have
those that correspond to smooth-bounded domains, and those
upcoming from non-smooth-bounded domains.

The second point of view is the one to be considered,
because the last example exposed in these pages, corresponds
to one special case of non-smooth-bounded domain for which
not any additional regularization is required for approaching
the solution of the boundary value problem.

Indeed, this last example is based into a purely geomet-
rical conductivity function, which also includes non-smooth
points. Our objective is to show that even for this special
class of conductivity functions, and domains, the improved
numerical method is useful for approaching solutions of (1).

In this sense, the contribution of the present work is the
procedure for emphasizing the property cited in the last
paragraph, which was the headmost topic of [11] but where
the number of base functions for approaching the boundary
condition was limited, due to the technique employed for
obtaining the coefficients applied in the approximation. Here
we approach the boundary condition taking into account
almost twice the quantity of base functions considered in
[11]. Hence the current characterization shall be more rep-
resentative, because the significant increment in the number
of base functions enhances in the limiting cases where the
method works efficiently.

The conclusions are omitted because of the large quantity
of experimental results included in the work. As a matter
of fact, a proper description of the behavior of the method
along every posed example, is not available yet, and it would
be out of the scope of this paper.

II. PRELIMINARIES

In agreement with the Pseudoanalytic Function Theory
posed by L. Bers [2], we will consider a pair of complex-
valued functions (F,G), that satisfy the following condition:

Im
(
FG
)
> 0. (2)
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Here F = ReF − iImF is the complex conjugation of F ,
and i is the standard imaginary unit: i2 = −1.

Thus, any complex function W can be expressed by the
linear combination of F and G:

W = φF + ψG,

where φ and ψ are real-valued functions. Because of that,
the pair (F,G) is called (F,G)-generating pair

Professor Bers also introduced the concept of the (F,G)-
derivative of a complex function W , and the condition for
its existence. The derivative is given in conformity with the
expression

∂(F,G)W = (∂zφ)F + (∂zψ)G, (3)

and only exist iff

(∂zφ)F + (∂zψ)G = 0, (4)

where

∂z = ∂x − i∂y, ∂z = ∂x + i∂y.

The operators ∂z and ∂z are classically introduced with
the factor 1

2 , but for this work it will be more convenient to
work without it.

Set forth the functions

A(F,G) =
F∂zG−G∂zF
FG−GF

, (5)

a(F,G) = −F∂zG−G∂zF
FG−GF

,

B(F,G) =
F∂zG−G∂zF
FG−GF

,

b(F,G) = −G∂zF − F∂zG
FG−GF

;

the (F,G)-derivative expression in (3) will become

∂(F,G)W = ∂zW −A(F,G)W −B(F,G)W, (6)

and the condition (4) will be written as

∂zW − a(F,G)W − b(F,G)W = 0. (7)

The expressions (5) are called characteristic coefficients
of the generating pair (F,G), whereas (7) is known as the
Vekua equation [12]. Indeed, every function W solution of
(7) is called an (F,G)-pseudoanalytic function.

The following statements were first proposed by [2], and
we shall appoint that they have been adapted for the present
work.

Theorem 1: Every element of the (F,G)-generating pair
is (F,G)-pseudoanalytic. Beside, the (F,G)-derivative of
these functions, introduced in (6), vanishes:

∂(F,G)F = ∂(F,G)G = 0.

Remark 1: Let us consider a non-vanishing function p
within a bounded domain Ω(R2). The functions

F0 = p, G0 =
i

p
, (8)

constitute a generating pair, whose characteristic coefficients
(5) are

A(F0,G0) = a(F0,G0) = 0, (9)

B(F0,G0) =
∂zp

p
,

b(F0,G0) =
∂zp

p
.

Definition 1: Supposed (F0, G0) and (F1, G1) as two
generating pairs in form of (9), their characteristic coeffi-
cients fulfil

B(F1,G1) = −b(F0,G0). (10)

Therefore, (F1, G1) will be referred as successor pair of
(F0, G0), since (F0, G0) will be called a predecessor of
(F1, G1).

Definition 2: Considering

{(Fm, Gm)} , m = 0,±1,±2, ...

as a set of generating pairs, where (Fm+1, Gm+1) is always a
successor of (Fm, Gm). The set {(Fm, Gm)} will be known
as a generating sequence. In addition, if there exist a number
c such that (Fm, Gm) = (Fm+c, Gm+c) the generating
sequence posses period c. Furthermore, if (F,G) = (F0, G0),
we will assert that (F,G) is embedded into {(Fm, Gm)}.

Theorem 2: Let (F0, G0) be a generating pair of the form
(8), and let p be a separable-variables function within a
bounded domain Ω(R2):

p = p1(x) · p2(y),

where x, y ∈ R. Thereby, (F0, G0) will be embedded into
a periodic generating sequence, with period c = 2. More
precisely, for an even number m the generating pair will
posses the form

Fm =
p2(y)
p1(x)

, Gm = i
p1(x)
p2(y)

;

whereas for an odd m we have

Fm = p1(x) · p2(y), Gm =
i

p1(x) · p2(y)
;

Moreover, if p1(x) ≡ 1, x ∈ Ω
(
R2
)
, it is easy to see that

the generating sequence in which (F0, G0) is embedded, will
be periodic with period c = 1.

L. Bers first stated the concept of the (F0, G0)-integral
of a complex-valued function W . On behalf of conciseness,
we refer the reader to the specialized literature [2] and [7],
for a complete and detailed description of the conditions for
the existence of such integral. In the following pages, every
complex function contained into an (Fm, Gm)-integral will
be, by definition, integrable.

Definition 3: Let (Fm, Gm) be a generating pair of the
form (8). According to the formulas

F ∗m = −iFm, G∗m = −iGm;

are defined the elements of the adjoin generating pair
(F ∗0 , G

∗
0).

Definition 4: The (Fm, Gm)-integral of a complex-valued
function W (if it exists [2]) is defined as:∫

τ

Wd(Fm,Gm)z =
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= FmRe
∫
τ

G∗mWdz +GmRe
∫
τ

F ∗mWdz,

where τ is a rectifiable curve, connecting the fixed point
z0 with z = x + iy, within a bounded domain Ω, in
the complex plane. More precisely, when considering the
(Fm, Gm)-integral of the (Fm, Gm)-derivative of W , we will
obtain: ∫ z

z0

∂(Fm,Gm)W (z)d(Fm,Gm)z =

= −φ(z0)Fm(z)− ψ(z0)Gm(z) +W (z). (11)

In agreement with the Theorem 1, the (Fm, Gm)-derivatives
of Fm and Gm vanish identically. Hence the expression
(11) can be taken into as the (Fm, Gm)-antiderivative of
∂(Fm,Gm)W .

A. Formal Powers

Definition 5: The formal power Z(0)
m (a0, z0; z), associ-

ated to the generating pair (Fm, Gm), with formal degree 0,
complex constant coefficient a0, center at z0, and depending
upon z = x+iy, is defined in agreement with the expression:

Z(0)
m (a0, z0; z) = λFm(z) + µGm(z), (12)

where λ and µ are complex constants that fulfill the following
condition:

λFm(z0) + µGm(z0) = a0.

For approaching the formal powers with higher degrees
(n), it is necessary to employ the following recursive for-
mulas:

Z(n)
m (an, z0; z) =

= n

∫ z

z0

Z
(n−1)
(m−1) (an, z0; z) d(Fm,Gm)z,

where n = 1, 2, 3, ... Notice that the integral operators in
the right-hand side of the last expression are (Fm, Gm)-
antiderivatives.

Theorem 3: The formal powers hold on the following
properties:

1) Every Z
(n)
m (an, z0; z), being n = 0, 1, 2, 3, ... is an

(Fm, Gm)-pseudoanalytic function.
2) Let an = a′n + ia′′n, where a′n, a

′′
n ∈ R. The following

relation holds:

Z(n)
m (an, z0; z) =

= a′nZ
(n)
m (1, z0; z) + a′′nZ

(n)
m (i, z0; z) . (13)

3) For n = 0, 1, 2, 3, ... it holds that

lim
z→z0

Z(n)
m (an, z0; z) = an(z − z0)n. (14)

Theorem 4: Let W be an (Fm, Gm)-pseudoanalytic func-
tion. Thus, we can express it in terms of the so-called Taylor
series in formal powers:

W =
∞∑
n=0

Z(n)
m (an, z0; z) . (15)

Since every (Fm, Gm)-pseudoanalytic function W accepts
this expansion, (15) is an analytic representation of the
general solution for the Vekua equation (9).

B. The two-dimensional Electrical Impedance Equation.

Let us consider the Electrical Impedance Equation (1) in
the plane, and let the conductivity σ be a separable-variables
function:

σ(x, y) = σ1(x)σ2(y), (16)

As it has been shown in several previous works (e.g. [1], [8]
and [9]), introducing the following notations,

W =
√
σ (∂xu− i∂yu) ,

p =
(
σ−1

1 · σ2

) 1
2 ;

(17)

the two-dimensional case of the equation (1), can be rewritten
into a Vekua equation with form

∂zW −
∂zp

p
W = 0. (18)

As a matter of fact, a generating pair corresponding to this
Vekua equation is

F1 = p, G1 =
i

p
. (19)

Taking into account the theorem 2, the reader can notice
that this generating pair is embedded into a periodic generat-
ing sequence, with period c = 2, for p is separable-variables
function.

C. Numerical approach of the formal powers.

In [10], it was studied an improved numerical method for
approaching the elements the finite subset of formal powers:{

Z
(n)
0 (1, 0; z), Z(n)

1 (i, 0; z)
}N
n=0

, (20)

whose linear combination will allows to approach any pseu-
doanalytc function W , solution of (18). Furthermore, in [5], it
was proven that the real parts of the elements of (20), valued
at the boundary Γ of the domain Ω, constitute a complete
set to approach solutions for the Dirichlet boundary value
forward problem of (1) in the plane.

Since the results of the integral expressions (11) are path-
independent [2], the numerical calculations can be performed
on a set of radial trajectories, whose origin coincides with
the zero of the plane. Thus, the following procedure will be
employed in each radius R within the domain Ω, going from
the coordinates origin until the boundary Γ.

Let us consider τ as a radius R within, e.g., the unitary
circle with center at z0 = 0. For the interpolation process, we
will use P + 1 points equidistantly distributed on R, being
the first r[0] = 0 and the last r[P ] = 1:{

r[p] =
p

P

}P
p=0

. (21)

We can immediately construct a set of coordinates according
to the formulas:

x[p] = r[p] cos θq, (22)
y[p] = r[p] sin θq;

where θq is the angle that matches to R. In agreement with
(8), the coordinates (22) will be employed to obtain the sets
of values

{F0(z[p]), G0(z[p])}, {F1(z[p]), G1(z[p])}; (23)
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where the complex numbers z[p] have the form:

z[p] = x[p] + iy[p].

The set of values of the adjoin pairs

{F ∗0 (z[p]), G∗0(z[p])}, {F ∗1 (z[p]), G∗1(z[p])} (24)

will have the form shown in the Definition 3.
From the expression (5), it follows that

Z
(0)
0 (1, 0; z[p]) = F0(z[p]),

Z
(0)
1 (1, 0; z[p]) = F1(z[p]);

Hereafter, each formal power with n > 0 will be always
approached considering P + 1 equidistant points within
the closed interval [0, 1]. Taking into account that not any
methodological difference takes place when approaching the
formal power with coefficients an = i, we will focus our
explanation for the cases when an = 1.

At this point, a numerical property first noticed in [9], for
approaching the formal powers, can significantly reduce the
computational resources invested in the complete procedure,
at the time it allows to employ the posed method for
analyzing non-separable variables conductivity functions.

The following statements were presented and proved in
[9], together with some representative examples.

Conjecture 1: Let σ be an arbitrary conductivity func-
tion defined within a bounded domain Ω

(
R2
)
. It can be

approached by means of a piece-wise separable-variables
function of the form:

σpw =


x+g

χ1−χ0+g · f1(y) : x ∈ [χ0, χ1) ;
x+g

χ2−χ1+g · f2(y) : x ∈ [χ1, χ2) ;
...

x+g
χK−χK−1+g · fK(y) : x ∈ [χK−1, χK ] ;

where g is a real constant such that x+ g 6= 0 : x ∈ Ω
(
R2
)
;

and {fk}Kk=1 are interpolating functions constructed with
a finite number of samples M of the function σ, valued
along an y-axis parallel line within the subdomains of Ω,
created when tracing the set of y-axis parallel lines {χk}Kk=0.
This piece-wise separable-variables conductivity function can
be employed for numerically approaching the set of formal
powers (24).

Proposition 1: [9] Let σ be an arbitrary conductivity
function defined within a bounded domain Ω

(
R2
)
. It can

be considered as the limiting case of a piece-wise separable-
variables function, with the form presented in the Conjecture
1, when the number of subdomains K and the number of
samples M at every subdomain, tend to infinite:

lim
K,M→∞

σpw = σ.

Furthermore, since:

lim
K,M→∞

x+ g

χk − χk−1 + g
= 1, k = 0, 1, ...,K;

according to the Theorem 2, the corresponding generating se-
quence will be periodic with period c = 1. This immediately
implies that

F0(z[p]) = F1(z[p]) = F (z[p]),

that shall simplify the construction of the sets (23) and (24).

Employing this property, the numerical formal powers
Z

(n)
0 (z[p]) at the points z[p] = x[p] + iy[p], located along

the radius R, can be approached employing a variation of
the trapezoidal integration method over the complex plane:

Z(n)(z[p]) = δF (z[p])·

·Re
p−1∑
s=0

(
Z(n−1)(z[s+ 1]) ·G∗ (z[s+ 1])

)
dz[s]+

+δF (z[p])Re
p∑
s=0

(
Z

(n−1)
1 (z[s]) ·G∗ (z[s])

)
dz[s]+

+δG(z[p])·

·Re
p−1∑
s=0

(
Z

(n−1)
1 (z[s+ 1]) · F ∗ (z[s+ 1])

)
dz[s]+

+δG(z[p])Re
p∑
s=0

(
Z

(n−1)
1 (z[s]) · F ∗ (z[s])

)
dz[s];

(25)
where

dz[s] = (z[s+ 1]− z[s]) ,

and δ is a real constant factor, empirically selected, that
contributes to the numerical stability of the method.

We shall remark that the use of the expression (25),
for approaching the formal powers, as it was appointed in
[9], implicitly performs a piecewise interpolating polynomial
function of degree 1, to relate every value Z(n)(z[p]), for
p = 0, 1, ..., P ; and n = 0, 1, ..., N ; taking into consideration
the third property of the Theorem 3, that implies ∀n > 0:

Z
(n)
0 (1, 0; z[0]) ≡ 0.

Performing the full procedure for a wide enough quantity
Q of radii R, each one corresponding to some angle θq:{

θq = q · 2π
Q

}Q−1

q=0

, (26)

we will be able to approach the finite set{
ReZ(n) (1, 0; z) , ReZ(n) (i, 0; z)

}N
n=0

, (27)

that once is valued at the boundary Γ of the domain Ω
(
R2
)
,

will provide a set of 2N + 1 base functions for approaching
solutions of the Dirichlet boundary value forward problem
of (1), when a boundary condition uc|Γ is imposed.

Indeed, the set (27) can be orthonormalized, conforming
a new base

{υ(n)
0 (l)}2Nn=0, l ∈ Γ, (28)

that can be interpolated by standard methods in order to
obtain continuous functions at Γ.

Summarizing, if the number of radii R, points per radius
P , and base functions 2N + 1, are adequate (as it will
be explained further), a boundary condition uc|Γ can be
approached by the linear combination:

uc|Γ ∼
2N+1∑
k=0

βkυk,

where the real constant coefficients βk are approached by the
standard inner product

βk = 〈υk, uc|Γ〉 =
∫

Γ

υk(l) · uc|Γ(l)dl. (29)
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III. EXPERIMENTAL RESULTS.

We will perform a characterization of the method, using
two classes of domains, and a variety of conductivity func-
tions. This characterization employs the optimized method,
first exposed in [10], using the Pseudoanalytic Function
Theory, and taking into account that we can analyze any con-
ductivity function, approaching the solution for the Dirichlet
boundary value forward problem.

In this work, we will empathize the behavior of the method
employing it into non-smooth domains, and comparing its
effectiveness with the results obtained when analyzing the
unitary disk. For both cases, we will use conductivity func-
tions with exact representation. More precisely, we will
examine exponential, Lorentzian, sinusoidal and polynomial
functions. But we will also study conductivity functions up-
coming from geometrical distributions, such like concentric
circles, a circle out of center but within the domain, and a
square.

A. The Unit Circle Domain.

The behavior of the method for this case, whenever the
conductivity possesses a separable-variables form or not, is
particularly stable. We refer the reader to the previous works
[3] and [10] for more details.

Here we will propose a methodology that reaches the
best approximation of the method, employing the Lebesgue
measure for introducing an error parameter E :

E =
(∫

Γ

(uc|Γ − uapp)2
dl

) 1
2

. (30)

where uapp represents the approached solution, according to
(21).

Employing a variation of the algorithm posed in [10],
we will only modify the number of formal powers N ,
since according to the work cited before, we know that
employing a bigger number of formal powers riches, a better
convergence. Also, we have detected that the number of radii
R, and of points per radius P , do not introduce significant
variations of E . That is why we will fix R = P = 200.

1) An Exponential Conductivity Case: We will consider
a non-separable variables exponential conductivity function
with the form

σ = eαxy, (31)

where α represents a coefficient that is used to change the
behavior of the function. In this case we impose the boundary
condition:

u|Γ = e−αxy. (32)

because it is an exact solution of (1), as appointed in [9].
Hereafter, we will employ the notation

M = 2N + 1.

We shall remember that Q represents the number of radii.
The Table I shows that when the maximum number of

formal powers increases, the convergence improves.

TABLE I
EXPONENTIAL CONDUCTIVITY FUNCTION σ = e−αxy .

M P Q α E
121 200 200 2 6.8875× 10−15

81 200 200 2 7.3145× 10−15

41 200 200 2 1.1101× 10−6

121 200 200 6 3.4109× 10−14

81 200 200 6 3.4243× 10−14

41 200 200 6 1.1768× 10−7

121 200 200 10 4.2244× 10−14

81 200 200 10 4.3088× 10−14

41 200 200 10 2.3561× 10−6

2) Lorentzian Conductivity Function: For this case we
propose a conductivity function with the form:

σ =
(
(x+ dx)2 + Lc

)−1 ·
(
(y + dy)2 + Lc

)−1
, (33)

where dx and dy represent displacements over the x-axis and
y-axis respectively, and Lc denotes a real constant.

We will imposed the boundary condition [9]:

u|Γ =
1
3

(x+dx)3 +
1
3

(y+dy)3 +Lc(x+dx+y+dy); (34)

since it is an exact solution of (1).

TABLE II
LORENTZIAN CONDUCTIVITY FUNCTION.

M P Q Lc E
121 200 200 0.2 2.4113× 10−13

81 200 200 0.2 2.1746× 10−9

41 200 200 0.2 2.5924× 10−5

121 200 200 0.4 1.5266× 10−15

81 200 200 0.4 3.8584× 10−12

41 200 200 0.4 1.2505× 10−6

121 200 200 0.6 2.1483× 10−15

81 200 200 0.6 4.3463× 10−14

41 200 200 0.6 1.4775× 10−7

121 200 200 0.8 2.1948× 10−15

81 200 200 0.8 2.5350× 10−15

41 200 200 0.8 2.7502× 10−8

We propose Lc = {0.2, 0.4, 0.6, 0.8}, whereas, for this
case, dx = dy = 0. In the Table II the reader can notice that,
every time the number of formal powers increases, the error
decreases considerably. We also notice that if we use a small
value of Lc, the error grows significantly.

3) Polynomial Conductivity Function: In this case, we use
a polynomial conductivity function:

σ = α+ Cx+ Cy, (35)

imposing a boundary condition

u|Γ = ln (α+ Cx+ Cy) , (36)

where α and C are constants such that α + Cx + Cy >
0, ∀x, y ∈ Ω [9].

The Table III, shows that the increment of M provides
better convergence.

4) Sinusoidal Conductivity Function: Let us consider a
conductivity function with the form

σ = (α+ cosωπx) (α+ sinωπy) , (37)

We selected to impose a boundary condition:

u|Γ =
(

tanxy
2

+ 1
)−1

. (38)
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TABLE III
POLYNOMIAL CONDUCTIVITY FUNCTION σ = α+ Cx+ Cy.

M P Q α C E
121 200 200 10 2 5.4318× 10−15

81 200 200 10 2 5.4318× 10−15

41 200 200 10 2 5.4398× 10−15

121 200 200 10 4 4.2384× 10−15

81 200 200 10 4 4.2384× 10−15

41 200 200 10 4 5.2431× 10−12

121 200 200 10 6 5.5207× 10−15

81 200 200 10 6 5.9757× 10−12

41 200 200 10 6 1.3718× 10−6

Fig. 1. First Geometrical Case: Two disks within the domain Ω, whose
centers coincide.

It is necessary to remark that this function is not an exact
solution of (1). Indeed, as posed in [9], it is an exact solution
only for the case when σ = 1 + sinxy. But the example
becomes interesting when pointing out that, in general, the
exact solutions of (1) when σ possesses the form (37), are
unknown. Thus, this example is included to better illustrate
the effectiveness of the method when arbitrary parameters
are introduced in the analysis.

TABLE IV
SINUSOIDAL CONDUCTIVITY FUNCTION.

M P Q α ω E
121 200 200 5 2 7.8123× 10−12

41 200 200 5 2 8.5330× 10−5

121 200 200 5 6 4.5940× 10−5

41 200 200 5 6 2.7620× 10−2

121 200 200 5 10 3.5433× 10−3

41 200 200 5 10 1.9455× 10−1

121 200 200 10 2 1.2539× 10−14

41 200 200 10 2 9.2312× 10−6

121 200 200 10 6 4.0830× 10−6

41 200 200 10 6 1.1964× 10−2

121 200 200 10 10 8.5638× 10−4

41 200 200 10 10 9.7005× 10−2

The Table IV shows that when we increase M , we obtain
a better convergence, but the results are the opposite if α or
ω increase. In this sense, the Table IV offers the opportunity
for establishing a limiting example for which the method is
valid.

5) First Geometrical Case: We propose a geometrical
conductivity distribution inside the domain Ω, displayed in
the Figure 1. It consists of two disks, whose centers coincide
at the origin. The red section represents σ = 100, whereas
the blue section indicates σ = 10. The radius of the red

Fig. 2. Disk displaced from the center. Any other displacement can be
considered a rotation of this example.

section is denoted by r.
As it was previously indicated in [9], to establish a bound-

ary condition without performing physical measurements,
becomes a non-trivial task for conductivity functions arising
from geometrical figures. That is why, hereafter, we will
employ the boundary condition (34). The selection of this
condition was arbitrary, being useful only for appreciating
the behavior of the numerical method.

TABLE V
FIRST GEOMETRICAL CASE: RD INDICATES THE VALUE OF THE RED

DISK, WHEREAS BD REPRESENTS THE BLUE DISK.

M P Q r RD BD E
121 200 200 0.2 10 100 5.3266× 10−15

41 200 200 0.2 10 100 7.1940× 10−15

121 200 200 0.4 10 100 6.0657× 10−15

41 200 200 0.4 10 100 8.1351× 10−15

121 200 200 0.6 10 100 4.3213× 10−15

41 200 200 0.6 10 100 5.2102× 10−15

121 200 200 0.8 10 100 3.4712× 10−15

41 200 200 0.8 10 100 4.4355× 10−15

The Table V shows that the convergence increments when
the number of formal powers M slightly increase. This
behavior is also present when changing the magnitude of
the radius r, exception done for the case when r ∼ R, the
radius of the unit circle.

6) A variation of the First Geometrical Case: The al-
teration is the displacement of the disk with conductivity
σ = 100, whose center is located at x = 0.25, y = 0.

Once more, the boundary condition is a variation of (34),
noticing that, on behalf of simplicity, we have fixed Lc = 0.5,
as displayed in Figure 2:

u|Γ =
1
3

(x+ 0.25)3 +
1
3
y3 + 0.5(x+ 0.25 + y),

The table VI illustrates that if we use a bigger number
of base functions M , the convergence increases, but what
it becomes interesting with this example is the diameter of
the red disk, which provokes significant variations in the
convergence. Notice any other displacement of the interior
disk, can be considered a geometrical rotation to the case we
have studied in this section. Thus, the numerical results are
fully equivalent to those reported here.

7) Second Geometrical Case: We propose a geometrical
conductivity function consisting in one disk and four rings,
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TABLE VI
VARIATION OF THE FIRST GEOMETRICAL CASE: RD INDICATES THE

VALUE OF THE RED DISK, WHEREAS BD REPRESENTS THE BLUE DISK.

M P Q r RD BD E
121 200 200 0.2 10 100 3.8194× 10−2

41 200 200 0.2 10 100 8.4548× 10−2

121 200 200 0.4 10 100 4.6197× 10−3

41 200 200 0.4 10 100 7.2787× 10−3

121 200 200 0.6 10 100 3.2798× 10−3

41 200 200 0.6 10 100 4.4617× 10−3

121 200 200 0.8 10 100 9.8760× 10−2

41 200 200 0.8 10 100 2.0676× 10−1

Fig. 3. Concentric disk and rings. The disk r1 = 0.2 represents σ = 100;
the ring delimited by the circles r2 = 0.4 and r1 represents σ = 30; for
r3 = 0.6 and r2 we have σ = 20; for r4 = 0.8 and r3 it is σ = 15;
finally for R = 1 and r4 we have σ = 10.

within the unit circle, whose centers concur, as displayed
in Figure 3. The disk with radius r1 = 0.2 represents
σ = 100, the ring delimited by r2 = 0.4 and r1 possesses a
conductivity σ = 30. For the ring between r3 = 0.6 and r2

we have σ = 20, whereas for the one within r4 = 0.8 and
r3 exhibits σ = 15. Finally, the exterior ring delimited by
R = 1 and r4 the conductivity is σ = 10.

The imposed boundary condition will be

u|Γ =
1
3

(x3 + y3) + 0.5(x+ y).

The table VII shows that when the number M increases,
the convergence improves. It is interesting that the value of
the error E does not increase by the diminution of the base
functions M .

TABLE VII
A CONDUCTIVITY FUNCTION COMPOSED BY ONE DISK AND FOUR

RINGS. HERE THE NUMBER OF RADII AND THE POINTS PER RADIUS ARE
BOTH FIXED AT 200.

M P Q E
121 200 200 3.0440× 10−15

101 200 200 3.0216× 10−15

61 200 200 2.9303× 10−15

21 200 200 2.8133× 10−15

The Table VIII illustrates another interesting property of
this example, for the error E does not experience significant
changes when increasing the number of radii R and the
number of points per radius Q. Nevertheless, the smaller
error appears when less base functions are employed. This
characteristic shall be studied with more detail in other
works.

TABLE VIII
A CONDUCTIVITY FUNCTION COMPOSED BY ONE DISK AND FOUR

RINGS. A COMPLEMENTARY EXAMPLE.

M P Q E
61 1000 200 5.0324× 10−15

61 600 200 5.4919× 10−15

61 200 200 2.9303× 10−15

41 1000 200 4.8146× 10−15

41 600 200 5.3062× 10−15

41 200 200 2.8885× 10−15

21 1000 200 4.3974× 10−15

21 600 200 4.9358× 10−15

21 200 200 2.8133× 10−15

Fig. 4. A non-smooth figure is located within the unitary circle. One radius
has been located at every non-smoothness of the square, being a = 0.65,
so they are necessarily considered in the calculations.

8) Third Geometrical Case. A Non-Smooth Figure Within
the Unit Circle: This case is representative because it could
require additional regularization techniques, if it was solved
with classical methods, as the variations of the Finite Element
Method. The figure into the domain is a perfect square,
whose apothem is a = 0.65. Beside, every corner of the
square has the same distance to the center of the unit circle.
We forced four radii to cross every corner, thus the non-
smoothness of the figure is effectively considered into the
calculations. The area of the square will represent σ = 100,
whereas the rest of the domain will possess σ = 10.

The boundary condition, once more, will be:

u|Γ =
1
3

(x3 + y3) + 0.5(x+ y).

When compared to the other examples, the Table IX
illustrates that the error E is considerably bigger. To explain
this, we shall point out that the boundary condition was
arbitrarily imposed, thus the error is expected to decrease
when a physical measured is performed. Still, we could assert
that the convergence of the method is stable from a certain
point of view, since E decreases when the number of base
functions M grows.

TABLE IX
A NON-SMOOTH FIGURE LOCATED WITHIN THE UNITARY CIRCLE.

M P Q E
121 200 200 1.3229× 10−2

101 200 200 1.6389× 10−2

81 200 200 2.2319× 10−2

61 200 200 3.0232× 10−2

41 200 200 5.4568× 10−2

21 200 200 1.1610× 10−1
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Fig. 5. Non-smooth conductivity exponential case.

We shall also enhance that, according to the information of
the Table X, the convergence of the method does not improve
when increasing the number of radii R and the number of
points per radius Q.

TABLE X
A NON-SMOOTH FIGURE LOCATED WITHIN THE UNITARY CIRCLE: A

COMPLEMENTARY EXAMPLE.

M P Q E
121 500 500 2.9031× 10−2

101 500 500 3.2493× 10−2

81 500 500 3.8417× 10−2

61 500 500 4.6756× 10−2

41 500 500 6.7906× 10−2

21 500 500 1.2200× 10−1

B. Brief Study of Conductivity Functions Within a Non-
Smooth Domain.

The Figure 5 illustrate a domain Ω conformed by a unit
circle with radius R = 1, just as in the examples posed
before, but only defined within the interval x ∈

(
−1, cos π

10

)
;

and a triangular area quoted by the line segments y0(x) =
cos π

10 , y1 = k1x + k2 and y2 = −k1x + k2. Indeed, we
will employ the same parameters posed in [9] and [11]. This
is: k1 = 0.5629 and k2 = 0.8443. It will be also useful to
introduce a parameter b, that will denote the distance between
the coordinates origin and the intersection of the lines y1 and
y2.

We remark that, for all cases shown further, the boundary
conditions do not correspond to analytic solutions of (1), but
they are all variations of a Lorentzian case. This will allow us
to enhance the effectiveness of the method in what it could
be considered exalted non-smoothness points at the boundary
Γ.

Notice that the reference to the Figure 5 is exclusively for
illustrating the shape of the non-smooth domain, since every
example will consider a different class of conductivity.

1) An Exponential Conductivity Function: As before, let
us suppose a conductivity function with the form

σ = eαxy,

We will examine the cases α = 2, 4, 6, 8, 10, imposing the
boundary condition (34), noticing only that it will be valued,
as all cases hereafter, at the boundary Γ of the domain
presented in the paragraph above.

TABLE XI
EXPONENTIAL CONDUCTIVITY FUNCTION IN A NON-SMOOTH DOMAIN:

σ = eαxy .

M P Q b α E
121 200 200 1.0 2 7.7189× 10−5

101 200 200 1.0 2 1.1321× 10−4

41 200 200 1.0 2 5.4926× 10−4

21 200 200 1.0 2 2.3060× 10−3

121 200 200 1.0 4 1.8890× 10−4

101 200 200 1.0 4 2.4912× 10−4

41 200 200 1.0 4 9.7697× 10−4

21 200 200 1.0 4 4.1727× 10−3

121 200 200 1.0 6 3.8650× 10−6

101 200 200 1.0 6 5.3340× 10−4

41 200 200 1.0 6 1.1522× 10−3

21 200 200 1.0 6 8.2815× 10−3

121 200 200 1.0 8 5.8860× 10−5

101 200 200 1.0 8 8.2280× 10−4

41 200 200 1.0 8 3.4367× 10−3

21 200 200 1.0 8 1.5269× 10−2

121 200 200 1.0 10 7.5198× 10−4

101 200 200 1.0 10 1.0642× 10−3

41 200 200 1.0 10 4.6709× 10−3

21 200 200 1.0 10 3.2356× 10−2

For the Table XI, we do observe a diminution of the error
when increasing the number of base functions M . Notice we
have fixed the parameter b = 1.

As a complementary experiment, the table XII shows the
results of the case when we fix b = 1.5.

TABLE XII
EXPONENTIAL CONDUCTIVITY FUNCTION IN NON-SMOOTH DOMAIN:

SECOND EXAMPLE.

M P Q b α E
121 200 200 1.5 2 1.9190× 10−3

101 200 200 1.5 2 1.4889× 10−3

41 200 200 1.5 2 3.8482× 10−4

21 200 200 1.5 2 6.1853× 10−4

121 200 200 1.5 4 7.8734× 10−3

101 200 200 1.5 4 4.6606× 10−3

41 200 200 1.5 4 1.5679× 10−3

21 200 200 1.5 4 5.5688× 10−3

121 200 200 1.5 6 5.5224× 10−3

101 200 200 1.5 6 5.0001× 10−3

41 200 200 1.5 6 3.0569× 10−3

21 200 200 1.5 6 1.2475× 10−2

121 200 200 1.5 8 1.1044× 10−2

101 200 200 1.5 8 8.9217× 10−3

41 200 200 1.5 8 4.5972× 10−3

21 200 200 1.5 8 2.2350× 10−2

121 200 200 1.5 10 2.0529× 10−2

101 200 200 1.5 10 1.2371× 10−2

41 200 200 1.5 10 6.1075× 10−3

21 200 200 1.5 10 4.1741× 10−2

The Table XII displays an abnormal behavior, since the
error E does not decrease as the number of base functions
M grows. The behavior becomes even more interesting when
performing the experiment for b = 2. The table XIII shows
that, for the cases when α is big enough, the error increases
when M does. For this, it is convenient to remark that the
non-smoothness is notorious.

We do not show the behavior when a variation is intro-
duced in the number of radii R, since it affects only when a
geometrical figure is placed within the domain. This analysis
will be exposed in further paragraphs.

2) Lorentzian Conductivity Function: Let us propose σ in
the form (33), imposing the condition (34).
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TABLE XIII
EXPONENTIAL CONDUCTIVITY FUNCTION IN NON-SMOOTH DOMAIN: A

THIRD EXAMPLE.

M P Q b α E
121 200 200 2.0 2 2.9221× 10−2

101 200 200 2.0 2 2.2211× 10−2

41 200 200 2.0 2 4.7667× 10−3

21 200 200 2.0 2 1.0047× 10−2

121 200 200 2.0 4 2.9221× 10−2

101 200 200 2.0 4 2.2211× 10−2

41 200 200 2.0 4 4.7667× 10−3

21 200 200 2.0 4 1.0047× 10−2

121 200 200 2.0 6 2.9221× 10−2

101 200 200 2.0 6 2.2211× 10−2

41 200 200 2.0 6 4.7607× 10−3

21 200 200 2.0 6 1.0047× 10−2

121 200 200 2.0 8 2.5025× 10−1

101 200 200 2.0 8 1.8884× 10−1

41 200 200 2.0 8 1.5368× 10−2

21 200 200 2.0 8 3.6063× 10−2

121 200 200 2.0 10 6.8271× 10−1

101 200 200 2.0 10 4.9283× 10−1

41 200 200 2.0 10 2.1281× 10−2

21 200 200 2.0 10 6.4350× 10−2

Employing the methodology posed above, we begin the
experiments fixing P = Q = 200, considering b = 1.
The results are shown in the table XIV. Similarly to the
exponential case with b = 1 in the non-smooth domain,
the increment of the number of base functions M gives
to us a better convergence in the numerical method. And
once more, this is not valid when b = 1.5, as showed in
the Table XV. Moreover, the Table XVI indicates that for
such non-smoothness, when b = 2, the method presents an
unexpected behavior, since when M increases, the error E
changes without a clear pattern.

TABLE XIV
LORENTZIAN CONDUCTIVITY FUNCTION IN NON-SMOOTH DOMAIN.

M P Q b Lc E
121 200 200 1.0 0.2 3.7046× 10−4

101 200 200 1.0 0.2 5.4768× 10−4

41 200 200 1.0 0.2 2.5055× 10−3

21 200 200 1.0 0.2 7.8163× 10−3

121 200 200 1.0 0.4 3.7511× 10−4

101 200 200 1.0 0.4 5.5286× 10−4

41 200 200 1.0 0.4 2.5378× 10−3

21 200 200 1.0 0.4 8.9281× 10−3

121 200 200 1.0 0.6 3.8343× 10−4

101 200 200 1.0 0.6 5.6391× 10−4

41 200 200 1.0 0.6 2.6002× 10−3

21 200 200 1.0 0.6 9.3482× 10−3

121 200 200 1.0 0.8 3.9114× 10−4

101 200 200 1.0 0.8 5.7438× 10−4

41 200 200 1.0 0.8 2.6563× 10−3

21 200 200 1.0 0.8 9.6121× 10−3

3) Polynomial Conductivity Function: Let us propose a
conductivity function with the form (35), with a boundary
condition (34). The behavior is regular when b = 1, as
displayed in the values of the Table XVII. But once again,
when b = 1.5, we can not notice the presence of a pattern, as
the reader can verify in the Table XVIII. The method behaves
abnormally when b = 2, according to the values of the Table
XIX.

TABLE XV
LORENTZIAN CONDUCTIVITY FUNCTION IN NON-SMOOTH DOMAIN: A

SECOND EXAMPLE.

M P Q b Lc E
121 200 200 1.5 0.2 2.1045× 10−2

101 200 200 1.5 0.2 1.3569× 10−2

41 200 200 1.5 0.2 3.9952× 10−3

21 200 200 1.5 0.2 1.5850× 10−2

121 200 200 1.5 0.4 1.4743× 10−2

101 200 200 1.5 0.4 9.4131× 10−3

41 200 200 1.5 0.4 3.6909× 10−3

21 200 200 1.5 0.4 1.3262× 10−2

121 200 200 1.5 0.6 1.9460× 10−2

101 200 200 1.5 0.6 1.2236× 10−2

41 200 200 1.5 0.6 3.5889× 10−3

21 200 200 1.5 0.6 1.2248× 10−2

121 200 200 1.5 0.8 2.5640× 10−2

101 200 200 1.5 0.8 1.6610× 10−2

41 200 200 1.5 0.8 3.5508× 10−3

21 200 200 1.5 0.8 1.1735× 10−2

TABLE XVI
LORENTZIAN CONDUCTIVITY FUNCTION IN NON-SMOOTH DOMAIN: A

THIRD EXAMPLE.

M P Q b Lc E
121 200 200 2.0 0.2 2.7463× 10−1

101 200 200 2.0 0.2 2.0323× 10−1

41 200 200 2.0 0.2 1.9108× 10−2

21 200 200 2.0 0.2 4.3151× 10−2

121 200 200 2.0 0.4 1.9367× 10−2

101 200 200 2.0 0.4 1.8948× 10−2

41 200 200 2.0 0.4 1.5901× 10−2

21 200 200 2.0 0.4 3.5373× 10−2

121 200 200 2.0 0.6 2.8857× 10−2

101 200 200 2.0 0.6 2.4264× 10−2

41 200 200 2.0 0.6 1.4621× 10−2

21 200 200 2.0 0.6 3.2738× 10−2

121 200 200 2.0 0.8 2.1095× 10−1

101 200 200 2.0 0.8 1.5468× 10−1

41 200 200 2.0 0.8 1.3982× 10−2

21 200 200 2.0 0.8 3.1410× 10−1

4) Sinusoidal Conductivity Function: Suppose that the
conductivity function is expressed as

σ = (α+ cosωπx) (α+ sinωπy) , (39)

where α is a coefficient such that σ > 1. For this case, the
condition to be imposed is

u|Γ =
1
3

(x3 + y3) + 0.5(x+ y). (40)

The Table XX reports that the behavior for b = 1 becomes
unstable when ω > 4. According to the Table XXI, when
b = 1.5, the method becomes unstable when ω > 6,
which was indeed not expected when analyzing the previous
examples of conductivity functions. Already in the Table
XXII we observe that the error E behaves without a pattern
for ω > 4.

5) First Example of Geometrical Conductivity: Let us
consider a geometrical conductivity function σ, such as the
one posed in the Figure 6, a circle whose center coincides
with the origin and with radius r = 0.2, also possessing a
conductivity σ = 100, whereas the rest of the non-smooth
domain has σ = 10.

For this example, the imposed condition is (40). The table
XXIII indicates the existence of a pattern between the num-
ber of base functions M and the error E , for the case b = 1.
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TABLE XVII
POLYNOMIAL CONDUCTIVITY IN A NON-SMOOTH DOMAIN.

M P Q b α C E
121 200 200 1.0 10 2 1.4507× 10−4

101 200 200 1.0 10 2 2.0777× 10−4

41 200 200 1.0 10 2 9.4643× 10−4

21 200 200 1.0 10 2 3.5689× 10−3

121 200 200 1.0 10 4 1.2662× 10−4

101 200 200 1.0 10 4 1.7973× 10−4

41 200 200 1.0 10 4 8.1138× 10−4

21 200 200 1.0 10 4 3.1555× 10−3

121 200 200 1.0 10 6 1.0788× 10−4

101 200 200 1.0 10 6 1.5092× 10−4

41 200 200 1.0 10 6 6.6334× 10−4

21 200 200 1.0 10 6 2.7058× 10−3

TABLE XVIII
POLYNOMIAL CONDUCTIVITY IN NON-SMOOTH DOMAIN: SECOND

EXAMPLE.

M P Q b α C E
121 200 200 1.5 10 2 5.1091× 10−3

101 200 200 1.5 10 2 3.3772× 10−3

41 200 200 1.5 10 2 1.1974× 10−3

21 200 200 1.5 10 2 3.2404× 10−3

121 200 200 1.5 10 4 3.4689× 10−3

101 200 200 1.5 10 4 2.3707× 10−3

41 200 200 1.5 10 4 1.0601× 10−3

21 200 200 1.5 10 4 2.8097× 10−3

121 200 200 1.5 10 6 5.6592× 10−3

101 200 200 1.5 10 6 3.5610× 10−3

41 200 200 1.5 10 6 9.3362× 10−4

21 200 200 1.5 10 6 2.3665× 10−3

The pattern is kept for the case when b = 1.5, according to
the results presented in the Table XXIV. Nevertheless, for
b = 2 we do not detect the pattern anymore, as shown in the
Table XXV.

6) Second Example of Geometrical Conductivity: This
example is a variation of the previous one, since the red disk
with radius r = 0.2 locates its center at x = 0.25 and y = 0.
Once more, the red disk represents σ = 100, and the rest
of the domain possesses σ = 10. The boundary condition is
again the expression (40).

This example is interesting, because it possesses a pattern
between the number of base functions M and the values
of the errors E when b = 1 and b = 1.5, according to the
values shown in the Tables XXVI and XXVII. The exception
appears when b = 2, as reported in the Table XXVIII.

7) Third Example of Geometrical Conductivity: For this
case, the conductivity function is composed as follows: one

Fig. 6. First example of geometrical conductivity within a non-smooth
domain. The red disk represents σ = 100 and the blue section σ = 10.

TABLE XIX
POLYNOMIAL CONDUCTIVITY IN NON-SMOOTH DOMAIN: THIRD

EXAMPLE.

M P Q b α C E
121 200 200 2.0 10 2 5.9419× 10−2

101 200 200 2.0 10 2 4.4223× 10−2

41 200 200 2.0 10 2 3.9702× 10−3

21 200 200 2.0 10 2 9.2331× 10−3

121 200 200 2.0 10 4 7.5193× 10−2

101 200 200 2.0 10 4 5.5540× 10−2

41 200 200 2.0 10 4 3.4802× 10−3

21 200 200 2.0 10 4 8.2482× 10−3

121 200 200 2.0 10 6 1.2689× 10−2

101 200 200 2.0 10 6 1.2223× 10−2

41 200 200 2.0 10 6 3.0911× 10−3

21 200 200 2.0 10 6 7.5234× 10−3

TABLE XX
SINUSOIDAL CONDUCTIVITY FUNCTION.

M P Q b α ω E
121 200 200 1.0 10 2 1.5628× 10−4

101 200 200 1.0 10 2 2.2878× 10−4

41 200 200 1.0 10 2 1.1579× 10−3

21 200 200 1.0 10 2 4.9768× 10−3

121 200 200 1.0 10 4 1.5644× 10−4

101 200 200 1.0 10 4 2.3374× 10−4

41 200 200 1.0 10 4 2.6001× 10−3

21 200 200 1.0 10 4 4.3351× 10−3

121 200 200 1.0 10 6 1.7351× 10−4

101 200 200 1.0 10 6 2.6993× 10−4

41 200 200 1.0 10 6 1.2813× 10−2

21 200 200 1.0 10 6 7.1034× 10−2

121 200 200 1.0 10 8 7.1695× 10−4

101 200 200 1.0 10 8 1.0520× 10−3

41 200 200 1.0 10 8 5.2719× 10−2

21 200 200 1.0 10 8 7.7114× 10−2

121 200 200 1.0 10 10 7.9694× 10−4

101 200 200 1.0 10 10 1.1403× 10−3

41 200 200 1.0 10 10 6.7853× 10−2

21 200 200 1.0 10 10 8.2767× 10−2

Fig. 7. Second example of geometrical conductivity within a non-smooth
domain. The red disk represents σ = 100 and the blue section σ = 10.

disk with radius r1 = 0.2 representing σ = 100, the ring
delimited by r2 = 0.4 and r1 possessing a conductivity σ =
30, another ring between r3 = 0.6 and r2 having σ = 20,
whereas the one within r4 = 0.8 and r3 exhibits σ = 15.
Finally, the remaining value within the boundary is σ = 10.
One more time, the boundary condition is the expression
(40). The behavior of the method is only stable for the case
when b = 1. The cases b = 1.5 and b = 2 do not show any
patterns to be discussed. The results are summarized in the
Table XXIX.
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TABLE XXI
SINUSOIDAL CONDUCTIVITY FUNCTION: A SECOND EXAMPLE.

M P Q b α ω E
121 200 200 1.5 10 2 2.3734× 10−3

101 200 200 1.5 10 2 1.7035× 10−3

41 200 200 1.5 10 2 1.2907× 10−3

21 200 200 1.5 10 2 5.3456× 10−3

121 200 200 1.5 10 4 3.5305× 10−3

101 200 200 1.5 10 4 2.2305× 10−3

41 200 200 1.5 10 4 1.4848× 10−3

21 200 200 1.5 10 4 4.6142× 10−2

121 200 200 1.5 10 6 1.9220× 10−2

101 200 200 1.5 10 6 1.1637× 10−2

41 200 200 1.5 10 6 1.8806× 10−2

21 200 200 1.5 10 6 9.3615× 10−2

121 200 200 1.5 10 8 1.2419× 10−1

101 200 200 1.5 10 8 8.3360× 10−2

41 200 200 1.5 10 8 6.3304× 10−2

21 200 200 1.5 10 8 9.2504× 10−2

121 200 200 1.5 10 10 1.0707× 10−1

101 200 200 1.5 10 10 6.8588× 10−1

41 200 200 1.5 10 10 8.5009× 10−2

21 200 200 1.5 10 10 1.0212× 10−1

TABLE XXII
SINUSOIDAL CONDUCTIVITY FUNCTION: A THIRD EXAMPLE.

M P Q b α ω E
121 200 200 2.0 10 2 7.8761× 10−2

101 200 200 2.0 10 2 5.9083× 10−2

41 200 200 2.0 10 2 4.7198× 10−3

21 200 200 2.0 10 2 3.4681× 10−2

121 200 200 2.0 10 4 3.3441× 10−1

101 200 200 2.0 10 4 2.4975× 10−1

41 200 200 2.0 10 4 1.4579× 10−2

21 200 200 2.0 10 4 8.3672× 10−2

121 200 200 2.0 10 6 5.7939× 10−1

101 200 200 2.0 10 6 4.1222× 10−1

41 200 200 2.0 10 6 6.3855× 10−2

21 200 200 2.0 10 6 1.0279× 10−1

121 200 200 2.0 10 8 5.7939× 10−1

101 200 200 2.0 10 8 4.1222× 10−1

41 200 200 2.0 10 8 6.3835× 10−2

21 200 200 2.0 10 8 1.0279× 10−1

121 200 200 2.0 10 10 6.5661× 10−1

101 200 200 2.0 10 10 4.9436× 10−1

41 200 200 2.0 10 10 9.5676× 10−2

21 200 200 2.0 10 10 1.1995× 10−1

Fig. 8. Third example of geometrical conductivity within a non-smooth
domain. Combination of a disk and concentric rings, within a non-smooth
domain.

8) Fourth Example of Geometrical Conductivity: To de-
scribe the conductivity posed in Figure 9 is better to resemble
the square within the unit circle posed before. For this case,
the unit circle shall be substituted for the non-smooth domain
described at the beginning of the Section. We shall only

TABLE XXIII
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 1.

M P Q b r E
121 200 200 1.0 0.2 5.2372× 10−4

101 200 200 1.0 0.2 6.6056× 10−4

41 200 200 1.0 0.2 1.2839× 10−3

21 200 200 1.0 0.2 4.5100× 10−3

121 200 200 1.0 0.4 5.0633× 10−4

101 200 200 1.0 0.4 5.9736× 10−4

41 200 200 1.0 0.4 1.1950× 10−3

21 200 200 1.0 0.4 4.5522× 10−3

121 200 200 1.0 0.6 2.7401× 10−4

101 200 200 1.0 0.6 3.2291× 10−4

41 200 200 1.0 0.6 1.1389× 10−3

21 200 200 1.0 0.6 4.8769× 10−3

121 200 200 1.0 0.8 4.3356× 10−4

101 200 200 1.0 0.8 4.6767× 10−4

41 200 200 1.0 0.8 1.4232× 10−3

21 200 200 1.0 0.8 5.3167× 10−3

TABLE XXIV
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 1.5.

M P Q b r E
121 200 200 1.5 0.2 9.5416× 10−3

101 200 200 1.5 0.2 6.2105× 10−3

41 200 200 1.5 0.2 1.9162× 10−3

21 200 200 1.5 0.2 4.4915× 10−3

121 200 200 1.5 0.4 1.0555× 10−2

101 200 200 1.5 0.4 6.5522× 10−3

41 200 200 1.5 0.4 1.7201× 10−3

21 200 200 1.5 0.4 4.3942× 10−3

121 200 200 1.5 0.6 1.0426× 10−2

101 200 200 1.5 0.6 6.5709× 10−3

41 200 200 1.5 0.6 1.7658× 10−3

21 200 200 1.5 0.6 4.2230× 10−3

121 200 200 1.5 0.8 5.8011× 10−3

101 200 200 1.5 0.8 3.8069× 10−3

41 200 200 1.5 0.8 1.7020× 10−3

21 200 200 1.5 0.8 3.9797× 10−3

remembered that the apothem a = 0.65, and all corners of the
square are equidistant to the center of the semicircle section.
The square possesses a conductivity σ = 100, whereas the
remaining domain possesses σ = 10. The boundary condition
is again the expression (40).

Fig. 9. Fourth example of geometrical conductivity within a non-smooth
domain.

The relevance of this case is given by the multiple non-
smoothness included in the geometrical conductivity. This is
three non-smooth points are located at the boundary Γ, and
four non-smooth points are presented in the figure within the
domain Ω. For every point of non-smoothness, one radius
was forced to pass on, hence all points were taken into
consideration. We shall remark, as it was done in [11], that
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TABLE XXV
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 2.

M P Q b r E
121 200 200 2.0 0.2 1.1542× 10−1

101 200 200 2.0 0.2 8.6105× 10−2

41 200 200 2.0 0.2 5.5541× 10−3

21 200 200 2.0 0.2 1.2137× 10−2

121 200 200 2.0 0.4 8.8265× 10−2

101 200 200 2.0 0.4 6.6393× 10−2

41 200 200 2.0 0.4 5.5459× 10−3

21 200 200 2.0 0.4 1.2121× 10−2

121 200 200 2.0 0.6 6.6141× 10−2

101 200 200 2.0 0.6 4.8414× 10−2

41 200 200 2.0 0.6 5.0902× 10−3

21 200 200 2.0 0.6 1.1946× 10−2

121 200 200 2.0 0.8 7.9164× 10−2

101 200 200 2.0 0.8 5.8350× 10−2

41 200 200 2.0 0.8 4.8985× 10−3

21 200 200 2.0 0.8 1.1917× 10−2

TABLE XXVI
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 1.

M P Q b r E
121 200 200 1.0 0.2 2.4385× 10−2

101 200 200 1.0 0.2 2.8740× 10−2

41 200 200 1.0 0.2 5.4220× 10−2

21 200 200 1.0 0.2 9.2323× 10−2

121 200 200 1.0 0.4 2.8627× 10−3

101 200 200 1.0 0.4 3.2700× 10−3

41 200 200 1.0 0.4 4.7071× 10−3

21 200 200 1.0 0.4 5.9983× 10−3

121 200 200 1.0 0.6 1.9667× 10−3

101 200 200 1.0 0.6 2.1911× 10−3

41 200 200 1.0 0.6 2.8597× 10−3

21 200 200 1.0 0.6 5.0975× 10−3

TABLE XXVII
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 1.5.

M P Q b r E
121 200 200 1.5 0.2 8.2351× 10−2

101 200 200 1.5 0.2 5.4311× 10−2

41 200 200 1.5 0.2 5.4607× 10−2

21 200 200 1.5 0.2 9.2429× 10−2

121 200 200 1.5 0.4 1.4896× 10−3

101 200 200 1.5 0.4 9.5441× 10−3

41 200 200 1.5 0.4 4.9048× 10−3

21 200 200 1.5 0.4 6.1276× 10−3

121 200 200 1.5 0.6 1.0957× 10−2

101 200 200 1.5 0.6 1.0532× 10−2

41 200 200 1.5 0.6 3.3790× 10−3

21 200 200 1.5 0.6 4.7420× 10−3

TABLE XXVIII
FIRST CASE OF GEOMETRICAL CONDUCTIVITY: b = 2.

M P Q b r E
121 200 200 2.0 0.2 1.9481× 10−1

101 200 200 2.0 0.2 1.4364× 10−1

41 200 200 2.0 0.2 5.7088× 10−2

21 200 200 2.0 0.2 9.3510× 10−2

121 200 200 2.0 0.4 9.5951× 10−2

101 200 200 2.0 0.4 7.2123× 10−2

41 200 200 2.0 0.4 6.6501× 10−3

21 200 200 2.0 0.4 1.1058× 10−2

121 200 200 2.0 0.6 9.0504× 10−3

101 200 200 2.0 0.6 7.6307× 10−3

41 200 200 2.0 0.6 5.5504× 10−3

21 200 200 2.0 0.6 1.0790× 10−2

not any additional regularization method was employed to
warrant the convergence at the non-smooth points. This is a

TABLE XXIX
THIRD EXAMPLE OF GEOMETRICAL CONDUCTIVITY WITHIN A

NON-SMOOTH DOMAIN: b = 1, 1.5, 2.

M P Q b E
121 200 200 1.0 2.3863× 10−4

101 200 200 1.0 3.4388× 10−4

41 200 200 1.0 1.4742× 10−3

21 200 200 1.0 5.0487× 10−3

121 200 200 1.5 5.7241× 10−3

101 200 200 1.5 3.2691× 10−3

41 200 200 1.5 2.2058× 10−3

21 200 200 1.5 7.8255× 10−3

121 200 200 2.0 1.1136× 10−1

101 200 200 2.0 8.2529× 10−2

41 200 200 2.0 8.4147× 10−3

21 200 200 2.0 1.4548× 10−2

particular characteristic of the method, first noticed in [9],
and shall be studied with more detail in further works.

The Table XXX presents a summary of the calculations
performed for this last example. Only for the case when b =
1 a pattern between the number of base elements M and the
error E is observed. The other two cases do not report any
visible pattern.

TABLE XXX
FOURTH EXAMPLE OF GEOMETRICAL CONDUCTIVITY IN NON-SMOOTH

DOMAIN.

M P Q b E
121 200 200 1.0 8.1631× 10−3

101 200 200 1.0 1.0347× 10−2

41 200 200 1.0 3.3239× 10−2

21 200 200 1.0 7.3480× 10−2

121 200 200 1.5 1.1063× 10−1

101 200 200 1.5 7.5019× 10−2

41 200 200 1.5 4.3609× 10−2

21 200 200 1.5 9.1848× 10−2

121 200 200 2.0 4.3692× 10−1

101 200 200 2.0 3.2518× 10−1

41 200 200 2.0 6.1231× 10−2

21 200 200 2.0 1.2170× 10−1
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