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Abstract—In this paper we present a strategy to form a class
of control variates for pricing Asian options under the stochastic
volatility models by the risk-neutral pricing formula. Our idea
is employing a deterministic volatility function σ(t) to replace
the stochastic volatility σt. Under the Hull and White model[11]
and the Heston model[10], the deterministic volatility function
σ(t) can be chosen with the same order moment as that of
σt, and then a control variate can be derived. The numerical
experiments report that our control variates work quite well
by showing the standard deviation reduction ratio.

Index Terms—Asian Options pricing; Monte Carlo method;
control variates.

I. INTRODUCTION

AN Asian option is a kind of financial derivative whose
payoff includes a time average of the underlying asset

prices. The primary purpose for basing an option payoff
on an average asset price is to make it more difficult for
anyone to significantly affect the payoff by manipulation of
the underlying asset price. So Asian options can be used to
reduce the risk caused by unusual behaviors of the underlying
asset price before expiry, and they are quite popular in
risk management. According to different sampling types and
strike price types, there are eight types of Asian options
(in this paper, we do not distinguish call and put options),
four fixed-strike options and four floating-strike options. The
payoff functions of four fixed-strike options are:
1) fixed-strike continuous sampling arithmetic average Asian
(call) option (1cAAO),

V1cAAO|t=T =

(
1

T

∫ T

0

Stdt−K

)+

;

2) fixed-strike discrete sampling arithmetic average Asian
(call) option(1dAAO),

V1dAAO|t=T =

(
1

N

N∑
i=1

Si −K

)+

;

3) fixed-strike continuous sampling geometric average Asian
(call) option(1cGAO),

V1cGAO|t=T =

(
e

1
T

∫ T
0

logStdt −K
)+

;
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4) fixed-strike discrete sampling geometric average Asian
(call) option(1dGAO),

V1dGAO|t=T =

(
e

1
N

∑N

i=1
logSi −K

)+

,

where K and St are the fixed-strike price and the price of
underlying asset at time t, respectively. Si ≡ STi denotes the
price of underlying asset at the ith observation date Ti with
0 = T0 < T1 < T2 < · · · < TN = T . [0, T ] represents the
valid period of the option.

Replacing K with ST in V1cAAO|t=T and V1cGAO|t=T ,
we can derive the payoff functions of the floating-strike
continuous sampling arithmetic and geometric average Asian
(put) options, denoted as 2cAAO and 2cGAO,

V2cAAO|t=T =

(
1

T

∫ T

0

Stdt− ST

)+

,

V2cGAO|t=T =

(
e

1
T

∫ T
0

logStdt − ST
)+

.

Also, replacing K with SN in V1dAAO|t=T and V1dGAO|t=T ,
we have the payoff function of the floating-strike discrete
sampling arithmetic and geometric average Asian (put) op-
tion, denoted as 2dAAO and 2dGAO,

V2dAAO|t=T =

(
1

N

N∑
i=1

Si − SN

)+

,

V2dGAO|t=T =

(
e

1
N

∑N

i=1
logSi − SN

)+

.

The Monte Carlo method is a numerical method based
on probability and statistics, and is widely used in many
fields, especially in the field of computational finance. One
of the main advantages of the Monte Carlo method is that its
convergence is independent on the number of state variables.
It is usually used when the number of state variables is
greater than three. However, the drawback of Monte Carlo
method is that its convergence rate is slow. Let V be a
random variable(r.v. for short), and we want to calculate
µ = E[V ]. By simulation, we get identically independent
distributed (i.i.d. for short) samples {Vi}ni=1 of V ; Law of
Larger Number guarantees V n = 1

n

∑n
i=1 Vi

a.s.−→ µ; Central
Limit Theorem guarantees that µ asymptotically falls in the
confidence interval[

V n −
σ√
n
Z δ

2
, V n +

σ√
n
Z δ

2

]
with probability 1− δ, where σ is the standard deviation of
V, n is the number of simulation paths, δ is the significance
level and Z δ

2
is the quantile of standard normal distribution

under δ
2 . It is clear that the convergence rate of the Monte

Carlo method is O(n−
1
2 ), and a better way to improve
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the accuracy is reducing the standard deviation σ. We refer
to Glasserman [8] for a summary of various techniques to
reduce the variance.

The method of control variates is one of the most widely
used variance reduction techniques. Suppose on each repli-
cation we can calculate another output Xi along with Vi, that
the pairs {(Xi, Vi)}ni=1 are i.i.d. and that the expectation
E[X] of Xi is known. We use (X, V ) to denote a generic
pair of r.v.s with the same distribution as each (Xi, Vi).
Then for any fixed b ∈ R, we can calculate

Vi(b) = Vi − b(Xi − E[X]), i = 1, · · · , n

through the ith replication and compute the sample mean

V n(b) = V n − b(Xn − E[X]).

This is a control variate estimator. It is proved in Glasserman
[8] that V n(b) is a unbiased and consistent estimator of µ.
V (b) has variance

V ar(V (b)) = σ2
V − 2bσXσV ρXV + b2σ2

X . (1)

The minimum point on b is b∗ = σV
σX
ρXV . Substituting b∗ in

(1), we have

V ar(V (b∗))

V ar(V )
= 1− ρ2XV . (2)

We choose a control variate X for V, if X satisfies two
conditions:
i) the expectation E[X] is known;
ii) the correlation ρ2XV is close to 1.

In practice, b∗ can’t be derived exactly as σV and ρXV
are generally unknown. We can use its sample counterpart
yields the estimate

b̂ =

∑n
i=1(Xi −Xn)(Vi − V n)∑n

i=1(Xi −Xn)2

to approximate b∗. As mentioned in Glasserman [8], we may
still get most of the benefit of a control variate using an
estimate of b∗. Strictly speaking, to measure the efficiency
of the Monte Carlo method, we need not only the vari-
ance reduction ratio but also expected computing time per
replication. But in this paper, the computational effort per
replication is roughly the same with and without a control
variate, so we focus on the variance reduction ratio; see Ma
and Xu [13].

Kemma and Vorst [12] studied the valuation of arithmetic
average Asian options by using the counterpart geometric
average Asian options as control variates. This is one of the
most successful applications of control variates in financial
engineering. In the case of stochastic volatility models, a
constant volatility can be chosen to replace the stochastic
volatility in some conditions, and then this tractable dynamic
process is used as an auxiliary process to form a control
variate. How to choose this constant volatility is the key
problem of the efficiency of control variates. The most
intuitive way is to choose the initial value of the stochastic
volatility as the constant volatility. Both Fouque and Han [5]
and Han and Lai [9] use a method named as the Martingale
Control Variate method to choose an effective volatility which
is dependent on the initial value of the stochastic volatility
as the constant volatility. This method has many advantages
and can be used to other financial derivatives besides Asian

options (see Fouque and Han [4, 6]). But the martingale
control variate method also has a potential drawback. Calcu-
lating the effective volatility needs the invariant distribution
function of stochastic volatility. If the stochastic volatility
satisfies Ornstein-Uhlenbeck process under which the invari-
ant distribution of stochastic volatility is easy to handle,
the martingale control variate method is easy to implement,
but if the stochastic volatility satisfies a process, which the
invariant distribution of stochastic volatility is hard to handle
such as Square-Root Diffusion, or the invariant distribution
is unknown, the martingale control variate method is difficult
to implement. There are many types of stochastic volatility
models, such as those in Scott [14], Stein and Stein [16]
and Ball and Roma [1]. We refer to Fouque et al [7] for a
summary of various stochastic volatility models.

In this paper, we present a strategy to form a class of
control variates for pricing Asian options under a stochastic
volatility model. Our idea is employing a deterministic
volatility function σ(t) to replace the stochastic volatility σt.
This deterministic volatility σ(t) is not only dependent on the
initial value of the stochastic volatility but also dependent on
time t, so that σ(t) can track down the stochastic volatility.
Under the Hull and White model [11] and the Heston model
[10], the deterministic volatility function σ(t) can be chosen
with the same order moment as that of σt, and then a control
variate can be derived. The numerical experiments in our
paper report that our control variates work quite well in
terms of showing the standard deviation reduction ratio. It
is worth noting that our control variate is a generalization of
the control variate in [13] for pricing variance swap under
the Hull and White model [11].

The rest of this paper is organized as follows. We introduce
some basic settings for the model used in this paper in
Section I and derive the idiographic control variates under the
Hull and White model in Section II. In Section III we present
an algorithm to estimate the standard deviation reduction
ratio and then report some numerical results in terms of
showing the standard deviation reduction ratios under the
Hull and White model and the Heston model. Finally we
give some conclusions in Section IV.

A. Basic Setting

In this section we model the underlying asset price, but
we do not give the concrete stochastic differential equation
which the volatility satisfies. We get some general conclu-
sions which will be useful in the following sections.

We begin with a probability space (Ω, {Ft}t≥0, P), here
P is the risk-neutral measure. In this paper, all expectations
are derived under the risk-neutral measure P unless there is a
special statement. Suppose that the price of underlying asset
St follows the geometric Brownian motion

dSt = rStdt+ σtStdW1t, (3)

where r is the risk-free interest rate which is a constant,
W1t is the Winner process and σt is the stochastic volatility
which satisfies a diffusion process driving by another Winner
process W2t. W1t and W2t satisfy cov(dW1t, dW2t) = ρdt,
so we have W2t = ρW1t +

√
1− ρ2Bt, in which Bt is

the Winner process and independent with W1t. Let {Ft}t≥0
be the filtration generated by the two-dimension Brownian
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motion (W1t, Bt), so St and σt are adapted to the filtration
{Ft}t≥0. Suppose that σt satisfies the square-integrability
condition which is E

∫ t
0
σ2
sds <∞. It is known that by the

risk-neutral pricing formula, the prices are

V1cAAO|t=0 = E[e−rT (V1cAAO|t=T )]

= e−rTE

( 1

T

∫ T

0

Stdt−K

)+


for 1cAAO (fixed-strike discrete sampling arithmetic average
Asian (call) option),

V1dAAO|t=0 = E[e−rT (V1dAAO|t=T )]

= e−rTE

( 1

N

N∑
i=1

Si −K

)+


for 1dAAO,

V1cGAO|t=0 = E[e−rT (V1cGAO|t=T )]

= e−rTE[(e
1
T

∫ T
0

logStdt −K)+]

for 1cGAO, and

V1dGAO|t=0 = E[e−rT (V1dGAO|t=T )]

= e−rTE[(e
1
N

∑N

i=1
logSi −K)+]

for 1dGAO. Also for four floating-strike Asian options, the
prices are

V2cAAO|t=0 = e−rTE[(
1

T

∫ T

0

Stdt− ST )+],

V2dAAO|t=0 = e−rTE[(
1

N

N∑
i=1

Si − SN )+],

V2cGAO|t=0 = e−rTE[(e
1
T

∫ T
0

logStdt − ST )+],

V2dGAO|t=0 = e−rTE[(e
1
N

∑N

i=1
logSi − SN )+].

As said in Fouque and Han [5], when the volatility is
randomly fluctuating, there is no analytic solution for GAO in
general, neither for AAO. But if the volatility is a determinis-
tic function(not necessarily constant), the prices of GAO have
analytic solutions. In such case, these analytic solutions can
be used as control variates for pricing corresponding Asian
options with stochastic volatility.

For GAO with deterministic volatility, we have following
theorems. N(·) is the standard normal distribution function
in this paper.
Theorem 1. Suppose that the stochastic volatility σt in (3) is
replaced by a deterministic square-integrable volatility σ(t),
there is an analytic solution for the fixed-strike continuous
sampling geometric average Asian (call) option,

X1cGAO|t=0 = E[e−rT (X1cGAO|t=T )]

= e−rTE

[(
e

1
T

∫ T
0

logS(t)dt −K
)+
]

= e
1
2 σ̂

2−rT+aN(d+)−Ke−rTN(d−),

where

a = logS0 +
1

2
rT − 1

2T

∫ T

0

[

∫ t

0

σ2(s)ds]dt,

σ̂2 = lim
n→∞

1

n2

n∑
j=1

[2(n− j) + 1]

∫ j Tn

0

σ2(s)ds,

and d− = a−logK
σ̂

, d+ = d− + σ̂.

Proof. By (3) and the assumptions, we have

logS(t) = logS0 + rt− 1

2

∫ t

0

σ2(s)ds+

∫ t

0

σ(s)dW1s

≡ a(t) + I(t). (4)

and

1

T

∫ T

0

logS(t)dt =
1

T

∫ T

0

a(t)dt+
1

T

∫ T

0

I(t)dt.

By Theorem 4.4.9 in Shreve [14], we get

I(t) =

∫ t

0

σ(s)dW1s ∼ N(0,

∫ t

0

σ2(s)ds).

It is easy to see

a ≡ 1

T

∫ T

0

a(t)dt = logS0 +
1

2
rT − 1

2T

∫ T

0

∫ t

0

σ2(s)dsdt.

Next, we focus on proving 1
T

∫ T
0
I(t)dt ∼ N(0, σ̂2). Let

0 = t0 < t1 < · · · < tn = T ; 4ti = ti − ti−1 = 4t =
T
n , i = 1, 2, . . . , n; ti = i4t, i = 0, 1, . . . , n. Denote Θ ≡
1
T

∫ T
0
I(t)dt. Thus, we have

Θ =
1

T

∫ T

0

I(t)dt = lim
n→∞

n∑
i=1

1

T
I(ti)4ti

= lim
n→∞

n∑
i=1

1

n
I(ti) ≡ lim

n→∞
Θn.

Since it holds for any path, we have Θn
a.s.−→ Θ( a.s.−→ means

convergence in almost surely sense). By Theorem 5.3.1 and
Theorem 5.5.1 in [17], we know that Θn

a.s.−→ Θ =⇒ Θn
d−→

Θ. ( d−→ means convergence in distribution sense). Since
I(t1)
I(t2)

...
I(tn)

 ∼ N



0
0
...
0

 , Σ

 ,

where

Σ ≡


∫ t1
0
σ2(s)ds

∫ t1
0
σ2(s)ds · · ·

∫ t1
0
σ2(s)ds∫ t1

0
σ2(s)ds

∫ t2
0
σ2(s)ds · · ·

∫ t2
0
σ2(s)ds

...
...

. . .
...∫ t1

0
σ2(s)ds

∫ t2
0
σ2(s)ds · · ·

∫ tn
0
σ2(s)ds

 .

By setting k = (1, 1, . . . , 1)T , we have

Θn =
n∑
i=1

1

n
I(ti) =

1

n
(1, 1, . . . , 1)


I(t1)
I(t2)

...
I(tn)


∼ N(0,

1

n2
kTΣk) = N(0, σ2

n),

IAENG International Journal of Applied Mathematics, 43:2, IJAM_43_2_01

(Advance online publication: 21 May 2013)

 
______________________________________________________________________________________ 



and

σ2
n =

1

n2

n∑
j=1

[2(n− j) + 1]

∫ tj

0

σ2(s)ds −→ σ̂2.

Since Θn ∼ N(0, σ2
n) for any n, the characteristic function

ϕn(u) of Θn satisfies

ϕn(u) = e−
1
2u

2σ2
n −→ e−

1
2u

2σ̂2

= ϕ(u).

It is easy to prove that in any interval [U1, U2], ϕn(u)
uniformly converges to ϕ(u) as ϕn(u) and ϕ(u) are both
continuous functions. By Levi-Cramer Theorem([17], Theo-
rem 5.4.1), we get δn

d−→ N(0, σ̂2). Thus as the uniqueness
of limitation, we have Θ ∼ N(0, σ̂2) and

ξ ≡ 1

T

∫ T

0

logS(t)dt = a+ Θ ∼ N(a, σ̂2).

By the risk-neutral pricing formula, it holds that

X1cGAO|t=0 = E[e−rT (X1cGAO|t=T )]

= e−rTE[(e
1
T

∫ T
0

logS(t)dt −K)+]

= e−rTE[(eξ −K)+]. (5)

By setting ξ = a− σ̂Z, Z ∼ N(0, 1), we have

X1cGAO|t=0 = e−rTE[(ea−σ̂Z −K)+]

= e−rT
∫ +∞

−∞
(ea−σ̂z −K)+

1√
2π
e−

1
2 z

2

dz

= e−rT
∫ d−

−∞
(ea−σ̂z −K)

1√
2π
e−

1
2 z

2

dz

= e
1
2 σ̂

2−rT+aN(d+)−Ke−rTN(d−),

where d− =
a− logK

σ̂
, d+ = d− + σ̂.

Theorem 2. Suppose that the stochastic volatility σt in (3) is
replaced by a deterministic square-integrable volatility σ(t)
, there is an analytic solution for the fixed-strike discrete
sampling geometric average Asian (call) option,

X1dGAO|t=0 = E[e−rT (X1dGAO|t=T )]

= e−rTE

[(
e

1
N

∑N

i=1
logS(Ti) −K

)+
]

= e
1
2 σ̂

2−rT+aN(d+)−Ke−rTN(d−),

where

a = logS0 +
r

N

N∑
i=1

Ti −
1

2N

N∑
i=1

∫ Ti

0

σ2(s)ds,

σ̂2 =
1

N2

N∑
j=1

[2(N − j) + 1]

∫ Tj

0

σ2(s)ds,

and d− = a−logK
σ̂

, d+ = d− + σ̂.

We omit the proof of Theorem 2 since it is similar to that
of Theorem 1. For the floating-strike Asian options, we also
have the following theorems.
Theorem 3. Suppose that the stochastic volatility σt in (3) is
replaced by a deterministic square-integrable volatility σ(t),

there is an analytic solution for the floating-strike continuous
sampling geometric average Asian (put) option,

X2cGAO|t=0 = E
[
e−rT (X2cGAO|t=T )

]
= e−rTE

[(
e

1
T

∫ T
0

logS(t)dt − S(T )

)+
]

= S0e
1
2 b

2+aN(d+)− S0N(d−),

where

a = −1

2
rT +

1

2T

∫ T

0

∫ t

0

σ2(s)dsdt− 1

2

∫ T

0

σ2(s)ds,

b2 = lim
n→∞

1

n2

n∑
j=1

[2(n− j) + 1]

∫ j Tn

0

σ2(s)ds

− 2 lim
n→∞

1

n

n∑
j=1

∫ j Tn

0

σ2(s)ds+

∫ T

0

σ2(s)ds, (6)

and d− =
a

b
, d+ = d− + b.

Proof. Set J(T ) = e
1
T

∫ T
0

logS(t)dt. By the risk-neutral
pricing formula, we have

X2cGAO|t=0 = E
[
e−rT (X2cGAO|t=T )

]
= e−rTE

[(
e

1
T

∫ T
0

logS(t)dt − S(T )

)+
]

= e−rTE
[
(J(T )− S(T ))

+
]

= e−rTE

[
S(T )

(
J(T )

S(T )
− 1

)+
]
.

Set Z(T ) = e

∫ T
0
σ(s)dW1s− 1

2

∫ T
0
σ2(s)ds and P̂(A) =∫

A
Z(T )dP, ∀A ∈ F. By Girsanov’s Theorem, Ŵ1s ≡

W1s −
∫ s
0
σ(u)du is a Winner process under the new prob-

ability measure P̂ . Then we have

X2cGAO|t=0 = e−rT Ê

[
S(T )

(
J(T )

S(T )
− 1

)+
1

Z(T )

]

= S0Ê

[(
J(T )

S(T )
− 1

)+
]
.

By (5), we have log J(T )
S(T ) = a+ Θ̂, where

a = −1

2
rT +

1

2T

∫ T

0

∫ t

0

σ2(s)dsdt− 1

2

∫ T

0

σ2(s)ds,

Θ̂ =
1

T

∫ T

0

Î(t)dt− Î(T ),

and Î(t) =
∫ t
0
σ(s)dŴ1s. Under the new probability measure

P̂, similar to the proof of Theorem 1, we can prove Θ̂ ∼
N(0, b2), and we omit it. Set ξ̂ ≡ log J(T )

S(T ) . Then we have
ξ̂ ∼ N(a, b2) under the measure P̂. Thus it holds that

X2cGAO|t=0 = S0Ê

[(
J(T )

S(T )
− 1

)+
]

= S0Ê
[
(eξ̂ − 1)+

]
.

Also similar to the proof of Theorem 1, we can get the
conclusion of Theorem 3.

Theorem 4. Suppose that the stochastic volatility σt in
(3) is replaced by a deterministic square-integrable volatility
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σ(t), there is an analytic solution for the floating-strike
discrete sampling geometric average Asian (put) option,

X2dGAO|t=0 = E
[
e−rT (X2dGAO|t=T )

]
= e−rTE

[(
e

1
N

∑N

i=1
logS(Ti) − S(TN )

)+
]

= S0e
1
2 b

2+aN(d+)− S0N(d−),

where

a = − r

N

[
(N − 1)TN −

N−1∑
i=1

Ti

]

− 1

2N

[
(N − 1)

∫ TN

0

σ2(s)ds−
N−1∑
i=1

∫ Ti

0

σ2(s)ds

]
,

b2 =
1

N2

N∑
j=1

[2(N − j) + 1]

∫ Tj

0

σ2(s)ds

− 2

N

N∑
j=1

∫ Tj

0

σ2(s)ds+

∫ T

0

σ2(s)ds,

and d− =
a

b
, d+ = d− + b.

The proof is similar to that of Theorem 3.
Note that σ(t) should be chosen such that the limitations

in (4) and (6) both exist. By the call-put parity formula,
for the fixed-strike GAO put option, the price formula is
Ke−rTN(−d−) − e 1

2 σ̂
2rT+aN(−d+), and for the floating-

strike GAO call option, the price formula is S0N(−d−) −
S0e

1
2 b

2+aN(−d+).

II. CONTROL VARIATES UNDER TWO MODELS

The analytic solutions for GAO derived in Section I could
be employed as control variates for valuing Asian options
with stochastic volatility models in Section I. For example,
we can employ X1cGAO as a control variate to get V1cGAO
and V1cAAO, and X1dGAO as a control variate to get V1dGAO
and V1dAAO, et al. However, by (2), it is important that how
to choose the deterministic square integrable volatility σ(t)
to make ρ2XV as large as possible. In this section, we show
a strategy to choose an appropriate deterministic volatility
σ(t) under the Hull and White model [11] and the Heston
model [10]. The idea is that σ(t) is chosen with the same
order moment as that of σt.

A. Hull and White Model

Hull and White [10] introduced the concept of stochastic
volatility. Suppose that square of the stochastic volatility
Yt(σt =

√
Yt) satisfies the following equation

dYt = µYtdt+ σYtdW2t, (7)

where µ, σ are constants. It is hold that

Yt = σ2
t = Y0e

(µ− 1
2σ

2)t+σW2t = σ2
0e

(µ− 1
2σ

2)t+σW2t . (8)

We choose σ(t) such that σ(t) and σt have the same mth
order moment, that is

[Y (t)]
m
2 = [σ(t)]m = E[σmt ] = E[Y

m
2
t ]. (9)

By (8) and the property of lognormal distribution, we have

σ(t) = σ0e
1
2amt, (10)

where am = µ + 1
4 (m − 2)σ2 and m is any real number.

Substituting σ(t) in Theorem 1 – 4, we can solve the
parameters (a, σ̂) of the analytic solutions in Theorem 1 –
4.
Theorem 5 Suppose that σ(t) is defined by (10). Then
the parameters a, σ̂2 and b2 in Theorem 1 – 4 have the
expressions
(i) in Theorem 1,

a =


logS0 + 1

2rT −
1
4σ

2
0T, if am = 0

logS0 + 1
2rT−

σ2
0

2Tam
[ 1
am

(eamT − 1)− T ], if am 6= 0

σ̂2 =

{
1
3σ

2
0T, if am = 0

2σ2
0

T 2a3m
(eamT − 1)− 2σ2

0

Ta2m
− σ2

0

am
, if am 6= 0

(ii) in Theorem 2,

a =


logS0 + r

N

∑N
i=1 Ti −

σ2
0

2N

∑N
i=1 Ti, if am = 0

logS0 + r
N

∑N
i=1 Ti−

σ2
0

2N

∑N
i=1

1
am
eamTi , if am 6= 0

σ̂2 =

{
σ2
0

N2

∑N
j=1[2(N − j) + 1]Tj , if am = 0

σ2
0

amN2

∑N
j=1[2(N − j) + 1][eamTj − 1], if am 6= 0

(iii) in Theorem 3,

a =

{
− 1

2 (r + 1
2σ

2
0)T, if am = 0

σ2
0

2Ta2m
(eamT − 1)− σ2

0

2am
eTam − 1

2rT, if am 6= 0

b2 =

{
1
3σ

2
0T, if am = 0

σ2
0

am
[(1− 2

Tam
)eamT + 2(eamT−1)

T 2a2m
], if am 6= 0

(iv) in Theorem 4,

a =


− r
N [(N − 1)T −

∑N−1
i=1 Ti]−

σ2
0

2N [(N − 1)T −
∑N−1
i=1 Ti], if am = 0

− r
N [(N − 1)T −

∑N−1
i=1 Ti]− σ2

0

2Nam
[(N − 1)

(eamT − 1)−
∑N−1
i=1 (eamTi − 1)], if am 6= 0

b2 =



σ2
0

N2

∑N
i=1[2(N − j) + 1]Tj−

2σ2
0

N

∑N
i=1 Tj + σ2

0T, if am = 0
σ2
0

N2am

∑N
j=1[2(N − j) + 1](eamTj − 1)

− 2σ2
0

Nam

∑N
j=1(eamTj − 1)

+
σ2
0

am
(eamT − 1), if am 6= 0

The proof of this theorem is computational process and
we omit it. The only one point is that when solving the
limitations in (4) and (6), we should use the Taylor expansion
ex = 1+x+ 1

2x
2+O(x3) and the concept of the same order

infinitesimal.
Thus we can obtain a control variate X to an option V

since the expectation of X can be solved analytically by the
theorems.

B. Heston Model

The Hull and White model is the earliest stochastic
volatility model and because of its tractable in mathematics,
it’s applied very widely. But in the long run, it is unreason-
able in financial sense. If the volatility Yt satisfies (7), by (9)
and (10), we have E[σt] = σ0e

1
2 (µ−

1
4σ

2)t which illustrates
that the volatility mean grows exponentially. This is not likely
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to be true. Heston [10] supposed that square of the volatility
satisfies the mean-reversion process

dYt = (α− βYt)dt+ σ
√
YtdW2t, (11)

where α > 0, β > 0, σ > 0. The process in (11) is
a square-root diffusion process, which was first studied by
Cox, Ingersoll and Ross [3]. This model guarantees that Yt
converges to its long run mean α/β and Yt is nonnegative. In
financial point of view, the Heston model is more reasonable
than the Hull-White model, but the Heston model is less
tractable in mathematics. Unlike (7), (11) doesn’t have a
closed-form solution, but we can easily solve its expectation
([10],pp.142,ex4.4.11)

E[σ2
t ] = E[Yt] = e−βtY0 +

α

β
(1− e−βt).

We now choose σ(t) such that σ(t) and σt have the same
order moment

Y (t) = σ2(t) = E[σ2
t ] = e−βtY0 +

α

β
(1− e−βt). (12)

Thus, σ(t) can be used in Theorem 1 – 4, and then X can
be employed as a control variate to a option V under the
Heston model.

III. NUMERICAL EXPERIMENT

By (2), the efficiency of a control variate X to an option
V can be shown by the correlation ρ2XV , or by the standard
deviation reduction ratio

R =

√
1

1− ρ2XV
. (13)

A larger R means that a control variate X has more efficiency
to an option V . In this section, we first present a algorithm
to estimate R, then perform some numerical experiments to
report the efficiency of our control variates by showing the
estimation of R.

Following the way of Ma and Xu [12], we present the
following numerical algorithm to estimate R for the control
variate X1dGAO to the option V1dGAO under the Hull-White
model.
Algorithm 1. Estimate R for X1dGAO to V1dGAO under the
Hull-White model.

1) Divide [0, T ] into n intervals with mesh size 4t =
T/n = tk+1 − tk, and make sure that the set of
time discrimination points {tk}nk=1 covers the set of
observation dates {Ti}Ni=1.

2) After putting σ(t) into (3), we can generate S(tk+1)
from S(tk) (also see (5)) by

S(tk+1) =S(tk) exp

{
r4t− 1

2

∫ tk+1

tk

σ2(s)ds

+

∫ tk+1

tk

σ(s)dW1s

}
.

As
∫ tk+1

tk
σ(s)dW1t ∼ N(0,

∫ tk+1

tk
σ2(s)ds), we gen-

erate standard normal random number Z1,j
k and get

Sj(tk+1) =Sj(tk) exp

{
r4t− 1

2

∫ tk+1

tk

σ2(s)ds

+

√∫ tk+1

tk

σ2(s)dsZ1,j
k

}
, (j = 1, · · · , p)

where Sj(t0) = S0 and p is the number of the
replication simulation. Thus a replication j of the
underlying asset price S(t) is derived.

3) By the contract of the option, set the value of control
variate

Xj
1dGAO =

(
e

1
N

∑N

i=1
logSj(Ti) −K

)+

. (14)

4) Similarly, we generate Stk+1
from Stk by

Sjtk+1
= Sjtk exp

{
(r −

(σjtk)2

2
)4t+ σjtk

√
4tZ1,j

k

}
,

with Sjt0 = S0, where σitk =
√
Y jk , and Ytk+1

from
Ytk by

Y jtk+1
= Y jtk exp

[
(µ− 1

2
σ2)4t+ σ

√
4tZ2,j

k

]
, (15)

where Z2,j
k is the standard normal random number

with the correlative coefficient ρ with Z1,j
k . Thus a

replication j of the underlying asset prices St following
processes (3) and (13) is simulated.

5) By the clause of the option, set the value of the option

V j1dGAO =

(
e

1
N

∑N

i=1
logSj

i −K
)+

. (16)

6) Let Xp = 1
p

∑p
j=1Xj , V p = 1

p

∑p
j=1 Vj , then

ρ̂XV =

∑p
j=1(Xj −Xp)(Vj − V p)√∑p

j=1(Xj −Xp)2
√∑p

j=1(Vj − V p)2
,

and

R̂ =

√
1

1− (ρ̂XV )2
.

Remark:
1) For other control variate X to other option V , it is only

need to modify (14) and (16).
2) For the Heston model, it is only need to modify (15)

by (11).

A. Hull-White Model

Based on the algorithm, we perform some numerical
experiments to report the efficiency of our control variates
by showing the standard deviation reduction ratio R̂ under
the Hull-White model . We report our numerical results of
with a Matlab 7.0 implementation of the algorithm.

Following Ma and Xu [13], we set the parameters T =
1, n = 100, N = 50, r = 0.05, µ = 0.05, S0 = 100, σ =
0.01, Y0 = σ2

0 = 0.152, p = 10000. We test serval groups
of the other parameters m, ρ,K. Note that if m = 2 − 4µ

σ2 ,
Y (t) = σ2(t) = σ2

0 = Y0 is constant. The data in all the
tables are the standard deviation reduction ratio R̂, rather
than the variance reduction ratio R̂2.

Experiment 1. In this experiment, we report the efficiency
of the control variate X1dGAO to the option V1dGAO by
showing the standard deviation reduction ratio R̂ in Table
I. We test serval groups of the parameters m, ρ,K. The data
in Table I show us that:

1) when m = 2 − 4µ
σ2 at the last column, σ(t) = σ0 in

(10) is a constant, so σ(t) can’t track down σt. In such
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TABLE I
X1dGAO TO V1dGAO

m=-50 m=0 m=1 m=2 m=100 m=2− 4µ
σ2

K=90 409.3333 418.7455 408.6419 414.3889 407.7352 162.6211
ρ = 0.1 K=100 379.4101 360.4291 377.2734 377.3868 370.9005 150.3187

K=110 222.9084 223.0590 211.9047 224.6605 236.2057 111.6436
K=90 465.8595 488.0159 474.7598 484.4832 482.1097 156.7584

ρ = 0.9 K=100 413.7979 411.2028 417.6350 425.4420 428.6535 143.0066
K=110 372.6171 379.2108 358.8228 369.4438 356.1442 117.0795

case, the efficiency of the control variate X1dGAO to the
option V1dGAO is small. For the other m, the difference of
the efficiency is not significant;

2) there is some influence for different ρ. The larger ρ is,
the larger R̂ is;

3) when the option is in-the-money (ı.e., K < 100), the
control variate works better. This is because when the option
is out-of-the-money (ı.e., K > 100), there are many paths
giving zero payoff.

To overcome this drawback, we can use the call-put parity
formula,

V1dGAO|t=0 =E

[
e−rT

(
e

1
N

∑N

i=1
logSi −K

)+
]

=E

[
e−rT

(
K − e

1
N

∑N

i=1
logSi

)+
]

+

E

[
e−rT

(
e

1
N

∑N

i=1
logSi − 0

)+
]
− e−rTK.

It is clear that if (e
1
N

∑N

i=1
logSi −K)+ is (deep) out-of-the-

money, (K − e
1
N

∑N

i=1
logSi)+ is (deep) in-the-money. Thus

we can use the Monte Carlo method with our control variate
to simulate the (deep) in-the-money option V1dGAO|t=0.

Experiment 2. In this experiment, we report the efficiency
of the control variate X1dGAO to the option V1dAAO by
showing the standard deviation reduction ratio R̂ in Table
II. In such case, we replace V j1dGAO in (16) by

V j1dAAO =

(
1

N

N∑
i=1

Sji −K

)+

.

We also test the same group of the parameters m, ρ,K as
that in the experiment 1.

The data in Table II show us that:
1) the efficiency of the control variate X1dGAO to the

option V1dAAO is much lower than that to the option
V1dGAO. This is reasonable since the difference between
V1dAAO and X1dGAO lies not only in the volatility, but also
in the payoff structure. Even so, the variance reduce ratio is
about 2000(≈ 452), which means the correlation coefficient
between V1dAAO and X1dGAO is about 0.9998;

2) the efficiency of the control variate with the constant
σ0 (i.e. when m = 2− 4µ

σ2 at the last column) is still lower
than others m, but that is not much;

3) the effect of K is the same as that in the experiment 1;
4) there is some affect for different ρ, but not very clear.
Experiment 3. In this experiment, we report the efficiency

of the control variate X2dGAO to the options V2dGAO and
V2dAAO by showing R̂ in Table III. In such cases, we replace

Xj
1dGAO in (14) by

Xj
2dGAO =

(
e

1
N

∑N

i=1
logSj(Ti) − Sj(T )

)+

;

also, V1dGAO in (4.4) should be replaced by

V j2dGAO =

(
e

1
N

∑N

i=1
logSj

i − SjT
)+

and by

V j2dAAO =

(
1

N

N∑
i=1

Sji − S
j
T

)+

respectively. We test several groups of the parameters m and
ρ.

The data in Table III show us that:
1) just like the results of the experiment 1 and the

experiment 2, the efficiency of the control variate X2dGAO

to the option V2dAAO is much lower than that to the option
V2dGAO;

2) the efficiency of the control variate with the constant
σ0 (i.e. when m = 2− 4µ

σ2 at the last column) is still lower
than others m;

3) there is some affect for different ρ, and basically, the
smaller |ρ| is, the smaller R̂ is.

Next two experiments are about the continuous sampling
Asian options.

Experiment 4. We report the efficiency of the control
variate X1cGAO to the options V1cGAO and V1cAAO by
showing R̂ in Table IV. In such cases, we replace Xj

1dGAO

in (14) by

Xj
1cGAO =

(
e

1
T

∫ T
0

logSj(t)dt −K
)+

≈
(
e

1
T

∑n

k=1
logSj(tk)4t −K

)+
;

also, V1dGAO in (16) is replaced by

V j1cGAO =

(
e

1
T

∫ T
0

logSjt dt −K
)+

≈
(
e

1
T

∑n

k=1
logSjtk

4t −K
)+

and by

V j1cAAO =

(
1

T

∫ T

0

Sjt dt−K

)+

≈

(
1

T

n∑
k=1

Sjtk 4 t−K

)+
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TABLE II
X1dGAO TO V1dAAO

m=-50 m=0 m=1 m=2 m=100 m=2− 4µ
σ2

K=90 51.2470 52.4568 51.5750 51.5767 52.5609 44.0307
ρ = 0.1 K=100 46.9175 45.6624 48.0509 47.3113 47.4938 38.6150

K=110 25.7714 26.3152 26.8835 25.5878 27.3461 22.3833
K=90 49.4656 50.3513 49.6439 46.7907 51.2375 42.4617

ρ = 0.9 K=100 44.7613 44.2899 44.5601 45.2786 44.5297 38.1805
K=110 25.6553 27.1686 25.9317 26.5944 26.3661 22.1021

TABLE III
X2dGAO TO V2dGAO AND TO V2dAAO

to m=-50 m=0 m=1 m=2 m=100 m=2− 4µ
σ2

ρ = −0.9 204.5360 196.3468 200.3387 201.6838 189.5257 143.5079
ρ = −0.5 172.5371 172.84889 165.8014 172.5469 168.5937 111.4999

V2dGAO ρ = 0 164.5061 166.2659 164.9895 165.5065 164.4224 92.5353
ρ = 0.5 166.4444 170.4592 171.1020 173.4244 174.8499 83.8239
ρ = 0.9 194.5422 201.2479 200.7856 202.9127 212.1137 77.9394
ρ = −0.9 47.7312 49.8563 49.7212 52.1304 50.0864 49.4327
ρ = −0.5 48.2151 48.24820 49.1194 47.4271 49.5690 48.8880

V2dAAO ρ = 0 48.3288 48.3719 48.3538 49.4576 46.8591 46.9129
ρ = 0.5 49.0753 49.2757 49.6113 50.1640 48.3352 45.8860
ρ = 0.9 48.7109 49.3867 50.8092 50.7244 48.4695 42.7990

TABLE IV
X1cGAO TO V1cGAO AND TO V1cAAO

to m=-50 m=0 m=1 m=2 m=100 m=2− 4µ
σ2

V1cGAO K=90 458.5034 475.1777 481.9701 490.3650 493.4915 160.8114
K=100 411.9112 422.7765 409.4287 411.8081 433.6935 144.0880

V1cAAO K=90 48.8511 49.7269 48.7308 48.9061 49.2664 42.9104
K=100 45.3342 45.3444 45.6680 46.2055 43.8524 39.6856

respectively. We set the parameter ρ = 0.9, and test several
groups of the parameters m and K.

Experiment 5. We report the efficiency of the control
variate X2cGAO to the options V2cGAO and V2cAAO by
showing R̂ in Table V. In such cases, we replace Xj

1dGAO

in (14) by

Xj
2cGAO =

(
e

1
T

∫ T
0

logSj(t)dt − Sj(T )

)+

≈
(
e

1
T

∑n

k=1
logSj(tk)4t − Sj(T )

)+
;

also, V1dGAO in (16) should be replaced by

V j2cGAO =

(
e

1
T

∫ T
0

logSjt dt − SjT
)+

≈
(
e

1
T

∑n

k=1
logSjtk

4t − SjT
)+

and by

V j2cAAO =

(
1

T

∫ T

0

Sjt dt− S
j
T

)+

≈

(
1

T

n∑
k=1

Sjtk 4 t− SjT

)+

respectively. We test several groups of the parameters m and
ρ.

The numerical results of two experiments above for the
control variates to the continuous sampling Asian options
show the similar efficiency like those to the discrete sampling
Asian options.

B. Heston Model

Experiment 6. In this experiment, we report the efficiency
of the control variate X1dGAO to the option V1dGAO under
the Heston model by showing R̂ in Table VI. In such case,
we replace (15) by

Y jtk+1
= Y jtk + (α− βY jtk)4t+ σ

√
Y jtkZ

2,j
k .

We set the parameters by n = 100, r = 0.1, α = 0.25, β =
5, S0 = 100, σ = 0.01, T = 1, Y0 = σ2

0 = 0.04, p =
10000, N = 10, K = 100. We test several parameters ρ
and two kind forms of the control variates X1dGAO; one is
based on the deterministic volatility function (12), and the
other is based on the constant volatility Y (t) = Y0.

The numerical results show that our control variate also
works well under the Heston model.

IV. CONCLUSION

In this paper, we present a strategy to form a class of
control variates for pricing Asian options under the stochastic
volatility models. Our idea is using a deterministic volatility
σ(t) to replace the stochastic volatility σt by choosing σ(t)
with the same order moment as that of σt under the Hull-
White model and the Heston model. Numerical experiments
report that our control variates work quite well by showing
the standard deviation reduction ratio R̂ and the efficiency is
obviously better than one formed by the constant volatility
σ0, the initial value of the stochastic volatility. Our strategy
can also be extend to other stochastic volatility models, as
long as their order moment can be obtained in the closed-
form. This is much easier than to calculate the distribution
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TABLE V
X2cGAO TO V2cGAO AND TO V2cAAO

to m=-50 m=0 m=1 m=2 m=100 m=2− 4µ
σ2

ρ = −0.9 204.5256 197.8080 201.6697 199.6693 186.1615 143.2022
ρ = −0.5 170.8696 175.7991 172.4018 175.2517 167.4408 112.2702

V2cGAO ρ = 0 160.9377 165.5935 162.0692 163.5159 160.9531 91.7656
ρ = 0.5 169.7676 175.2745 171.4413 169.7005 169.2797 80.7796
ρ = 0.9 193.8323 199.2215 202.1001 202.0420 210.4669 76.8739
ρ = −0.9 49.5630 48.8867 47.8118 48.9376 48.4962 50.3260
ρ = −0.5 47.2847 47.5158 48.5479 48.8120 48.7709 46.6673

V2cAAO ρ = 0 47.7823 49.2654 48.5468 48.9377 48.9082 45.3849
ρ = 0.5 49.3646 48.9727 49.1666 47.9563 48.1193 44.4376
ρ = 0.9 48.8006 48.9003 48.9083 48.9110 49.0476 41.2342

TABLE VI
X1dGAO CONTROL V1dGAO BASED ON TWO Y (t)

Y (t) ρ = −0.9 ρ = −0.5 ρ = 0 ρ = 0.5 ρ = 0.9

e−βtY0 + α
β
(1− e−βt) 148.5916 146.1014 136.5857 141.0351 151.1588

Y0 24.8804 24.9325 23.8939 22.9603 23.0285

function of the stochastic volatility such as in the Heston
model. In addition, our strategy can be extend to pricing
other financial derivatives under stochastic volatility models.
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