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A Class of Control Variates for Pricing Asian
Options under Stochastic Volatility Models

Kun Du, Guo Liu, and Guiding Gu

Abstract—In this paper we present a strategy to form a class
of control variates for pricing Asian options under the stochastic
volatility models by the risk-neutral pricing formula. Our idea
is employing a deterministic volatility function o(t) to replace
the stochastic volatility ;. Under the Hull and White model[11]
and the Heston model[10], the deterministic volatility function
o(t) can be chosen with the same order moment as that of
o+, and then a control variate can be derived. The numerical
experiments report that our control variates work quite well
by showing the standard deviation reduction ratio.

Index Terms—Asian Options pricing; Monte Carlo method;
control variates.

I. INTRODUCTION

N Asian option is a kind of financial derivative whose

payoff includes a time average of the underlying asset
prices. The primary purpose for basing an option payoff
on an average asset price is to make it more difficult for
anyone to significantly affect the payoff by manipulation of
the underlying asset price. So Asian options can be used to
reduce the risk caused by unusual behaviors of the underlying
asset price before expiry, and they are quite popular in
risk management. According to different sampling types and
strike price types, there are eight types of Asian options
(in this paper, we do not distinguish call and put options),
four fixed-strike options and four floating-strike options. The
payoff functions of four fixed-strike options are:
1) fixed-strike continuous sampling arithmetic average Asian
(call) option (1cAAO),

1 [T i
Vicaaoli=r = (T/ Sydt — K) ;
0

2) fixed-strike discrete sampling arithmetic average Asian
(call) option(1dAAO),

1 i
Vidaaoli=r = (N Z S; — K) :
i=1

3) fixed-strike continuous sampling geometric average Asian
(call) option(1cGAO),

+
1 T
L [T log Sy dt
VieGaoli=r = (eTfﬂ 8o —K> ;
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4) fixed-strike discrete sampling geometric average Asian
(call) option(1dGAO),

+
L NN .
VldGAO‘t:T = (eN Zi:l lOQSz _ K) ,

where K and S; are the fixed-strike price and the price of
underlying asset at time ¢, respectively. S; = S7, denotes the
price of underlying asset at the ith observation date 7T; with
0=Ty<Th <Ty<---<Ty=T.]0, T] represents the
valid period of the option.

Replacing K with St in Vicaaoli=r and Vicgaoli=r,
we can derive the payoff functions of the floating-strike
continuous sampling arithmetic and geometric average Asian
(put) options, denoted as 2cAAO and 2¢G AO,

1 (7 "
V2cAAO‘t:T = (T/ Spdt — ST> ,
0

+
1 T
- log Sidt
VocGaole=r = (eT Js - ST) )

Also, replacing K with Sy in Vigaao|i=r and Viggaoli=r,
we have the payoff function of the floating-strike discrete
sampling arithmetic and geometric average Asian (put) op-
tion, denoted as 2dAAO and 2dGAO,

L +
NS 5N> :
(N i=1
N +
Vadcaolt=r = (eN Do logSi _ 5N> '

The Monte Carlo method is a numerical method based
on probability and statistics, and is widely used in many
fields, especially in the field of computational finance. One
of the main advantages of the Monte Carlo method is that its
convergence is independent on the number of state variables.
It is usually used when the number of state variables is
greater than three. However, the drawback of Monte Carlo
method is that its convergence rate is slow. Let V' be a
random variable(r.v. for short), and we want to calculate
@ = E[V]. By simulation, we get identically independent
distributed (i.i.d. for short) samples {V;}? , of V; Law of
Larger Number guarantees V,, = % Vi 2% 1u; Central
Limit Theorem guarantees that p asymptotically falls in the
confidence interval

Vadgansoli=r =

— o o
Vp—— —Z
with probability 1 — §, where o is the standard deviation of
V, n is the number of simulation paths, ¢ is the significance
level and Z 3 is the quantile of standard normal distribution

Zg,vn+

under g It is clear that the convergence rate of the Monte
. 1 .
Carlo method is O(n~2%), and a better way to improve
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the accuracy is reducing the standard deviation o. We refer
to Glasserman [8] for a summary of various techniques to
reduce the variance.

The method of control variates is one of the most widely
used variance reduction techniques. Suppose on each repli-
cation we can calculate another output X; along with V;, that
the pairs {(X;, V;)}?_, are i.i.d. and that the expectation
E[X] of X; is known. We use (X, V) to denote a generic
pair of r.v.s with the same distribution as each (X, V;).
Then for any fixed b € R, we can calculate

Vi(b):Vi_b(Xi_E[X])? i=1--,n

through the ith replication and compute the sample mean

Valb) =V, —

b(X, — B[X]).

This is a control variate estimator. It is proved in Glasserman
[8] that V,,(b) is a unbiased and consistent estimator of .
V' (b) has variance

Var(V(b)) = oy, — 2boxovpxv + b2o¥. (1)

The minimum point on b is b* = Z—; pxv. Substituting b* in
(1), we have
Var(V(b*))
Var(V)

We choose a control variate X for V, if X satisfies two
conditions:

1) the expectation E[X] is known;

ii) the correlation p%, is close to 1.

In practice, b* can’t be derived exactly as oy and pxy
are generally unknown. We can use its sample counterpart
yields the estimate
2 (X = X)) (Vi = Vi)

Yim (Xi = X)?
to approximate b*. As mentioned in Glasserman [8], we may
still get most of the benefit of a control variate using an
estimate of b*. Strictly speaking, to measure the efficiency
of the Monte Carlo method, we need not only the vari-
ance reduction ratio but also expected computing time per
replication. But in this paper, the computational effort per
replication is roughly the same with and without a control
variate, so we focus on the variance reduction ratio; see Ma
and Xu [13].

Kemma and Vorst [12] studied the valuation of arithmetic
average Asian options by using the counterpart geometric
average Asian options as control variates. This is one of the
most successful applications of control variates in financial
engineering. In the case of stochastic volatility models, a
constant volatility can be chosen to replace the stochastic
volatility in some conditions, and then this tractable dynamic
process is used as an auxiliary process to form a control
variate. How to choose this constant volatility is the key
problem of the efficiency of control variates. The most
intuitive way is to choose the initial value of the stochastic
volatility as the constant volatility. Both Fouque and Han [5]
and Han and Lai [9] use a method named as the Martingale
Control Variate method to choose an effective volatility which
is dependent on the initial value of the stochastic volatility
as the constant volatility. This method has many advantages
and can be used to other financial derivatives besides Asian

=1-piv- )

/b\:

options (see Fouque and Han [4, 6]). But the martingale
control variate method also has a potential drawback. Calcu-
lating the effective volatility needs the invariant distribution
function of stochastic volatility. If the stochastic volatility
satisfies Ornstein-Uhlenbeck process under which the invari-
ant distribution of stochastic volatility is easy to handle,
the martingale control variate method is easy to implement,
but if the stochastic volatility satisfies a process, which the
invariant distribution of stochastic volatility is hard to handle
such as Square-Root Diffusion, or the invariant distribution
is unknown, the martingale control variate method is difficult
to implement. There are many types of stochastic volatility
models, such as those in Scott [14], Stein and Stein [16]
and Ball and Roma [1]. We refer to Fouque et al [7] for a
summary of various stochastic volatility models.

In this paper, we present a strategy to form a class of
control variates for pricing Asian options under a stochastic
volatility model. Our idea is employing a deterministic
volatility function o (t) to replace the stochastic volatility o.
This deterministic volatility o(¢) is not only dependent on the
initial value of the stochastic volatility but also dependent on
time ¢, so that o(t) can track down the stochastic volatility.
Under the Hull and White model [11] and the Heston model
[10], the deterministic volatility function o (¢) can be chosen
with the same order moment as that of o;, and then a control
variate can be derived. The numerical experiments in our
paper report that our control variates work quite well in
terms of showing the standard deviation reduction ratio. It
is worth noting that our control variate is a generalization of
the control variate in [13] for pricing variance swap under
the Hull and White model [11].

The rest of this paper is organized as follows. We introduce
some basic settings for the model used in this paper in
Section I and derive the idiographic control variates under the
Hull and White model in Section II. In Section III we present
an algorithm to estimate the standard deviation reduction
ratio and then report some numerical results in terms of
showing the standard deviation reduction ratios under the
Hull and White model and the Heston model. Finally we
give some conclusions in Section IV.

A. Basic Setting

In this section we model the underlying asset price, but
we do not give the concrete stochastic differential equation
which the volatility satisfies. We get some general conclu-
sions which will be useful in the following sections.

We begin with a probability space (2, {F;}i>0, P), here
P is the risk-neutral measure. In this paper, all expectations
are derived under the risk-neutral measure P unless there is a
special statement. Suppose that the price of underlying asset
S follows the geometric Brownian motion

dSt = TStdt + O'tStdWM, (3)

where r is the risk-free interest rate which is a constant,
Wi is the Winner process and o is the stochastic volatility
which satisfies a diffusion process driving by another Winner
process Wo,. Wi, and Wo, satisfy cov(dWhy, dWay) = pdt,
so we have Wy, = pWi + /1 — p?2By, in which By is
the Winner process and independent with Wy,. Let {F;}i>0
be the filtration generated by the two-dimension Brownian
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motion (Wy¢, By), so Sy and o, are adapted to the filtration
{Fi}t>0. Suppose that o, satisfies the square-integrability
condition which is E fo 02ds < oco. It is known that by the
risk-neutral pricing formula, the prices are

" (Vieanoli=1)]

T +
1
=e¢ TR <T/o StdtK>

for 1cAAO (fixed-strike discrete sampling arithmetic average
Asian (call) option),

Vieaaoli=o = Ele

T (Viaaao|i=7)]

1 & "
_ =T - L
=e TR <N;Sz K)

Vidaaoli=o = Ele

for 1dAAO,

Viegaoli=o = Ele™™ (Vicgaoli=r)]

1 T
_ efrTE[(eT fﬂ log S¢dt K)+}
for 1cGAO, and

T (Viagaoli=r)]
_ efrTE[(eﬁ Zj\]:l log S;

Vidacaoli=o = Ele
- K)7]

for 1dGAO. Also for four floating-strike Asian options, the
prices are

. 1 [T
Vacaaoli=o = 6_'TE[(T/ Sydt — Sr)*],
0

N
. 1

Vaaaaoli=o = G_TTE[(N Z Si — Sn)7]

TTE Tf logStdt

7T’TE|:(€W Zz=1 log Si _

Vacgaolt=o =

Vadcaoli=o = e

As said in Fouque and Han [5], when the volatility is
randomly fluctuating, there is no analytic solution for GAO in
general, neither for AAO. But if the volatility is a determinis-
tic function(not necessarily constant), the prices of GAO have
analytic solutions. In such case, these analytic solutions can
be used as control variates for pricing corresponding Asian
options with stochastic volatility.

For GAO with deterministic volatility, we have following

theorems. N(-) is the standard normal distribution function
in this paper.
Theorem 1. Suppose that the stochastic volatility o, in (3) is
replaced by a deterministic square-integrable volatility o(t),
there is an analytic solution for the fixed-strike continuous
sampling geometric average Asian (call) option,

(X 1egaoli=T)]

+
<6% fDT log S(t)dt —K) ]

= o3 THaN (4, ) — Ke "TN(d_),

Xicgaoli=o = Ele

=e TR

2 2T
1 & i%
5 = 1im ﬁ;p(n )+ [ s,
andd,:ﬂ;‘Zg—K, dy =d_ +7.

Proof. By (3) and the assumptions, we have

¢ ¢
log S(t) = log Sy + rt — % / o?(s)ds + / o(s)dWis
0 0
= a(t) + I(t). @)

d
1 [T 1 [T 1 [T
L _ 1 L wa.
= /0 os S(1)dt = /O alt)dt + /0 (t)dt

By Theorem 4.4.9 in Shreve [14], we get

I(t) = /Ota(s)dWls ~ N(0, /Ot o?(s)ds).

It is easy to see
1 T
azf/o = log Sp + rTf—/ /
I(t)dt ~ N(0,

Next, we focus on proving 7 fo 52). Let

O=to<t1 < ---<t, =T, Nty =t —ti_1 = At =

o i—1,2,.. n; t; =iAt, i =0,1,...,n. Denote © =
t)dt. Thus, we have

F o I
0
@1/Tl(t)dt I ilf(t )AL
-7, _ninéoile

. 1 o
= nhﬁngo Z; ﬁl(ti) = nhﬁrréo O,.

s)dsdt.

Since it holds for any path, we have ©,, <% (%% means
convergence in almost surely sense). By Theorem 5.3.1 and
Theorem 5.5.1 in [17], we know that ©,, = © = ©,, 4,
O. (i> means convergence in distribution sense). Since

I(t) 0
I(t2) 0
: ~ N 2]
I(t,) 0
where
gl o?(s)ds gl o%(s)ds gl o?%(s)ds
5 gl o?(s)ds 52 o%(s)ds 52 2(s)ds
fotl o%(s)ds fg2 o%(s)ds - fot o%(s)ds
By setting k = (1,1,..., 1), we have
I(t1)
"1 1 1(t2)
0, =S 2I(t) = ~(1,1,...,1 _
ST = i |
I(tn)
1
~ N(O7 ?kTZk) = N(Oa J?L)v
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and
t

1]/ o?(s)ds — G2
0

Since ©,, ~ N (0, o2) for any n, the characteristic function
on(u) of O, satisfies

o= )+

=1

1,2 2 1,272

on(u) =e" 2" %% — 72" 7 = p(u).

It is easy to prove that in any interval [Uy, Us], ¢n(u)
uniformly converges to ¢(u) as ¢, (u) and ¢(u) are both
continuous functions. By Levi-Cramer Theorem([17], Theo-

rem 5.4.1), we get dy, N N (0, 52). Thus as the uniqueness
of limitation, we have © ~ N(0, 52) and

1 /7
&= —/ logS(t)dt = a + © ~ N(a, 7°).
T Jo
By the risk-neutral pricing formula, it holds that
(X1cgaoli=T)]
e f log S(t)dt

Xicgaoli=o = Ele™""
_ —TTE K)+]
e_TTE[( —K)"). 6))

By setting { =a—0Z, Z ~ N(0, 1), we have

Xiccaolt=o = efrTE[(e‘F;Z — K)™]
— T /+Do(ea—}\z —K)+ 1 e 3% ds
oo Vr
=e 7 /d(ea_;z - K) ! e dz
—0 V2
_ e%?—rT-&-aN(d ) Ke_TTN(d,L
where d_ = %, dy =d_+0

Theorem 2. Suppose that the stochastic volatility oy in (3) is
replaced by a deterministic square-integrable volatility o (t)
, there is an analytic solution for the fixed-strike discrete
sampling geometric average Asian (call) option,

T(X146a0=T)]

+
(eﬁ’ Zil log S(T3) _ K) ]

— o3 THaN (g, ) — Ke "TN(d_),

Xidcaoli=o = Ele™"

— e—TTE

where
T N 1 N T
_ T L 2
a—logSo—i-Ni:ZlTz 2Ni_zl/0 o
1 & T
e ZWZ[Z(ij)Jrl}/ a2 (s)ds,
— 0
and d_ = =228 d. =d_+35.

We omit the proof of Theorem 2 since it is similar to that
of Theorem 1. For the floating-strike Asian options, we also
have the following theorems.

Theorem 3. Suppose that the stochastic volatility oy in (3) is
replaced by a deterministic square-integrable volatility o(t),

there is an analytic solution for the floating-strike continuous
sampling geometric average Asian (put) option,

(X2cgaole=1)]
1 (T +
<6T fo log S(t)dt S(T)>

= Soed? TN (dy) — SoN(d-),

Xocgaoli—o = E [e™"

= "TE

where

a:_ﬂ~+4f/ /

1 /7
s)dsdt — 7/ o?(s)ds,
2 Jo

Jj=1
1S [ r
-2 lgn EZ/ 02(5)ds+/ (s)ds, (6)
a
and d_ =3 dy =d_ +0b.
1 T
Proof. Set J(T) = e7 Jo log S(t)dt By the risk-neutral

pricing formula, we have

Xsecaoli=o = E [e7™" (Xaccaoli=r)]

<e; [T 10a styar _ S(T)>+

(J(T) = S(T)"]

:ﬂﬂ<sggg+}

T T ~
Set Z(T) = efo o(s)dWi—3} [ o*(s)ds and P(f\l) =
T)dP, YA € F. By Girsanov’s Theorem, Wi, =
aZ y

e TR

e"TE

€7TTE J(T)

ng fo u)du is a Winner process under the new prob-
ability measure P. Then we have
T J(T) t
X, o= TE|SM) (S -1 ——
wotolin =B SO (575 -1) 70
(7@ T
=SF || =—= — .
’ <S<T> >

By (5), we have log % =a+ @ where

a:—4T+——/ /
:/ ().

and I fo dWls Under the new probability measure
P, 51m11ar to the proof of Theorem 1, we can prove O ~
N(O b?), and we omit it. Set € = log SET% Then we have
€ ~ N(a, b%) under the measure P. Thus it holds that

(1D )] — 0B [16f - 1)7].

S(T)
Also similar to the proof of Theorem 1, we can get the
conclusion of Theorem 3.
Theorem 4. Suppose that the stochastic volatility oy in
(3) is replaced by a deterministic square-integrable volatility

1 /7
s)dsdt — 7/ o?(s)ds,
2 Jo

Xoccaolt=0 = So

(Advance online publication: 21 May 2013)
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o(t), there is an analytic solution for the floating-strike
discrete sampling geometric average Asian (put) option,

Xsacaoli—o = E [e7"" (Xaacaoli=r)]
+
(efv 2oL, legS(T) _ S(TN)> ]

= Spe" *ON(dy) — SN (d-),

=e¢TE

The proof is similar to that of Theorem 3.

Note that o(t) should be chosen such that the limitations
in (4) and (6) both exist. By the call-put parity formula,
for the fixed-strike GAO put option, the price formula is
Ke "TN(—d_) — e2° "T+aN(—d, ), and for the floating-
strike GAO call option, the price formula is SoyN(—d_) —
Soezt’ TaN(—d,).

II. CONTROL VARIATES UNDER TWO MODELS

The analytic solutions for GAO derived in Section I could
be employed as control variates for valuing Asian options
with stochastic volatility models in Section I. For example,
we can employ Xi.c40 as a control variate to get Vi.gao
and Vica40, and X146 40 as a control variate to get Viggao
and Vigaa0, et al. However, by (2), it is important that how
to choose the deterministic square integrable volatility o ()
to make p%, as large as possible. In this section, we show
a strategy to choose an appropriate deterministic volatility
o(t) under the Hull and White model [11] and the Heston
model [10]. The idea is that o(¢) is chosen with the same
order moment as that of o;.

A. Hull and White Model

Hull and White [10] introduced the concept of stochastic
volatility. Suppose that square of the stochastic volatility
Y;(0: = /Y;) satisfies the following equation

dYy = pYidt + oY;dWay, )
where p, o are constants. It is hold that
Y, =0} = Yoe(#*%UQ)HUWﬂ = gge(M*%UZ)HUWw_ )

We choose o(t) such that o(¢) and o; have the same mth
order moment, that is

Y ()]% = [0()]" = Elo}"] = E[Y,"]. ©)
By (8) and the property of lognormal distribution, we have

3 (10)

o(t) = opez®?,

where a,, = p + i(m —2)o? and m is any real number.

Substituting o(t) in Theorem 1 — 4, we can solve the
parameters (a, o) of the analytic solutions in Theorem 1 —
4.

Theorem 5 Suppose that o(t) is defined by (10). Then
the parameters a, o2 and b> in Theorem 1 — 4 have the
expressions

(i) in Theorem 1,

log So + 37T — iggT, if ayp =0
a= log250 + 5rT—
2;3771 [ﬁ(eamT - 1) - T]v ifanL 7é 0

~2 %UST’ if am =0
o = 202 a T 202 ol .
Tga?n(e m _1)_Ta3n o’ lfam;é()
(ii) in Theorem 2,

0'2 .
oS0+ § 0T S5 T =0
102g SO;r N 2ic1 Li—

ﬁ =1 a}n 9 l:fam, # 0
ol N . .
52 7 2= 2(N —4) +1]T5, if am =0
_ pl [Q(N_J)+1][€GMT7 _1]7ifam #O

am N2

amT;

e

Jj=1

(iii) in Theorem 3,

—5(r+ 308)T, if Gy =0
a = 0’3 (eamTfl)fieTam*lT’T ifa 7&0
2T a2, 2am 2 ’ m
3 2T ] m =
b2 — :Zgo 5 , o s lfa 0
am (L= g et + Zomar—],  ifam #0
(iv) in Theorem 4,
T N—-1
_QTV[UV - 1)T - ZJ\ZZZi Ti]_
a = ;A[(N_ 1)T_Zi?vl_ln]a , ifam =0
_%[(N - 1)T —NEle Ti] - 2N¢Oz,,L [(N - 1)
(e =1) = SIS e T - 1) T am £ 0
2
R YL (N — ) + 1T
%Z?f:lTj-ﬁ-U%T, if G =0
o2 . an T
D= Qe S 2N - 5) + (e - 1)
2‘177?) N am T 1
_Nza'm ijl(e = )
+am (e T 1), if am # 0

The proof of this theorem is computational process and
we omit it. The only one point is that when solving the
limitations in (4) and (6), we should use the Taylor expansion
e’ =14z + 122+ 0O(2?) and the concept of the same order
infinitesimal.

Thus we can obtain a control variate X to an option V'
since the expectation of X can be solved analytically by the
theorems.

B. Heston Model

The Hull and White model is the earliest stochastic
volatility model and because of its tractable in mathematics,
it’s applied very widely. But in the long run, it is unreason-
able in financial sense. If the volatility Y; satisfies (7), by (9)
and (10), we have E[oy] = ooe2(#=57)t which illustrates
that the volatility mean grows exponentially. This is not likely
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to be true. Heston [10] supposed that square of the volatility
satisfies the mean-reversion process

dY; = (a—ﬂY;)dt'f‘O'\/?tdWQt, (11)

where & > 0, § > 0, 0 > 0. The process in (11) is
a square-root diffusion process, which was first studied by
Cox, Ingersoll and Ross [3]. This model guarantees that Y;
converges to its long run mean «//3 and Y; is nonnegative. In
financial point of view, the Heston model is more reasonable
than the Hull-White model, but the Heston model is less
tractable in mathematics. Unlike (7), (11) doesn’t have a
closed-form solution, but we can easily solve its expectation
([10],pp.142,ex4.4.11)

Elo?] = E[Y;] = e PtY, + %(1 — B,

We now choose o(t) such that o(t) and o; have the same
order moment

Y(t) = 02(t) = E[o?] = e 'Yy + %(1 —e ). (12)
Thus, o(t) can be used in Theorem 1 — 4, and then X can
be employed as a control variate to a option V under the
Heston model.

III. NUMERICAL EXPERIMENT

By (2), the efficiency of a control variate X to an option
V' can be shown by the correlation p%a,, or by the standard
deviation reduction ratio

1
R=,l—5—.
L—=pxy

A larger R means that a control variate X has more efficiency
to an option V. In this section, we first present a algorithm
to estimate R, then perform some numerical experiments to
report the efficiency of our control variates by showing the
estimation of R.

Following the way of Ma and Xu [12], we present the
following numerical algorithm to estimate R for the control
variate X14540 to the option V34540 under the Hull-White
model.

Algorithm 1. Estimate R for X14640 to Viggao under the
Hull-White model.

1) Divide [0, T into n intervals with mesh size At =
T/n = tg41 — tg, and make sure that the set of
time discrimination points {tx}7_; covers the set of
observation dates {7} ,.

2) After putting o(t) into (3), we can generate S(tp41)
from S(t) (also see (5)) by

1 tht1
S(tiy1) =S(tr) exp {rAt ~3 / o?(s)ds

tr

tk41
+/ U(S)dWls} .
tr

As [ o(s)dWy ~ N(0, [1**" 0%(s)ds), we gen-

t t
L
erate standard normal random number Z,’ and get

13)

. . 1 tet1
S7(tr11) =57 (tr) exp {rAt ~5 / o?(s)ds
123
tlt1 .
+ / Uz(s)dsZ,iJ ,G=1,---,p)
tr

where S7(tg) = Sp and p is the number of the
replication simulation. Thus a replication j of the
underlying asset price S(t) is derived.

3) By the contract of the option, set the value of control
variate

+
. N i
X yoa0 = <ezlv 2oy loa SU(T K) (14)

4) Similarly, we generate Sy, 1 from S, by

, , (JJ‘)2 , .
St =S exp {(T - 7;‘ YAt + of, \/AtZ,i’j ,
\/Y,f, and Y3, , from

. . 1 .
Y7, =Y exp [(u — 502)& + m/AtZ,f’]} , (15)

with Sgo = Sp, where o] =
Y, by

where Zz’j is the standard normal random number
with the correlative coefficient p with Z,i’J . Thus a
replication j of the underlying asset prices .S; following
processes (3) and (13) is simulated.

5) By the clause of the option, set the value of the option

‘ N . +
Visgao = (61{' 2o o8 S] K) ~ (16)
6) Let X, = % b X, V= % Y Vj, then

~ ?:1(Xj - yp)(Vj - Vp)
PXV = — — 3
V(X = X2 SV — V)2

and

=~ 1
R=l—F—.
1—(pxv)?
Remark:

1) For other control variate X to other option V/, it is only
need to modify (14) and (16).

2) For the Heston model, it is only need to modify (15)

by (11).

A. Hull-White Model

Based on the algorithm, we perform some numerical
experiments to report the efficiency of our control variates
by showing the standard deviation reduction ratio R under
the Hull-White model . We report our numerical results of
with a Matlab 7.0 implementation of the algorithm.

Following Ma and Xu [13], we set the parameters T =
1,n = 100, N = 50, = 0.05, = 0.05,Sy = 100,0 =
0.01,Yy = 02 = 0.15%,p = 10000. We test serval groups
of the other parameters m, p, K. Note that if m = 2 — %,
Y(t) = 0*(t) = 0§ = Y is constant. The data in all the
tables are the standard deviation Areduction ratio R, rather
than the variance reduction ratio R22.

Experiment 1. In this experiment, we report the efficiency
of the control variate Xj;4640 to the option VA1dGAo by
showing the standard deviation reduction ratio R in Table
I. We test serval groups of the parameters m, p, K. The data
in Table I show us that:

1) when m = 2 — i—‘; at the last column, o(t) = oy in
(10) is a constant, so o(t) can’t track down o;. In such

(Advance online publication: 21 May 2013)



TAENG International Journal of Applied Mathematics, 43:2, [JAM 43 2 01

TABLE 1
X1dgao T0 Vigaao

m=-50 m=0 m=1 m=2 m=100 | m=2— i—g‘

K=90 | 409.3333 | 418.7455 | 408.6419 | 414.3880 | 407.7352 | 162.6211

p=0.1 | K=100 | 379.4101 | 360.4291 | 377.2734 | 377.3868 | 370.0005 | 150.3187
K=110 | 222.9084 | 223.0590 | 211.9047 | 224.6605 | 236.2057 | 111.6436

K=00 | 465.8595 | 488.0150 | 474.7508 | 4844832 | 482.1007 | 156.7584

p =009 | K=100 | 413.7979 | 411.2028 | 417.6350 | 425.4420 | 428.6535 | 143.0066
K=110 | 372.6171 | 379.2108 | 358.8228 | 360.4438 | 356.1442 | 117.0795

case, the efficiency of the control variate Xi45640 to the
option Vigg40 is small. For the other m, the difference of
the efficiency is not significant;

2) there is some influence for different p. The larger p is,
the larger R is;

3) when the option is in-the-money (1.e., K < 100), the
control variate works better. This is because when the option
is out-of-the-money (1.e., K > 100), there are many paths
giving zero payoff.

To overcome this drawback, we can use the call-put parity

formula,
I +
1 N .
T <6N Dy logSi _ K) 1

Viagaoli=o =E

+
N
e T <K — eV D log Si)

+
E |eT (efv Do logSi _ 0) 1 — e 'TK.

It is clear that if (e™ 2oL, log s — K)7 is (dee -of-the-
[t p) out-of-the
money, (K — eV 2 108 Si)+ is (deep) in-the-money. Thus
we can use the Monte Carlo method with our control variate
to simulate the (deep) in-the-money option V14GA0|i=o-
Experiment 2. In this experiment, we report the efficiency
of the control variate Xi145640 to the option ‘ﬁdAAo by
showing the standard deviation reduction ratio I in Table
II. In such case, we replace V7, . in (16) by

1 Y !
VljdAAO = <stg - K) :
=1

We also test the same group of the parameters m, p, K as
that in the experiment 1.

The data in Table II show us that:

1) the efficiency of the control variate Xj4c40 to the
option Vigaao is much lower than that to the option
Viacao. This is reasonable since the difference between
Vidaaao and Xi4c40 lies not only in the volatility, but also
in the payoff structure. Even so, the variance reduce ratio is
about 2000(~ 452), which means the correlation coefficient
between Vigaao and Xiggao is about 0.9998;

2) the efficiency of the control variate with the constant
oo (i.e. when m = 2 — i—‘; at the last column) is still lower
than others m, but that is not much;

3) the effect of K is the same as that in the experiment 1;

4) there is some affect for different p, but not very clear.

Experiment 3. In this experiment, we report the efficiency
of the control VariateA Xoacao to the options Voggao and
Vagaao by showing R in Table III. In such cases, we replace

X qa0 in (14) by
+
. N . Qi A .
Xsacao = (61{' Limy ESIT) g (T)> ;

also, V1440 in (4.4) should be replaced by

+
. 1 N j .
J _ ~ ) . . logS/ qj
Vaagao = (eN 2 ST)

and by
1 Y !
V2JdAAO = (N Z Sf - SJT)
=1

respectively. We test several groups of the parameters m and
P

The data in Table III show us that:

1) just like the results of the experiment 1 and the
experiment 2, the efficiency of the control variate Xo4g40
to the option V3440 is much lower than that to the option
Vaagaos

2) the efficiency of the control variate with the constant
oo (i.e. when m = 2 — i—’; at the last column) is still lower
than others m;

3) there is some affect f,(\)r different p, and basically, the
smaller |p| is, the smaller R is.

Next two experiments are about the continuous sampling
Asian options.

Experiment 4. We report the efficiency of the control
variate XAchAO to the options Vicgao and Vicaao by
showing R in Table IV. In such cases, we replace X7, 40
in (14) by

. T . +
Xi.gao = (e% Jo toss7(tyat _ K)
(e% P

~
~

log S7 (tx) At _ K)+ .

also, Viggao in (16) is replaced by
' LT . +
Vi.cao = <6T Jo togsiar _ K>

(e% Z::l

1T i
— Jdt —
(7 star-x)

n +
1 .
(T A At—K)
k=1

~
~

log sg’k At K) +

and by

J _
VchAO -

Q
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TABLE II
X1dcA0 TO Vigaso
m=-50 m=0 m=1 m=2 m=100 | m=2— 2%
K=90 51.2470 | 52.4568 | 51.5750 | 51.5767 | 52.5609 44.0307
p=0.1 | K=100 | 469175 | 45.6624 | 48.0509 | 47.3113 | 47.4938 38.6150
K=110 | 25.7714 | 26.3152 | 26.8835 | 25.5878 | 27.3461 22.3833
K=90 49.4656 | 50.3513 | 49.6439 | 46.7907 | 51.2375 42.4617
p=209 K=100 | 44.7613 44.2899 | 44.5601 45.2786 | 44.5297 38.1805
K=110 | 25.6553 27.1686 | 25.9317 | 26.5944 | 26.3661 22.1021
TABLE III
X24GA0 TO Vaggao AND TO Vagaso
to m=-50 m=0 m=1 m=2 m=100 [ m=2— 2%
p=—0.9 | 204.5360 196.3468 200.3387 | 201.6838 189.5257 143.5079
p=—05 172.5371 172.84889 165.8014 172.5469 168.5937 111.4999
Voacao p= 164.5061 166.2659 164.9895 165.5065 164.4224 92.5353
p=0.5 166.4444 170.4592 171.1020 173.4244 174.8499 83.8239
p=20.9 194.5422 201.2479 200.7856 | 202.9127 | 212.1137 77.9394
p=-09 47.7312 49.8563 49.7212 52.1304 50.0864 49.4327
p=-—05 48.2151 48.24820 49.1194 47.4271 49.5690 48.8880
Vaaaao p=20 48.3288 48.3719 48.3538 49.4576 46.8591 46.9129
p=20.5 49.0753 49.2757 49.6113 50.1640 48.3352 45.8860
p=20.9 48.7109 49.3867 50.8092 50.7244 48.4695 42.7990
TABLE IV
X1c6A0 TO VieGao AND TO Vica Ao
to m=-50 m=0 m=1 m=2 m=100 [ m=2— 2%
Vieccao K=90 458.5034 | 475.1777 | 481.9701 | 490.3650 | 493.4915 160.8114
K=100 | 411.9112 | 422.7765 | 409.4287 | 411.8081 | 433.6935 144.0880
VieAAO K=90 48.8511 49.7269 48.7308 48.9061 49.2664 429104
K=100 45.3342 45.3444 45.6680 46.2055 43.8524 39.6856

respectively. We set the parameter p = 0.9, and test several
groups of the parameters m and K.

Experiment 5. We report the efficiency of the control
variate chGAo to the options Va.gao and Vacaao by
showing R in Table V. In such cases, we replace X7, .40

in (14) by
LT +
(eT fo log §7(t)dt _ Sj(i )>

(cF Kicy s @8_gi())"

Xieca0
also, V1440 in (16) should be replaced by
_ LT o N+
Viegao = (eT Jy romstar S%)

(e% Z::l

Q

1ogs{km _ g >+
' T

and by

+
) 1 T )
V3440 T /0 Sidt — St

1 & )
72 Shot=5;
k=1

+

Q

respectively. We test several groups of the parameters m and
p-

The numerical results of two experiments above for the
control variates to the continuous sampling Asian options
show the similar efficiency like those to the discrete sampling
Asian options.

B. Heston Model
Experiment 6. In this experiment, we report the efficiency
of the control variate X14q40 to the option V34640 under
the Heston model by showing R in Table VI. In such case,
we replace (15) by
yJ

o = Y0+ (= BY) ) At + 00/ Yy 23
We set the parameters by n = 100, » = 0.1, a = 0.25, 8 =
5, So =100, 0 =0.01, T =1, Yy = 03 = 0.04, p =
10000, N = 10, K = 100. We test several parameters p
and two kind forms of the control variates Xi14c40; one is
based on the deterministic volatility function (12), and the
other is based on the constant volatility Y (¢) = Yj.

The numerical results show that our control variate also
works well under the Heston model.

IV. CONCLUSION

In this paper, we present a strategy to form a class of
control variates for pricing Asian options under the stochastic
volatility models. Our idea is using a deterministic volatility
o(t) to replace the stochastic volatility o; by choosing o (t)
with the same order moment as that of o; under the Hull-
White model and the Heston model. Numerical experiments
report that our control variates work quite well by showing
the standard deviation reduction ratio R and the efficiency is
obviously better than one formed by the constant volatility
09, the initial value of the stochastic volatility. Our strategy
can also be extend to other stochastic volatility models, as
long as their order moment can be obtained in the closed-
form. This is much easier than to calculate the distribution

(Advance online publication: 21 May 2013)
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TABLE V
X2cGA0 TO Vacgao AND TO Vacaao
to m=-50 m=0 m=1 m=2 m=100 | m=2— &

p=—0.9 | 204.5256 | 197.8080 | 201.6697 | 199.6693 | 186.1615 1432022
p=—0.5 | 170.8696 | 175.7991 | 172.4018 | 175.2517 | 167.4408 112.2702
Vaccao p= 160.9377 | 165.5935 | 162.0692 | 163.5159 | 160.9531 91.7656
p=0.5 169.7676 | 175.2745 | 171.4413 | 169.7005 | 169.2797 80.7796
p=0.9 193.8323 | 199.2215 | 202.1001 | 202.0420 | 210.4669 76.8739

p=—0.9 | 49.5630 48.8867 47.8118 48.9376 48.4962 50.3260
p=—0.5 | 47.2847 47.5158 48.5479 48.8120 48.7709 46.6673
Vacaao p=0 47.7823 49.2654 48.5468 48.9377 48.9082 45.3849
p=0.5 49.3646 48.9727 49.1666 47.9563 48.1193 44.4376
p=20.9 48.8006 48.9003 48.9083 48.9110 49.0476 41.2342

TABLE VI
X146A0 CONTROL V74640 BASED ON TWO Y ()
Y (t) p=-09 | p=-0.5 p=0 p=0.5 p=0.9
e Ptyy + s e~ Pty | 1485916 | 146.1014 | 136.5857 | 141.0351 | 151.1588
Yo 24.8804 249325 | 23.8939 | 22.9603 | 23.0285

function of the stochastic volatility such as in the Heston
model. In addition, our strategy can be extend to pricing
other financial derivatives under stochastic volatility models.
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