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Random FuzzyMultiobjective Linear
Programming Through Probability Maximization
and Its Application to Farm Planning

Hitoshi Yano and Kota Matsui

Abstract—In this paper, we propose an interactive decision permissible objective levels of a probability maximization
making method for random fuzzy multiobjective linear pro-  model, we propose an interactive decision making method
gramming problems (RFMOLP) through a probability maxi- o REMOLP to obtain a satisfactory solution of the decision
mization model. In the proposed method, it is assumed that
the decision maker has fuzzy goals for not only permissible maker [22]. The_ proposed. metho?‘ can b.e.regarde.d as aran-
objective levels of a probability maximization model but also the dom fuzzy version of the interactive decision making meth-
corresponding distribution function values. Using the fuzzy de- ods for fuzzy random multiobjective programming problems
cision, such two kinds of membership functions are integrated. [23], [24]. In section I, RFMOLP is formulated by using
In the integrated membership space, a satisfactory solution is 5 concept of a possibility measure and a probability maxi-
pbtalneq from among a.P.areto optimal solution set through the . ti del d thé-Paret timal soluti i
interaction with the decision maker. mization model, an areto optimal solution concept

for RFMOLP is introduced. For the reference membership
values specified by the decision maker, the corresponbing
Pareto optimal solution is obtained by solving the minmax
problem. It is shown that the optimal solution of the minimax
problem can be easily obtained by the convex programming
. INTRODUCTION technique. In section lll, the interactive algorithm to obtain

In the real world decision making situations, we often hay@e satisfactory solution from among A-Pareto optimal
to make a decision under uncertainty. In order to deal wilblution set is proposed, which is based on the convex
decision problems involving uncertainty, stochastic progrargrogramming technique. In section 1V, In order to illustrate
ming approaches [1], [2], [3], [10] and fuzzy programminghe proposed method, a crop planning problem at farm level
approaches [16], [20], [25] have been developed. Recentl], [7], [9], [21] is formulated as a numerical example,
in order to deal with mathematical programming problemgnd the interactive processes under the hypothetical decision

involving the randomness and the fuzziness, random fuz@aker are demonstrated. Finally, in section V, we conclude
programming has been developed [11], in which the coehis paper.

ficients of the objective functions and/or the constraints are

represented with random fuzzy variables [17], [18]. As a Il. PROBLEM FORMULATION

natural extension, a random fuzzy multiobjective program- In this section, we focus on RFMOLP in which random
ming problem (RFMOLP) was formulated and the interacrariable coefficients are involved in objective functions.
tive decision making methods were proposed to obtain tflRFMOLP]

Index Terms—random fuzzy variable, a probability maxi-
mization model, satisfactory solution, interactive decision mak-

ing.

satisfactory solution of the decision maker from among the grcnelgl( Cx = (¢iz,--- ,Cpx)

Pareto optimal solution set [12], [13], [14], [15]. Moreover, T ) ) o
in order to show the efficiency of random fuzzy programmin§heréz = (z1, 2, -+, x,)" is ann dimensional decision
techniques, real-world decision making problems under raygriable column vector¢; = (¢ir,---,Cin)i = 1,---,k,

dom fuzzy environments were formulated as random fuz#j€ coefficient vectors of objective functiotyz, whose

programming problems, and the corresponding algorithms§¢ments are random fuzzy variables [17], and the symbols

obtain the optimal solutions were proposed [6], [8], [19]. - @&nd™™ mean randomness and fuzziness respectively.
Under these circumstances, we focus on the interactivell this paper, according to Katagiri et al. [11], [12], [13],

decision making method [11], [12], [13] for RFMOLP toWe assume that a random fuzzy variaklg is normally

obtain a satisfactory solution, in which a probability maxidistributed with the fuzzy numbet/;; as mean an_d_r?j as

mization model or a fractile optimization model is adopteiariance. As a result, we assume that a probability density

in order to deal with REMOLP. In their proposed methoddunction fi;(y) for a random fuzzy variable;; is formally

it seems to be very difficult for the decision maker to specifigPresented with the following form.

permissible objective levels or permissible probability levels 1 _<yfﬂ712ij>2

appropriately. From such a point of view, in this paper, under fi;(y) = \/2776 i 1<i<k1<j<n (1)

the assumption that the decision maker has fuzzy goals for T9ij

o o , where Mij is an L-R fuzzy number characterized by the
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fii(y) Katagiri et al. [11], [12], [13] showed that, from (4), the
N(m;,a,.j.) N(mij,aj) N(mfgj) membership function (6) can be transformed as follows.
_ - pi = Pr(wlu;(w) < fi),
— 2,2
Hy (0 o~ N (Z ST Z %lj) }(7)
i Jj=1 J=1
1 e Using (5), MOP1f) can be transformed as follows.
o] {5 MOP2(F)] ~
glea))é(Pl(w7 fl)’ o ,Pk(ﬂ% fk?))
0 mt m. mP t MOP2(f) is ill-defined yet, because objective functions of

MOP2(f) are fuzzy sets depending on permissible objective
‘ o level f;,i =1,---, k. In order to deal with MOPZ), let us
Fig- 1. An Image of a random fuzzy variablg; assume that the decision maker has a fuzzy ghdbr each
objective functionP;(x, f;), which is expressed in words
) ) such as Pi(m, /:) should be substantially less tha'. For
L and R are called reference functions;;; is the mean the corresponding membership functip@i (p;), we make

value, andw;;, 8;; are spread parameters [4]. the following assumption.
Then, a random fuzzy variablg; can be characterized byAssumption 1.
the following membership function [11], [12], [13]. g, (pi),i = 1,--- , k are strictly increasing and continuous

= = 2 with respeCt tOPz € |Pimin; Pimax/s andﬂ i \Pimin) = 0,
1, (ig) = S':':JP{'U/MW (sij)7is ~ N(siz, 0i5)F - (3) fhp; (Pimax) = 1, where[0.5 < pimin]is a mal;d(mum )value of
an unacceptable levels ang,.x < 1 is a minimum value
where N (s;;,07;) means a normal distribution with meanof a sufficiently satisfactory levels.
si; and standard deviatiom;;. Moreover, using Zadeh's Using possibility measure [4],
extension principle [20], [25], the objective functiepe be- -~ det )
come a random fuzzy variable characterized by the following 115, ;) (Gi) = supmin{up, 4 1) (Pi) ke, (pi)} (8)
membership function [11], [12], [13]. P
Katagiri et al. [11], [12], [13] transformed MOP2] jinto the

P . following well-defined multiobjective programming problem.
peal®) = sw 0w, (0) mopa(f)] ~ ~
maX(le(:E,fl)(Gl)a T 7H15k((a:,fk))(Gk))

reX

u;~ N (Z Sijly, Z U?jff?) } (4) Unfortunately, in MOP3(), the decision maker must spec-
j=1 i=1 ify permissible objective levels in advance. However, it seems

Unfortunately, we can not treat RFMOLP directly becauss Y difficult to specify such values becauig, z; ., (G')

it is ill-defined. Katagiri et al. [11], [13] formulated RFMOLP Gepends on a permissible objective levgls From such a

) . L . Jpoint of view, in this paper, instead of MOP3( fve consider
using permissible objective levels of a probability maxi e following extended problem whegg, i — 1,--- , k are

mization model and the possibility measure. For permissible - .
o ) o .. not constants but decision variables.
objective levelsf;,i = 1,--- ,k specified by the decision

maker, a probability maximization model for RFMOLP carLMOP4]
be formulated as follows. max (Mp (é1)
15— 1(T, f1 ’ )
[MOPl(f)] reX,fieRl,i=1,-- k ( ) )
max(Pr(w|es W)z < fi), - Pr(w[er(w)z < fi) U5, (@) (Gr)y =f1, 5 = f)
S

Considering the imprecise nature of the decision maker’s
It should be noted here that the each objective function : judgment, we assume that the decision maker has a fuzzy
- def _ goal for each permissible objective level. Such a fuzzy goal
Pi(z, fi) = Pr(wle;(w)z < fi), (5) can be quantified by eliciting the corresponding membership
) function. Let us denote a membership function of a per-
becomes a fuzzy set and the corresponding memberspipipie objective levelf; as i (f;). For the membership
function is defined as follows[11], [12], [13]. function 1 (f:), we make the following assumption.
Assumption 2.
pi = Pr(wlu;(w) < fi), wg(fi),i=1,---,k are strictly decreasing and continuous
with respeCt tofi S [finlirufimax]! and Hf; (.fimin) = 1,
n n tr, (fimax) = 0, where fimin iS @ maximum value of a
U; ~ N (Z SiTi Y afjmf) } (6) sufficiently satisfactory levels. anfi,.. is a minimum value
j=1 j=1 of an unacceptable levels.

def _
oy, (Pi) = SUP{%@(W)
Uj
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Then, MOP4can be transformed as the following multi- zn:{mw LY — M)z
objective programming problem. = " ! R
[MOP5]

i ~ ) ~ —1 2 .2 < _
vex X o ey (G Thp (ag,) (Gr), g D\ Zawxﬂ = N,
Mﬁl(fl)"" 7Mﬁk(fk)) i=1---.k (14)

It should be noted here thdl, s, (x.f )(G‘ ) is strictly increas- where
ing with respect taf;. If the decision maker adopts the fuzzy def
decision [20], [25] to integratél; . . \(G:) and iz (fi), A =" [Amin; Amax]
MOP5 can be transformed into the following form. = [__IIlli.ij?(kﬂi -1, A_r{l?ril kﬂi]’ (15)

[MOPE6]
The relationships between the optimal soluti@er, \*)

of MINMAX2( 1) and D-Pareto optimal solutions can be
characterized by the following theorem.

Theorem 1.

Q) fx*re X,\* € Ais a unique optimal solution of
MINMAXZ(M) thenz* € X, p, Y — X)) € RLi =

max
TeX,f,eRli=1,-k

(MD1 (m’fl)v Ty MWDy (:L’vfk))

where

pp,(x, £;) S min{lls, g 5\ (Gi), up (f:)}

In order to deal with MOP6, we introducel/aPareto optimal
solution concept.
Definition 1.

x* € X, ff € RLi = 1,--- ,k is said to be aD-Pareto

optimal solution to MOPG, if and only if there does no

1,---,k is a D-Pareto optimal sollutlon

(2) If € X,ff € R,i =1,---,kis a D-Pareto

optimal solution, them* € X, >\* = ﬂi —T[_pqy(m*yf;)(c_v’,-) =

1 — pg (f7),0 = ,k is an optimal solution of
INMAX2( 1) for some reference membership valyes-

exist anotherz € X,f; € R',i = 1,---,k such that -
wp, (x, fi) > pp, (x*, f)i=1,---, k with strict inequality Egléof) »fik)-
holding for at least one. . Ldef 1 ,
For generating a candidate of a satisfactory solution whiéh) Assume thae” € X, f7 = pp (s —A"),i=1,--- .k
is also D-Pareto optimal, the decision maker is asked #§ Not & D-Pareto opt|mal solution. Then, from (10) there

specify the reference membership values [20]. Once the r&KiSt® € X, fi € RY,i =1,--- & such that
erence membership valugs= (ji1,--- , f1x) are specified, wp,(z, f;) = mm{H (G e (F)}
the correspondind)-Pareto optimal solution is obtained by ' > . (@ fm)f 9 i
solving the following minmax problem. - ST _ .
[MINMAX1( )] = mm{ﬂﬁi(x*,f;)(Gi)v/m(fi )}
min (9) = ﬂif)\*ai:]-a"'vka
xeX,f;eRli=1,--- ,k,A€[0,1]
. with strict inequality holding for at least orie Then it holds
subject to
that
i =Mp g ) (Gi) < Ni=1,--.k  (10) Mg ) (Gi) = fi—Ayi=1--k  (16)
From [11], [12], [13], each constraint of (10) can be equiverom (12), (16) can be transformed as follows.
alently transformed into the following form.
. 5 mi; — L7 — N},
fii = Up, g,y (Gi) < A ;{ Y (@ i}
& {mij — L™ (i — Mo}z 1. ; -
; ’ v +@ (g (= A) | D oBad < fi (18)

+07 (e —\*). As a result, there

Zofjx? < fi (12) From (17),it holds thatf; < H_j(
existse € X such that

where ®(-) is adistribution function of the standard Gaus-
sian random variable@~!(:) is a corresponding inverse
function, andL‘l(-),uél(-) are pseudo-inverse functions
of L(-),ug, () respectiv’ely Moreover, since the inequal-
ities (11) can be transformed intg; < 1z Y — N,
MINMAX1( f1) can be reduced to the followmg problem.
[MINMAX2(" @1)]

n

D {mij = L7 (i — A)aig b

19
min A (13) 4o
TEXAEA which contradicts the fact that* € X, \* € A is a unique

subject to optimal solution to MINMAX2(i).

(Advance online publication: 21 May 2013)
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(2) Assumethatz* € X, \* € A is not an optimal solution subject to
to MINMAX2( iz) for any reference membership valugs= ) o
(ﬂl, ..., ju), which satisfy the equalities : 9i(x, A) 2 0,0 =1, ki # ] (25)

— — Step 3: If ge(x(N),\) > 0,£ = 1,--- ,k then set\; «
- =1z (@ f )(G) HE: ehi=1,k (20) M (N +(>\1()/)2. ())therwise, setyy «— A« (N +
Then, there exists some € X, A < A\* such that A1)/2. If | Ap — X\o |< € then go to Step 4, whereis a
n sufficiently small positive constant. Otherwise, go to Step 2.
Step 4: Set\* <+ X andz* « x()\). The optimal solution
(z*, \*) of MINMAX2( f2) is obtained.

IIl. AN INTERACTIVE ALGORITHM

In this section, we propose an interactive algorithm to
obtain a satisfactory solution from amondaPareto optimal

This means that solution set. From Theorem 1, it is not guaranteed that
. the optimal solution(xz*, \*) of MINMAX2( 1) is D-Pareto
Hﬁi(w,fi)(Gi) > fi = A> = AN =1k optimal, if it is not unique. In order to guarantee tie
,U/F”‘i(fi) = ;i —A>0;—Ai=1,---k, Pareto optimality, we first assume thatonstraints (14) are

active at the optimal solutiof™, \*), i.e

Wherefz def ,u;l( —\). From (20), there exists € X, f; € .
RYi= .k such that Z{miﬂ' — L7 (i — Ny}
I’LDi(:I:?.fi)>MDi($*7fi*)’i:1?'.' ak- =t
This contradicts the fact that* € X, ff e RY,i=1,--- |k +& (=M g —
is a D-Pareto optimal solution. O G
Since the constraints (14) are nonlinear, it is not easy to , _{ ... 1

solve MINMAX2(i1) directly. Before considering the algo-
rithm to solve MINMAX2(ix), we first define the following If the /-th constraint of (14) is inactive,e.,
functions corresponding to (14).

n Z{mgj — Lil(ﬂg — )\*)agj}x;f
N j=1

+<I>—1(MC_~;Z(/1£—/\*)) ZU@ T <MF (fte = A"),

(27)

i=1,---,k (22) . . . . .
we can convert the inactive constraint (27) into the active

Because ofu, ( —A) > 0.5 forany A € A, it holds one by applying the bisection method for the reference
that &~ (u,, (,Uz —))) > 0. This means thag;(x, \),s = membership valug, € [\*, \* + 1].

1,k are concave with respect te € X for any fixed For the optimal solutiorfz*, \*) of MINMAX2( i), where
value A € A. Let us define the following feasible s&t(\) the active conditions (26) are satisfied, we solveffhPareto
of MINMAX2( ) for some fixed value\ € A. optimality test problem defined as follows.
def [D-Pareto optimality test problem]
XN ={xeX|g(x,A\)>0,i=1,--- ,k} (23)

. _ - w 28)
Then, it is clear thatX(\) is a convex setX(\) satisfies TEX,i200=1 ZE% (
the following property.
Property 1. subject to

If Amin < A1 < A2 < Amax, then it holds thatX (\;) C
X (A2).

In the following, it is assumed thatX(Anin) =
&, X (Amax) # ¢. From Property 1, we can obtain the optimal
solution (z*,\*) of MINMAX2( 1) using the following
simple algorithm which is based on the bisection method
and the convex programming technique.
[Algorithm 1.]
Step 1: SetAg = Aniny A1 = Amaxy A (Ao + A1)/2.
Step 2: Solve the following convex programming problem
for the fixed value), and denote the optimal solution as
x(N).

IN

max g;(@, A) (24)

(29)

(Advance online publication: 21 May 2013)
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For the optimal solution of the above test problem, the IV. A NUMERICAL EXAMPLE
following theorem holds. In order to demonstrate our proposed decision making
Theorem 2. o method, we consider the following crop planning problem
For the Optlma-l Solutlom,ei.,z = 1, . v ,k Of'the test pI’Ob— [5]’ [7], [9]' [21], in which a farmer or an agricu|tura|
lem (28)'(29? flfw = 0 (equivalently,; = 0,i =1,--- k), manager wants to maximize his/her total profit (unit: 1000
x* € X, ff = pp' (i —XA) € RYi=1,--- ,kis aD- yen) and minimize his/her working time (unit: 1 hour) by
Pareto optimal sofut|on using his/her farmland effectively. In order to decide the
(Proof) planting ratio for four kinds of crops;,j =1,---,5 (unit:
From the active condition (26) at the optimal solutiori000 n? ) in his/her farmland, we formulate the following
(z*, \*) of MINMAX2( f), it holds that multiobjective fuzzy random programming problem.
R . - [RFMOLP]
fi — A = Hﬁi(w*,f;)(Gi)aZ:L"' VK, 5
fri =N = pp(f)i=1, k. miné @ = Y éjx; (profit maximization
Assume thate* € X, uz'(fi; — A*),i = 1,--- ,k is not a j?
D- P_areto optimal solut|on Then, there exnste X, fi € min Zya = Zé2j$j (labor minimization
RY,i=1,---,k such that =
po,(®, f;) = min{Ilp g (éi),pﬁi(fi)} subject to
> pp,(z 7fi*) reX = {$€R5|961+m2+:133+:v4+:1c5§200
= [, —Ai= k, x> 15,29 > 35,13 > 20, x4 > 25,
with strict inequality holding for at least onie This means x5 > 45} (Land Constraint)
that wherex = (z1,22,25,74,25)" is a five dimensional de-
5, f.)(éi) > - Ai=1,- (30) cisign yariable column yector, each element means the
el . . . cultivation area for crop'.
pi(fi) = =A% i=1- k. (31) ¢j,j =1,---,5 are profit coefficients at the unit area for
From (12), (30) and (31), the following inequalities hold, CrOPJ, andcy;,j = 1,---,5 are working time coefficients

for growing cropj at the unit area, each of which is defined

as a random fuzzy variable. Random fuzzy variablesi =

1,2,7 = 1,---,5 are normally distributed with the fuzzy

numberM as mean andrfj as variance, and a probability

density funct|0nfu( ) for a random fuzzy varlable” is
) formally represented with the following form.

1 (yflch'jﬂ
- 202, N -
(32) fij(y):me io,1<i<2,1<5j<5 (33)
ij

with strict inequality holdlng for at least one This contra- Mij is anL-R fuzzy number characterized by the fo||owing

Now, following the above discussions, we can present the N
interactive algorithm in order to derive a satisfactory solution L (#») mij =t
i : fy,, (1) = o (34)
from among aD-Pareto optimal solution set. ij R (t=mi ) M <t
. Bi; 1] =
[Algorithm 2] ’
Step 1: The decision maker sets each of the membershighere L(t) = R(t) = max{0,1 —t}, andm;;,cq;(= By;),
functions iz (f;),i = 1,---,k of the fuzzy goalF; for o7, are given in Table I. ' N
permissible objective Ievefl accordlng to Assumption 2. In RFMOLP, let us assume that the hypothetical decision

Step 2: Corresponding to the fuzzy goal; for the maker sets the membership functigns (-), ug, (-)i = 1,2
probability that the objective function;x is less thanf;, as follows (Step 1, 2).

the decision maker sets each of the membership functions f1 — (—1000)

pa, (pi),i =1,k according to Assumption 1. pe (f1) = (—1650) — (—1000)

Step 3: Set the initial reference membership valuegias- fo — 1500

Li=1,--- k. pg,(f2) = 1200 = 1500

Step 4: Solve MINMAX2(j1) by applying Algorithm 1, L — 0.7

and obtain the optimal solutiofe*, \*). For the optimal pa, (p1) = 085 —07

solution (x*, \*), The correspondingD-Pareto optimality pé 08

test problem (28)-(29) is formulated and solved. 1, (p2) = 09-08

Step 5: If the decision maker is satisfied with the currenget theinitial reference membership values 6, fig) =

values ko\fvri?eD *Pareto optlmal solution.p, (x*, f;),i = (1,1) (Step 3), and solve MINMAX2%) to obtain the
[ =nz L(f1;—\*), then stop. Otherwise, the

deC|S|on maker updates his/her reference membership ValﬁgrrespondlngD -Pareto optimal solutioftz™, A") (Step 4).

f;,i=1,---,k, and return to Step 4. (o, (™, f1), pp, (2", £5)) = (0.7965,0.7965)

(Advance online publication: 21 May 2013)
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TABLE | TABLE Il

THE PARAMETERS OF THE FUZZY NUMBERM;; AND THE VARIANCE ofj COMPARISON BETWEEN THEPROPOSEDMETHOD AND THE
OF THE RANDOM FUZZY VARIABLE éij PROBABILITY MAXIMIZATION METHOD
= - = proposed methodprobability max.
Mi]' mij ajj(zﬁij) 0'2-2]- (the variance Ofcij) f 1517.78 1550
M| -42| 05 1 5 1261.02 1230
Mis| -8 0.4 2 P 0.8194 0.7767
=1 s 0.8796 0.8488
Miz| 56| 03 2 ti, (F7) 0.7965 0.8461
M |-106) 0.2 3 gy (f3) 0.7965 0.900
Mis | -9.5 0.3 1 NG 0.7965 0.5118
Moy | 10 0.3 2 fa, (05) 0.7965 0.4881
Moo | 5 0.4 3
Mas| 5 0.4 1
Moy | 9 0.2 2
Mos | 5 0.1 1
TABLE I
INTERACTIVE PROCESSES
Iteration 1 2 3
il 1 1 0.93 (36)
2 1 0.8 0.8 ) )
T -1517.78] -1597.23 -1559.20 We can easily solve MINMA?(%,f) by applying Algo-
5 1261.02] 1305.01] 1280.90 rithm 1, because the constraint set (36) are convex for any
z; 83%32 8'22‘713 g'gigg fixed A € A. Let us assume that the decision maker sets
D (@ i) 07965 | 0.9188 | 0.8603 his/her reference membership values/as fi2) = (1,1) and
wp, (™, f3)| 0.7965 | 0.6499 | 0.7303 permissible objective levels asf1, f2) = (—1550,1230).

Then, the corresponding Pareto optimal solution can be
obtained as shown in Table lll, where the left side shows
the D-Pareto optimal solution of the proposed method with
ference membership valudg, i2) = (1,1) (see the

st iteration in Table Il). In Table I, it is clear that, in
the proposed method, a proper balance between permissible
probability levels and the corresponding objective functions

i 4 7 in a probability maximization model is attained in member-
_(Step 5.)' Then, the _correspondniigPareto optimal so!utlon ship space. On the other hand, In a probability maximization
is obtained by solving MINMAX2[) (Step 4). The inter- model based method, although permissible objective levels

active processes under the hypothetical decision maker are improved in comparison with the proposed method, the

summarized in Tablel ) corresponding probability function values was changed for
In order to compare our proposed approach with t fie worse.

previous ones, let us consider the following multiobjective
programming problem based on a probability maximization

model for RFMOLP. ) . . o
[MOP2'(f)] In this paper, we have proposed an interactive decision

i ~ i ~ making method for RFMOLP based on a probability maxi-
g?)}(((ﬂpl("’vfﬂ(Gl)’ g, (@, 1)(G2)) mization model to obtain a satisfactory solution from among
Pareto optimal solution set. In the proposed method,

he decision maker is required to specify the membership

e o
. PP I ONtShctions for the fuzzy goals of not only the permissible
the reference membership valugs= (ju1, fi2) are specified ol?jective levels in a probability maximization model but also

by the decision maker, the corresponding Pareto Optm}ﬁe corresponding distribution function. Such two kinds of

solution is ob}amed by the following minmax problem. membership functions are integrated and, in the integrated
[MINMAX3( i, )] : : X .
membership space, B-Pareto optimal solution concept is

where fF = u};l(/fti — %), i = 1,2. The hypothetical
decision maker ‘is not satisfied with the current value (ﬁf
the D-Pareto optimal solutionz*, f;), and, in order to
improve up, () at the expense ofip,(-), he/she updates
his/her reference membership values(as, /i) = (1,0.8)

V. CONCLUSION

TeX ne A)‘ (35) introduced. The satisfactory solution can be obtained by
. updating the reference membership values and solving the
subject to corresponding minmax problem by applying the convex
f; — Hﬁi(myfi)(éi) <Ai=1,2 programming technique. At anf-Pareto optimal solution,

) _ it is guaranteed that a proper balance between permissible
¢From (12), MINMAX3@, f) can be equivalently trans- gpjective levels and the corresponding distribution function

formed to the following form. values in a probability maximization model is attained.
[MINMAXA( 1, f)]
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