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Abstract — In this work we develop a new mathematical 
methodology about the general solutions of any Abel’s second 
kind ordinary differential equation with integrable right hand 
side. This construction is established by  expanding, improving 
and completing previous results, presented by Aleexeva, 
Zaitsev and Shvets, when the right hand side belongs to specific 
function classes. 

 
 Index Terms — General Solutions, Abel’s nonlinear ODEs, 
Second kind 

I. INTRODUCTION 

Few physical phenomena in mathematical physics and 
nonlinear mechanics admit solutions in terms of known 
functions [5],[9-10] and [15]. It has been proved that an 
Abel differential equation ordinary ODE often appears after 
the reduction of many second and higher order ODEs. 
Because of this important role, many researchers 
investigated Abel’s ODE deeply.  Based on a nontrivial Lie 
symmetry, Schwarz [17] provided useful results about 
Abel’s second kind ODE. Also, Cheb-Terrab [3] and Cheb-
Terrab [4] et al presented a new three-parameters and a 
multi parameters non – constant - invariant solvable class, 
respectively. Recently, M. Güslu [6] et al found an 
approximate method, using shifted Chebyshev expansions 
of the unknown function and  Khan et al [7] discovered a 
new mechanism for the solution of Abel’s type singular 
equations using two steps of Laplace algorithm. Bougoffa 
[2] and Markakis [11] constructed the general solutions of a 
second order Abel ODE when the variable coefficients of 
this equation satisfies concrete functional restrictions. Exact 
particular solutions of a second order Abel ODE are 
constructed ([13] and [14]), including one arbitrary 
function.   

This work deals with the construction of the general 
solutions of an Abel second kind ODE of the normal form 
with integrable right hand side. Since there are admissible 
functional transformations that reduce any Abel nonlinear 
ODE to the normal form [15], this mathematical 
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methodology may be applied to any Abel equation of the 
second kind.  

According to a proposition developed by Alexeeva, 
Zaitsev and Zhvets (AZS) ([1] and [15]), any Abel equation 
of the second kind of the normal form  xy y y F x    

admits the general  solution 
1

,k
n

m

k
k

y y C


   where 

 k ky y x   1,k  2,  ...,n  are n  particular independent  

solutions and  m  are constant exponents. Here, a particular 
solution  ky x  corresponds to 0C   0kif m   and C    

 0kif m  ; C  is the integration constant. Extending, 

improving and completing this proposition we succeed in 
constructing the general solutions of an Abel nonlinear 
ODE of the second kind of the normal form with arbitrary 
smooth free integrable member  F x . 

II. SOME BASIC RESULTS 

 It is well known that a first order Abel nonlinear ODE 
of the second kind has the general form  

  2
1 0 12 1 0 ., 0xg y g y f y f y f g             (2.1) 

This equation can be transformed to the normal form 
(canonical), namely 

;xy y y F                              (2.2) 

  ,F F x arbitrary smooth function, 

through a series of admissible functional transformations 
([7] and [15]). These transformations are also presented 
extensively in [12]. Here the notation / ,xy dy dx   

2 2/ , ...xxy d y dx   is used for the total derivatives. 

Consider the Abel equation of the second kind of the 
normal form (2.2). 

One can establish the following [12]. 

Theorem 2.1 Any Abel ODE of the second kind of the 
normal form (2.2) admits the particular solutions 

1 1
,

2 3k ky x N
    

                        (2.3) 

where   k kN N x  are the roots of the cubic equation  

3
0,N pN q                               (2.4) 

while 
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        (2.5) 

Here,  G G x  is a smooth subsidiary function which 

must be determined. Also, the type of these roots   [12] and 
[13] is in accordance with the sign of the coefficient p  of 

equation (2.4) as well as the sign of its discriminant 

3 2

3 2

p q
D

       
   

 .                             (2.6) 

In a few words, when 0D   there is one real root and 
another real root of double multiplicity, while if 0D   
there is one real root and two complex conjure ( 0)D  , or 

these real roots  0D  . Thus, in order to elaborate the new  

mathematical methodology we investigate the following 
cases: 

1. If 
3 2

0 and 0
3 2

p q
D p

         
   

, there are three 

real district roots   kN x ,  that are 

1

2,3 3

2 cos ,
3 3

2 cos ; cos ,
3 3

2
3

p a
N

p a q
N a

p



 


    

  
 

 (2.7) 

2. If  
3 2

0 and 0,
3 2

p q
D p

         
   

 there are one real  

root and two complex conjugate roots, that are 

   
 

2,31

1/3 3/2

3
2 cot 2 , cot 2 ;

3 3 sin 2

2
tan tan , tan ,

2 3

, , 0, and
4 2

p p
N a N a i

a

p
a

q

a a

 

 

  
 
 
 

       
   

  
  

(2.8) 

3. 
3 2

If 0 and 0,
3 2

p q
D p

         
   

 there are one real  

root and two complex conjugate roots, that are 

 

   

1

2,3

1/3 3/ 2

1
2 ,

3 sin 2

1
3 cot 2 ;

3 sin 2

2
tan tan ,sin ,

2 3

, , 0.
4 2

p
N

a

p
N i a

a

p
a

q

a a

 

 

  

 
   

  

       
   

  

       (2.9) 

 

4. Finally for 
3 2

0,
3 2

p q
D

        
   

 there are one real 

root and another real root of double duplicity, namely 

   3 3
1 2 32 , .

2 2

q q
N N N              (2.10) 

Consequently, the corresponding particular solutions of 
the Abel equation (2.2) in terms of the subsidiary function 

 G x  are given by the combination of equations, (2.5) 

together with (2.3)  and (2.7) to (2.10) . More details are 
presented in [12], [13] and [16]. 

We continue with the following 

Theorem 2.2 Consider an Abel nonlinear ODE of the 
normal form (2.2). According to the construction by (AZS), 
the general solution of this equation is given through the 
formulae  

1

;k
n

m

k
k

y y C


   

where  

 k ky y x  are  particular solutions of (2.2), km constant 

exponents  and  C  is an integration constant. 
 We postpone the proof of this theorem, as it is 

presented extensively in [1] and [15]. 
 

III. A NEW MATHEMATICAL METHODOLOGY 

We are able to state the following new Proposition that 
extends, modifies and completes the above Theorem 2.2. 
This elaboration leads to the construction of the general 
solution of any Abel’s ODE of the second kind of the 
normal form. 

Proposition 3.1 :  The general solution (general integral) 
of any Abel equation of the second kind of the normal form 
(2.2) is given by the formula  

  
 

3

1

; 1,2,3 ,km x

k
k

y y C k


     (3.1) 

where  

   1 1

2 3k k ky y x x N x
     

                   (3.2) 

is a particular solution of equation  (2.2),   k kN N x  is 

any of the roots of the cubic equation (2.4) including the 
subsidiary function G=G(x),  km x  are suitable exponents 

that are functions of the independent variable x and that are 
to be determined.  

Note that, expanding the general solutions’ forms which 
was introduced by Alexeeva, Zaitsev and  Shvets (AZS) [1] 
and [15] the basic difference is that in the present case the 
exponents im  are not constants, but functions of the 

independent variable x  which will be determined. In 
addition, the new types of the particular solutions are of 
different (formulae (3.2)) and general forms. 
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Proof:  Supposing, without loss of generality, that the 
three roots satisfy the inequality  ky y x  (k =1,2 or k= 

1,2,3) we deduce  from equation (3.1) that 0C  . Then, 
according  to Proposition 3.1, the general solution of the 
Abel ODE (2.2) is written as follows: 

 
a Case a:  k=2 

       1 2

1 2 ,
m x m x

y y y y C                 (3.3) 

b Case b:  k=3 

           1 2 3

1 2 3 ,
m x m x m x

y y y y y y C   
  (3.4)

 

where C  is a positive integration constant and  y x  as in 

(3.2).  
 
a.  Solution in the case  k=2  (Case a) 

  The logarithmization of (3.3), followed by the 
differentiation of the resulting expression and 
rearrangement, leads to the equation  

 

      2
1 2 1 1 2 2ln ln

x xxm m y y m y y m y y y           

   2 1 1 1 1 1ln
x x

y y m y y m y                     (3.5)  

     2 1 2 2 2 2 1 2 2 1ln
x x xyy y m y y m y m y m y y          

   1 2 1 1 1 1 2 1 2 2 2 2 2 1ln ln 0.
x x x x

y y m y y m y y y y m y y m y y          
 

We require that equation (3.5) be equivalent to the Abel 
equation (2.2) and thus we extract a system of nonlinear 
differential (algebraic) equations, that is 

    1 2 ,m m M x                                (a) 

   1 1 2 2ln ln 0,
x x

m y y m y y                  (b) 

 

   
     

2 1 1 1 1 1

2 1 2 2 2 2

ln

ln ,

x x

x x

y y m y y m y

y y m y y m y M x

    

       
 (c)  (3.6) 

                    1 2 2 1 0,m y m y                       (d) 

 

 
   

1 2 1 1 1 1 2

1 2 2 2 2 2 1

ln

ln ,

x x

x x

y y m y y m y y

y y m y y m y y M x F

   

           
(e)  

where   0M x   is a new subsidiary differentiable function 

that is to be determined. Since,  1y x and  2y x  are two 

particular solutions of the initial equation (2.2) after some 
algebra one concludes that equations (3.6c) and (3.6e) are 
always true. Therefore, system (3.6) includes only three 
independent equations (3.6a,b,d) and we have to determine 
the  functions  1m x  and  2m x  as well as the subsidiaries 

functions  G x  and  M x . Consequently, we need one 

more equation that results from the cubic (2.4) and refers to 
the kind of roots of this equation. Thus, according to (2.10) 
we get 

    22 .iN N                      (3.7) 

The decoupling of the system (3.6a,b,d)  after tedious and 
cumbersome algebra,  various complicated manipulations 
and rearrangements, introduction and elimination of another 
subsidiary intermediate functions [12], as well as fruitful 
substitutions and differentions, leads to the following for 

 2N x unique equation 

       2 2 2
2 2 2

1 9 3
0.

4 2 4
x N x x F x N x x N x       (3.8) 

Assuming  0x   and 2 0,N   equation (3.8) provides 

 2N x in terms of x and the free member  F x  of the Abel 

nonlinear ODE (2.2), that is 

  2

18
.

3

x F
N

x


                         (3.9) 

From now on,  the first  subsidiary function  G x  is 

estimated by the fact that  the discriminant D  of the cubic 
equation  (2.4) equals to zero [12] and (2.4). This 
observation guides to the result 

       3

2
1

72 20 54 ,
36

G x F x x x N
     

  (3.10) 

or to the equivalent result 

       3 2

2

324 54
, 0.

2

F x F x x
G x F x x

xx
       (3.11) 

Following the inverse procedure, the other subsidiary 
function  M x is defined by an intermediate equation 

furnishing the integral  

 
  

       

1

4 151
ln 4 ;

ln 3 12 18 3

0.

M x

x F x x
dx

C x F x x F x F x

C




 

 



 (3.12) 

 

 The above results complete the proof of Proposition 
3.1 in case 2k  , because the assertion (3.3) comes true.        
□ 

 
b  Solutions in the case when  k=3  (Case b) 

 In this case  according to the previous developed, the 
general solution of the Abel ODE (2.2) is written as  

              1 2 3

1 2 3 ,
m x m x m x

y y y y y y C     (3.13) 

where C  is a positive integration constant. Here, formula 
(3.5) becomes 

   3 2
1 2 3 1 2 2 3 1 3 1 2 3A y y y y y y y y y y y y y y y         

  2
1 2 3 xm m m y y     

  2
1 1 2 2 3 3x x x

m y m y m y y        
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 1 3 1 2 2 3 2 1 3 3 3 1 xm y m y m y m y m y m y y y         (3.14) 

 1 2 3 2 1 3 3 1 2 xm y y m y y m y y y   

 1 2 1 2 1 2 3 1 3 3 2 3 2 3 2 1 3 1x x x x x x
m y y m y y m y y m y y m y y m y y y             

1 2 3 1 2 1 3 2 3 1 2 3 0;
x x x

m y y y m y y y m y y y       

       1 1 2 2 3 3ln ln ln .
x x x

A m y y m y y m y y         

and the corresponding to (3.6) system of equations results in 

     1 1 2 2 3 3
0,ln ln ln

x x x
m y y m y y m y y         (a) 

         1 2 3 0,m m m                     (b) 

1 1 2 2 3 3 0,
x x x

m y m y m y             (c)      

  
 

1 3 1 2 2 3 2 1

3 3 3 1 ,M

m y m y m y m y

m y m y x 

   

 
          (d)      (3.15) 

1 2 3 2 1 3 3 1 2 0,m y y m y y m y y             (e) 

     
 

1 2 1 2 1 2 3 1 3 3 2 3

2 3 2 1 3 1 ,

x x x x

x x
M

m y y m y y m y y m y y

m y y m y y x 

      

  
   (f)                

   1 2 3 1 2 1 3 2 3 1 2 3
,

x x x
M Fm y y y m y y y m y y y x x      (g) 

The form  ky x  1, 2,3k   depends heavily on the sign 

of the coefficient p  of the cubic (2.4) and the sign of its 

discriminant. Also,  ky x   1,...,3k   includes the first 

auxiliary function  G x . Moreover,   0M M x   is a 

second subsidiary smooth function that must be determined. 
Since,  1y x ,  2y x  and  3y x  are particular solutions of 

the initial equation (2.2) after some algebra one concludes 
that equations (3.15c,f,g) are always true. Consequently, 
system (3.15) is restricted only to equations (3.15a,b,d). 
Tedious and cumbersome algebra, (as it was developed in 
case a, [12]),  guides to the following functional relation 
among subsidiaries functions  M x  and  G x  

    
2

2 1 2 3

ln y

y y y y

C

M x


 
                 (3.16) 

   
 

 
 
 

1 3 2

2 1 3

1 3 2

1 2 1 2 3 1 3 2

1 2 1 2 3

ln

ln
2

2
;

0,

y y y

y y y

y y y

y y y y y y y y

y y y y y

C








  

 

 
 
 
 
 
 


or  executive convenient algebra    

    
 

 1 2

1 2 3

1 2 1 2 3

.
2

y y
y y y

M x C
y y y y y


 

  
   

  (3.17)  

Since the cubic equation (2.4) admits three distinct roots 

 kN x  , three particular solutions      1 2 3; ;y x y x y x  of 

the Abel ODE (2.2) exist and there is no need a similar   
equation of (3.10). As  M x  or  G x  may be any random 

smooth functions, we can assume without loss of generality, 
that  

    M x G x .      (3.18) 

Both equations  (3.16) and (3.18) are sufficient for the 
evaluations of the subsidiaries functions  M x  and  G x  

in terms of the roots  ky x . 

Remark: The main differences between the Theorem 2.2 
state by (AZS) and the Proposition 3.1 are: i) The exponents 
in the present proposition are considered to be smooth 
functions of x  and they are defined accordingly, and ii) The 

independent particular solutions  ky x  have concreted 

number, roots of the cubic (2.4). Both these above 
extensions together with the ascertainment that they are 
sufficient and necessary, establish the obtained general 
solution.     

The above analysis concerning case b, together with the 
results of case a completes the proof of the Proposition 3.1.              

                                                                                          □       
                                                           

IV. FINAL RESULTS 

Summarizing, we are able to state 

Theorem 4.1. If in a second kind Abel nonlinear ODE of 
the normal form  

 ;xy y y F x                            (4.1) 

the discriminant D of the cubic equation 
3

0,N pN q     

equals zero  0D  , then we dispose two independent 

particular solutions and  its general solutions  results as 
follows  

            1 2

1 2 ;
m x m x

y x y x y x y x C          

 

       
3 3

1 2

1 1 1 1
y 2 , y ;

2 2 3 2 2 3

q x q x
x x x x

   
         
      

     

   
   1

12

18

x F x
m x M x

x F x





, 

   
   2

6
;

18

F x
m x M x

x F x



 

        (4.2) 

 

 
  

       

ln
;

4 15
ln 4

3 12 18 3

C
M x

x F x x
dx

x F x x F x F x





 

  

C   constant of integration; 

 F x  = smooth free member of the given Abel equation. 

 
Theorem 4.2. If in a second kind Abel nonlinear ODE of 

the normal form  

 ;xy y y F x                            (4.3) 

the discriminant D of the cubic equation  
3

0,N pN q     

is positive or negative  0D or   then we dispose three 

independent particular solutions and its then general 
solution results as follows 
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                    1 2 3

1 2 3 ;
m x m x m x

y x y x y x y x y x y x C   
 

   
       

 1
1

1 2 1 3

,
y x

m x G x
y x y x y x y x


           

   
       

 2
2

1 2 2 3

,
y x

m x G x
y x y x y x y x


        

 

       3 1 2 .m x m x m x                (4.4) 

   ;G x M x  

   
 

 1 2

1 2 3

1 2 1 2 3

;
2

y y
y y y

M x C
y y y y y


 

  
   

 

C  = positive integration constant; 

 F x  = smooth free member of the given Abel equation; 

 
In this case the three independent particular solutions 

according  (2.7) - (2.9) are given for   

 

 

1

2,3

3

1 1
i) 0; 0 2 cos ,

2 3 3 3

1 1
2 cos ,

2 3 3 3

cos ;

2
3

p a
D p y x x

p a
y x x

q
a

p



 
     

 
      

  


  
 

   

     

1

2,3

1 1
ii) 0; 0 2 cot 2 ,

2 3 3

1 3 1
cot 2 ,

2 3 sin 2 3

p
D p y x x a

p
y x x a i

a

 
     

 
       

    
1/3 3/ 2

2
tan tan , tan ,

2 3

, , 0;
4 2

p
a

q

a

 

  

       
   

  

   

     

1

2,3

1/3 3/ 2

1 1 1
iii) 0; 0 2 ,

2 3 sin 2 3

1 1 1
cot 2 ,

2 3 sin 2 3

2
tan tan , tan ,

2 3

, , 0.
4 2

p
D p y x x

a

p
y x x i a

a

p
a

q

a

 

  

 
      

  
       

    

       
   

  

 

                                                               □ 

The above final results expressed by Theorems 4.1 and 
4.2 as they were previously proved and Proposition 3.1, 
complete the solution of the problem under consideration, 
that is the construction of the general solutions of the 
normal form Abel’s equations of the second kind.  
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