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Abstract—Two fifth-order explicit hybrid methods are 

developed. Based on these methods, phase fitted and 
amplification fitted methods are constructed by vanishing both 
the phase-lag and the dissipation error. For the phase fitted 
and amplification fitted methods, computation of the output 
stage is dependent on the frequency of the problem being 
solved, thus the methods can only be applied when the 
frequency is known in advance. Numerical comparisons that 
have been carried out show the advantage of the new methods 
for solving several second-order ordinary differential 
equations with oscillating solutions. 
 

Index Terms—hybrid methods, second-order ordinary 
differential equations, zero dissipation error, zero phase-lag 
 

I. INTRODUCTION 

N this paper, we are interested in the research on 
numerical methods for solving second order ordinary 
differential equations of the form  

         0000 ,,, yxyyxyxyxfxy   

where the first derivative does not appear explicitly. These 
problems often arise in engineering and applied sciences 
such as celestial mechanics, quantum mechanics, 
elastodynamics, theoretical physics, chemistry and 
electronics and can be solved by using Runge Kutta 
Nystrom methods (see for example Senu [1]) and multistep 
methods. Several authors such as Fatunla, et. al. [2], Chawla 
[3], Tsitouras [4] and Simos [5] proposed hybrid methods 
which are obtained from the idea underlying both the Runge 
Kutta and linear multistep methods. 

In the developments of hybrid methods, it is important to 
increase the order of the methods to achieve higher 
accuracy. In addition, if the second order ordinary 
differential equations have oscillating solutions, then it is 
also essential to consider the phase-lag and the dissipation 
error that result from comparing the numerical solution with 
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the analytical solution. These are actually two types of 
truncation errors. The first is the angle between the 
analytical solution and the numerical solution while the 
second is the distance from a standard cyclic solution. The 
study of phase-lag has been initiated by Brusa and Nigro 
[6]. The research of hybrid methods has been carried out by 
many authors paying attention to obtain methods with 
minimal phase-lag or with zero dissipation error (see [7] to 
[11]).  

Consider the class of hybrid methods: 
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This class of methods has been discussed in many papers 
(for example see [4,12,13]). By assuming c1 = 1 and c2 = 0, 
Tsitouras [4] derived an eight-order implicit hybrid method. 
Meanwhile, Franco [13] proposed a class of explicit hybrid 
methods by assuming c1 = 1 and c2 = 0. In [14], Fang et. al. 
derived one- frequency and two-frequency explicit hybrid 
methods based on the fifth-order hybrid method in [13]. The 
coefficients of the new methods in [14] are obtained by 
vanishing both the phase-lag and the dissipation error.  

Here, inspired by Runge Kutta methods, we choose c1 = 
0 and c2 = 1. The class of explicit hybrid methods with c1 = 
0 and c2 = 1 can be represented by the Butcher tableau: 
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The leading term associated with the local truncation 

error of a p-th order hybrid method is given as 
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  2 pti where T2, (ti) and  it   are as defined in 

[12]. The quantity  
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where np+2 is the number of trees of order p + 2, is called the 
error constant for the p-th order method.  Based on this class 
of methods, we derive fifth order explicit hybrid methods 
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with four stages (s = 4). Then, based on these methods, we 
derive phase fitted and amplification fitted explicit hybrid 
methods. The phase fitted and amplification fitted methods 
are obtained by vanishing the phase-lag and the dissipation 
error. The implementation of the methods is investigated by 
comparing the accuracy of the methods with that of the base 
and other existing methods. 

II. PHASE-LAG ANALYSIS 

  Let hH   and  T111 e . Applying the hybrid 

methods defined in (1) to equation yy 2 , 0  yields 

the recursion 
                                                                        

    01
22

1   nnn yHPyHSy                                       (2) 

where  

     ceAIb 
1222 2 HHHS T  

and     cAIb
1222 1


 HHHP T . 

The characteristic equation associated with (2) is 
                                                                       

    0222  HPHS                                                   (3)                                                                                                                         

According to Houwen and Sommeijer [15], phase-lag is 
defined as the difference 

 HHt    

where H  is the phase (or argument) of the exact solution of 

yy 2  and  H  is the phase of the principal root of 

(3). In case for explicit methods, the matrix A is nilpotent of 
degree s (that is As = O). Therefore, 

  1223624212 
 ss AHAHAHAHIAHI  . 

 
 For the hybrid methods corresponding to the 
characteristic equation (3), the quantity  
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is called phase-lag (or dispersion error) while the quantity                                                                           

   21 HPHd 
 

is called dissipation (or amplification) error. A hybrid 
method corresponding to (3) is said to have the phase-lag of 
order n if    1 nHOH . If   0H  then the method is 

said to be phase fitted or zero dispersive. If   12 HP  then 

  0Hd  and the method having this property is said to be 

amplification fitted or zero dissipative. If   12 HP  then 

   1 mHOHd  and the method with this property is said 

to be dissipative of order m.  
 The interval  pH,0  is called the interval of periodicity 

of the method if  

  12 HP  and   22 HS  for all  pHH ,0  

whereas the method is called P-stable if 

  12 HP  and   22 HS  for all   ,0H . 

The interval  aH,0  is called the interval of absolute 

stability if 

  12 HP  and    22 1 HPHS   for all  aHH ,0 . 

III. CONSTRUCTION OF HYBRID METHODS 

A. Construction of Fifth-order Methods 

 In this section, fifth-order explicit hybrid methods are 
constructed. The following are order conditions that have to 
be satisfied (see [12]). 

1
1




s

i
ib  

0
1




s

i
ii cb  

6

1

1

2 


s

i
ii cb  


 


s

i

s

j
iji ab

1 1 12

1
 





s

i
ii cb

1

3 0  


 


s

i

s

j
ijii acb

1 1 12

1
 


 


s

i

s

j
jiji cab

1 1

0                                                     

        
15

1

1

4 


s

i
ii cb  

30

1

1 1

2 
 

s

i

s

j
ijii acb  


 


s

i

s

j
jijii cacb

1 1 60

1
 

120

7

1 1 1


  

s

i

s

j

s

k
ikiji aab  

180

1

1 1

2 
 

s

i

s

j
jiji cab  


  


s

i

s

j

s

k
jkiji aab

1 1 1 360

1
 

Substituting  ijaccs ij  0,1,0,4 21  into the 

above order conditions and solving the resulting equations 
using Maple software, we obtain 
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For the first method, the free parameter c3 is chosen so that 
the error constant E, is as small as possible giving us 

2
3 1085.1,

100

69  Ec  

The new method will be denoted by EHM5I. Coefficients of 
EHM5I method are displayed in Table I. 
 
 
 
 
 

 
 
 
 
 
 
 
 

The phase-lag order and the dissipation order for this 
method are six and five respectively with the following 
quantities 
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The interval of absolute stability is (0, 3.36). 
 

For the second method, the free parameter c3 is chosen so 
that the phase-lag order is eight. This gives us the values 

2
3 1009.7,

28

25  Ec  

The new method is denoted by EHM5II. Coefficients of 
EHM5II method are shown in Table II. 
 
 
 
   
 
 
 
 
 
 
 
 
 
This method has phase-lag of order eight and is dissipative 
of order five with the following quantities 
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The interval of absolute stability is (0, 3.94). 
 

B. Construction of Phase Fitted and Amplification Fitted 
Methods 

Here, phase fitted and amplification fitted hybrid methods 
denoted by EHM5IPA and EHM5IIPA will be derived. The 
derivations of EHM5IPA and EHM5IIPA are being based 
on EHM5I and EHM5II methods respectively. Table III 
shows coefficients of EHM5IPA method. 

 
 
 
 
 
 
 
 
 
 
 
 

It is noted that some of the values are taken from Table I. 
The coefficients 1b  and 2b  are obtained by vanishing the 

phase-lag and the dissipation error. The quantity  2HS  has 

to be equal to    2cos2 HPH  in order to vanish the 

phase-lag. Solving the resulting equation, we get  
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For the dissipation error to vanish, we set   12 HP  and 

then solve the resulting equation giving  
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For small H, the coefficient 1b  is subject to heavy 

cancellations. Therefore, it is convenient to use the Taylor 
series expansion: 
 

.
04358914560

1

239500800

1
     

1814400

1

20160

1

108000

31

1334

905

1210

864
1





HH

HHHb
 

 
 
Behaviour of the coefficients is given in Fig. 1. 

TABLE I 
COEFFICIENTS OF EHM5I  
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TABLE II 
COEFFICIENTS OF EHM5II 
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Fig. 1.  Behaviour of the coefficients b1 and b2 of the new proposed method; 
EHM5IPA for several values of H = h. 

 
Let us consider coefficients of EHM5IIPA given by Table 

IV. 
 
 
 
 
 
 
 
 
 
 
 
 

Some of the values in Table IV are taken from Table II. 
Using the similar procedure, by vanishing the phase-lag, we 
obtain 

 



 
 2126

2
2

2
2

68
2

4

42

21

1797124001966301982030400      

1982030400cos2760122875200       

122875200176755609561437600

450800594272
61437600

1

HHbH

HbH

HHbH

HH
H

b









whereas by vanishing the dissipation error, 
whereas by vanishing the dissipation error, 

.
1908

173

10080

1 4
2  Hb

 
The Taylor series expansion for 1b  is given by 
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The behaviour of the coefficients is given in Fig. 2. 
 

IV. NUMERICAL RESULTS 

All new codes have been applied to some second-order 
problems to provide numerical comparisons with other 
competitive codes in the scientific literature. Codes that 
have been used for numerical comparisons are denoted by: 
EHM5I : The first fifth-order explicit hybrid method with 
four stages derived in this paper. This method has phase-lag 
of order six and is dissipative of order five. The interval of 
absolute stability is (0, 3.36).  
EHM5II : The second fifth-order explicit hybrid method 
with four stages derived in this paper. This method has 
phase-lag of order eight and is dissipative of order five. The 
interval of absolute stability is (0, 3.94) 
EHM5IPA : The phase fitted and amplification fitted 
explicit hybrid method which is derived based on EHM5I in 
this paper. 
EHM5IIPA : The phase fitted and amplification fitted 
explicit hybrid method which is derived based on EHM5II 
in this paper.  
FETSH : The fifth-order explicit hybrid method with three 
stages derived by Franco [13]. This method has phase-lag of 
order eight and is dissipative of order five. The interval of 
absolute stability is (0, 2.84) whereas the formula for this 
method is given by 
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The coefficients of the method can be found in [13]. 
TSI7: The seventh-order explicit hybrid method with four 
stages derived in [16]. This method has the form 
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The coefficients can be found in [16]. According to 
Tsitouras [16], the coefficients of this method have 
been selected so that the local truncation error is 
minimized. 
 

 

 

Fig. 2.  Behaviour of the coefficients b1 and b2 of the new proposed method; 
EHM5IIPA for several values of H = h. 

Criterion used as a measure for accuracy is the maximum 
global error given by the formula 

MAXGE =   nn yxy max  

where y(xn) is the exact solution and yn is the computed 
solution. The numerical results are given in Fig. 3 to 6. Test 
problems that have been used are as follows. 

 
Problem 1 (non-homogeneous problem) 

      1000,110,10,sin99100  xyyxyy  

 Solution:        xxxxy sin10sin10cos  . 

 We choose H = 10h for EHM5IPA and EHM5IIPA codes. 
 
Problem 2 (homogeneous problem) 

    1000,10,00,2500  xyyyy  

Solution:    xxy 50sin
50

1
 .  

We choose H = 50h for EHM5IPA and EHM5IIPA codes. 
 

Problem 3 (almost periodic orbit problem) 
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The theoretical solution is     ixeixxz 0005.01 . 

If       R 2121 ,, yyxiyxyxz , then the problem can be 

transformed into the equivalent form 
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with the theoretical solution:        

     
     
     .cos0005.0sin

,sin0005.0cos

2

1

xxxxy

xxxxy




 

We choose H = h for EHM5IPA and EHM5IIPA codes. 
 

Problem 4 (perturbed system) 

      


 0,10,
2

100 1112
2

2
1

21
11 yyxf

yy

yy
yy  

      50,0,25 2222
2

2
1

2
2

2
1

22 



 yyxf
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yy   

 with 310 and  
 

         
         
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Solution: 
           

.100

 ,cos5sin,sin10cos 21




x

xxxyxxxy 
 

For EHM5IPA and EHM5IIPA codes, we choose H = 10h 
for the first component and H = 5h for the second 
component. 
 

From the numerical results, it is observed that EHM5I is 
almost as accurate as FETSH method. In addition, the 
maximum global error for EHM5II is of the same order as 
that for FETSH method with advantage for EHM5II as 
EHM5II is more stable for solving Problem 2. For Problem 
3, EHM5IPA is the most accurate followed by TSI7. TSI7 is 
unstable when it was used to solve Problem 2 and Problem 
4 for big step-size. Of all methods, EHM5IPA and 
EHM5IIPA are the most accurate for solving most problems 
considered. This is because EHM5IPA and EHM5IIPA are 
being phase fitted and amplification fitted compared to other 
methods. 
 

 
Fig. 3.  Numerical results for Problem 1 

 
 

 
Fig. 4.  Numerical results for Problem 2 

 
 

 
Fig. 5.  Numerical results for Problem 3 
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Fig. 6.  Numerical results for Problem 4 

 

V. CONCLUSION 

In this paper, we investigate the implementation of phase 
fitted and amplification fitted explicit hybrid methods for 
solving second order ordinary differential equations. From 
numerical observations, we conclude that the phase fitted 
and amplification fitted explicit hybrid methods are very 
accurate for solving second-order ordinary differential 
equations having oscillating solutions. The results also 
indicate that phase fitting and amplification fitting gives us 
methods with better accuracy compared to the base 
methods. Moreover, all of the new methods are capable to 
solve any physical problems whose solutions are in the 
oscillatory form. All codes are designed using Microsoft 
Visual C++ version 6.0 software in HP computer with 
specification Intel(R)Core(TM)2DuoCPU 
P8600@2.40GHz.  
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