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Phase fitted and Amplification fitted Hybrid
Methods for Solving Second-order Ordinary
Differential Equations

F. Samat, F. Ismail and M. Suleiman

Abstract—Two fifth-order explicit hybrid methods are
developed. Based on these methods, phase fitted and
amplification fitted methods are constructed by vanishing both
the phase-lag and the dissipation error. For the phase fitted
and amplification fitted methods, computation of the output
stage is dependent on the frequency of the problem being
solved, thus the methods can only be applied when the
frequency is known in advance. Numerical comparisons that
have been carried out show the advantage of the new methods
for solving several second-order ordinary differential
equations with oscillating solutions.

Index Terms—hybrid methods, second-order ordinary
differential equations, zero dissipation error, zero phase-lag

I. INTRODUCTION

N this paper, we are interested in the research on

numerical methods for solving second order ordinary

differential equations of the form

y"(x)= (% y(x)) ¥(x0) = Vo, y'(x0) = ¥

where the first derivative does not appear explicitly. These
problems often arise in engineering and applied sciences
such as celestial mechanics, quantum mechanics,
elastodynamics, theoretical physics, chemistry and
electronics and can be solved by using Runge Kutta
Nystrom methods (see for example Senu [1]) and multistep
methods. Several authors such as Fatunla, et. al. [2], Chawla
[3], Tsitouras [4] and Simos [5] proposed hybrid methods
which are obtained from the idea underlying both the Runge
Kutta and linear multistep methods.

In the developments of hybrid methods, it is important to
increase the order of the methods to achieve higher
accuracy. In addition, if the second order ordinary
differential equations have oscillating solutions, then it is
also essential to consider the phase-lag and the dissipation
error that result from comparing the numerical solution with
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the analytical solution. These are actually two types of
truncation errors. The first is the angle between the
analytical solution and the numerical solution while the
second is the distance from a standard cyclic solution. The
study of phase-lag has been initiated by Brusa and Nigro
[6]. The research of hybrid methods has been carried out by
many authors paying attention to obtain methods with
minimal phase-lag or with zero dissipation error (see [7] to
[11]).

Consider the class of hybrid methods:

yn+l :Zyn - yn—l + hzibj f(Xn +th‘gj) (1)

j=1

with g; =(L+¢;)y, =¢;y,4 +h*D ay t(x, +¢;h.g;)
j=1

This class of methods has been discussed in many papers
(for example see [4,12,13]). By assuming ¢; = 1 and ¢, = 0,
Tsitouras [4] derived an eight-order implicit hybrid method.
Meanwhile, Franco [13] proposed a class of explicit hybrid
methods by assuming c; = -1 and ¢, = 0. In [14], Fang et. al.
derived one- frequency and two-frequency explicit hybrid
methods based on the fifth-order hybrid method in [13]. The
coefficients of the new methods in [14] are obtained by
vanishing both the phase-lag and the dissipation error.

Here, inspired by Runge Kutta methods, we choose c; =
0 and ¢, = 1. The class of explicit hybrid methods with ¢; =
0 and ¢, = 1 can be represented by the Butcher tableau:

o o o - 0
1la, 0 0 - 0
C;| a; a3 O 0 = c A
. . bT
Cs asl asz as,s—l 0
bl b2 bs—l bs

The leading term associated with the local truncation
error of a p-th order hybrid method is given as

a(tl) + "
ep+1(ti): (p+2) [:L"‘(_l)p ‘—b'y (ti)l teT,,
p(t;)= p+2where T,, ot) and w"(t,) are as defined in

[12]. The quantity
E= 1 Ze[z)+1(ti )
i=1

where N, is the number of trees of order p + 2, is called the
error constant for the p-th order method. Based on this class
of methods, we derive fifth order explicit hybrid methods
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with four stages (s = 4). Then, based on these methods, we
derive phase fitted and amplification fitted explicit hybrid
methods. The phase fitted and amplification fitted methods
are obtained by vanishing the phase-lag and the dissipation
error. The implementation of the methods is investigated by
comparing the accuracy of the methods with that of the base
and other existing methods.

Il. PHASE-LAG ANALYSIS
Let H=4h and e=(1 1 ---

methods defined in (1) to equation y” = -A%y, A >0 vyields
the recursion
Yo —

S(H 2 )yn +
where

S(H?)=2-H%" (1+H?A) (e+c)

and P(H?)=1-H?b" (1 + H?A) ¢
The characteristic equation associated with (2) is

g2 -s(H2k+P(H?)=0 3)
According to Houwen and Sommeijer [15], phase-lag is
defined as the difference
t=H-6(H)

where H is the phase (or argument) of the exact solution of
y"=-2%y and @(H) is the phase of the principal root of
(3). In case for explicit methods, the matrix A is nilpotent of
degree s (that is A° = O). Therefore,

(1+H2A) =1 —HZA+HAA? -

1)". Applying the hybrid

P(H?)y,, =0 @)

H6A3+ _H2572A571.

For the hybrid methods corresponding to the
characteristic equation (3), the quantity

2
¢(H)=H —arccos M
24/P(H?
is called phase-lag (or dispersion error) while the quantity
d(H)=1-4P(H?)

is called dissipation (or amplification) error. A hybrid
method corresponding to (3) is said to have the phase-lag of

order n if g(H)=0(H"). If ¢(H)=0 then the method is
said to be phase fitted or zero dispersive. If P(H 2):1 then
d(H)=0 and the method having this property is said to be
amplification fitted or zero dissipative. If P(H 2);«::1 then
d(H ):O(H m“) and the method with this property is said

to be dissipative of order m.
The interval (0, H p) is called the interval of periodicity

of the method if

P(H?)=1 and [s(H?] <2 forall He(o,H,)
whereas the method is called P-stable if

P(H?)=1and [s(H?)<2 forall H <(0,).
The interval (0,H,) is called the interval of absolute
stability if

[P(H?) <1 and [s(H?] <1+ P(H?) forall He(0,H,).

I1l. CONSTRUCTION OF HYBRID METHODS

A. Construction of Fifth-order Methods

In this section, fifth-order explicit hybrid methods are
constructed. The following are order conditions that have to
be satisfied (see [12]).

ZZb,clach =

b;a

IIj |k:

S S S

Z Zb' i Jk:

i=1 j=1 k=1

Substituting s=4,¢, =0,¢, =1 a; =0 (J >i)

above order conditions and solving the resulting equations

using Maple software, we obtain

25¢2 +7¢, -3
6c, (5¢, +2)

into the

=

c _ 5C3+2 B 5c2 -2

47 B(c,+1)" 2 6(7+10c, (-1+c¢,)’

b. —— 1

®" 2c,(~1+c, N10c, +2+5cZ)’

b — 125(c, +1)* L
4_6(7+1003)(5c3+2)(10c3+2+5c32)’ a=4
agl:§C3_%C§+;C§' a32_éc3(_1+c3)(03 +1),
o= (5¢, + 2)(325¢2 + 5702 + 240¢, —14)

3750c,(c, +1)*
(B¢, +2)(7 +10c, J-17 +10c2 —10c, )
® 3750(c, +1)* (-1+c¢,)
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_ (7+10c, X5c, +2)10c, + 2+ 5¢?)
“3 3750, (c, +1)* (- 1+¢,)

For the first method, the free parameter c; is chosen so that
the error constant E, is as small as possible giving us
C, = —ﬁ, E=185x10"
100
The new method will be denoted by EHMS5I. Coefficients of
EHMS5I method are displayed in Table I.

TABLEI
COEFFICIENTS OF EHM5I
0 0 0 0 0
1 1 0 0 0
3 E B 334397 120497 0 0
100 2000000 2000000
@ 173865730 6193240 292262000
31 191168847 468225147 32307535143
905 B 761 10000000 923521
1334 2028 58759779 1753572

The phase-lag order and the dissipation order for this
method are six and five respectively with the following
quantities

71
H)= H’+0[(H®
#H) 1512000 ( )'
31
d(H)= H®+O(H"
() 216000 i ( )

The interval of absolute stability is (0, 3.36).

For the second method, the free parameter c; is chosen so
that the phase-lag order is eight. This gives us the values
Cs =—§, E=7.09-10""
28
The new method is denoted by EHMS5II. Coefficients of
EHMSII method are shown in Table II.

TABLE Il
COEFFICIENTS OF EHMS5I|

0 0 0 0 0
1 1 0 0 0
25 | 3425 1325 0 0
28 | 43904 43904
23 | 454986 16744 13866608
5 | 15625 33125 828125

2791 173 307328 125

3450 1908 3056775 636732

This method has phase-lag of order eight and is dissipative
of order five with the following quantities

¢(H):ﬁH9 +o(H™)
d(H)=——H® 1 O(H™2)

20160

The interval of absolute stability is (0, 3.94).

B. Construction of Phase Fitted and Amplification Fitted
Methods

Here, phase fitted and amplification fitted hybrid methods
denoted by EHMS5IPA and EHMSIIPA will be derived. The
derivations of EHM5IPA and EHMS5IIPA are being based
on EHMS5I and EHMS5II methods respectively. Table il
shows coefficients of EHM5IPA method.

TABLE 1l
COEFFICIENTS OF EHM5I PA
0 0 0 0 0
1 1 0 0 0
69 | 334397 120497 0 0
100 2000000 2000000
29 | 173865730 6193240 292262000
31 | 191168847 468225147 32307535143
10000000 923521
' 72 58759779 1753572

It is noted that some of the values are taken from Table I.
The coefficients b, and b, are obtained by vanishing the

phase-lag and the dissipation error. The quantity S(H 2) has

to be equal to 2cos(H MPini in order to vanish the
phase-lag. Solving the resulting equation, we get

1
12174084000H 2
+12174084000H “b, (H )+ 3494413H ®

~37311313H °© + 24348168000
— 24348168000H 2b, (H )—1040520 cos(H )(547560000

— 547560000 H *b,, (H )~157170H ® — 205470000 H * }** ]

b, = [13051620000H ? + 5582790000 H *

For the dissipation error to vanish, we set P(H 2):1 and
then solve the resulting equation giving

27108000

31 He 761
2028

For small H, the coefficient b, is subject to heavy

cancellations. Therefore, it is convenient to use the Taylor
series expansion:

905 31 . 1 1

b, = + - +
1334 108000 20160 1814400
_ 1 H© . 1 H2_
239500800 43589145600

Behaviour of the coefficients is given in Fig. 1.
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Behaviour of the coefficient b
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Fig. 1. Behaviour of the coefficients b; and b, of the new proposed method;
EHMBIPA for several values of H = 2h.

Let us consider coefficients of EHM5IIPA given by Table
V.

TABLE IV
COEFFICIENTS OF EHMS5IIPA
0 0 0 0 0
1 1 0 0 0
(25 | 3425 1325 0 0
28 43904 43904
23 454986 16744 13866608
5 15625 33125 828125
307328 125
Y72 3056775 636732

Some of the values in Table IV are taken from Table II.
Using the similar procedure, by vanishing the phase-lag, we
obtain

1
© 61437600H >
+61437600H ‘b, +6095H ® —176755H ° +122875200

~122875200H 2b, — 2760 cos(H )1982030400
~1982030400H *b, —196630H ° +179712400H 2 )”2]

[-594272H 2 - 450800H *

1

whereas by vanishing the dissipation error,
whereas by vanishing the dissipatigpgrror,

=— + .
210080 1908
The Taylor series expansion for b, is given by

_291, 1 1 1

' 3450 10080 20160 1814400
_ 1 H 10 + 1 H 12
239500800 43589145600

The behaviour of the coefficients is given in Fig. 2.

IV. NUMERICAL RESULTS

All new codes have been applied to some second-order
problems to provide numerical comparisons with other
competitive codes in the scientific literature. Codes that
have been used for numerical comparisons are denoted by:
EHMSI : The first fifth-order explicit hybrid method with
four stages derived in this paper. This method has phase-lag
of order six and is dissipative of order five. The interval of
absolute stability is (0, 3.36).

EHMSII : The second fifth-order explicit hybrid method
with four stages derived in this paper. This method has
phase-lag of order eight and is dissipative of order five. The
interval of absolute stability is (0, 3.94)

EHMSIPA : The phase fitted and amplification fitted
explicit hybrid method which is derived based on EHMS5I in
this paper.

EHMSIIPA : The phase fitted and amplification fitted
explicit hybrid method which is derived based on EHM5II
in this paper.

FETSH : The fifth-order explicit hybrid method with three
stages derived by Franco [13]. This method has phase-lag of
order eight and is dissipative of order five. The interval of
absolute stability is (0, 2.84) whereas the formula for this
method is given by

Yi=Yo1: Y2 =Y,
Y, =(L+Cy)y, —Caypq +h?(ag foy +ay,f,)
Y, = (1+CA )yn —C,Y,, +h’ [a41 fii+agf,
+a,, f(x, +c5h,Y,)]
Yo =2Yn —Yoa t h? [bl fo+b, f,
+b, f(x, +¢c5h, Y, )+b, f(x, +c,h,Y,)]
The coefficients of the method can be found in [13].

TSI7: The seventh-order explicit hybrid method with four
stages derived in [16]. This method has the form

fn = f(xn'yn)’

(Advance online publication: 16 August 2013)
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Ya =C¥Ypa + (1_Cl)yn + hz(dn foy+dp, fn)1
fa = f(xn _Clhlya)!
Yo =Co¥n +(1_Cz )yn + hz(dzl fn—l + dzz fn
+0, fa)’
f, = f(xn —C,h, Yb)!
Ye =C3¥na +(1_CS)Yn + hz(d31 fog+dyf,
+0xufa+95 1, )v
fc = f(Xn _Cshv yc )’
Yosr == Yna T2Y, + hz(Wl fog+w,f,
+b, f, +b, T, +b,f, )
The coefficients can be found in [16]. According to
Tsitouras [16], the coefficients of this method have

been selected so that the local truncation error is
minimized.

Behaviour of the coefficient b
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Fig. 2. Behaviour of the coefficients b; and b, of the new proposed method;
EHMS5IIPA for several values of H = Ah.

Criterion used as a measure for accuracy is the maximum
global error given by the formula

MAXGE = max|y(x, )~ V.|

where y(x,) is the exact solution and y, is the computed
solution. The numerical results are given in Fig. 3 to 6. Test
problems that have been used are as follows.

Problem 1 (non-homogeneous problem)

y” =-100y + 99sin(x), y(0)=1 y'(0)=11, 0<x <100
Solution: y(x)= cos(10x)+ sin(L0x)+sin(x).

We choose H = 10h for EHMS5IPA and EHMSIIPA codes.

Problem 2 (homogeneous problem)
y”=-2500y, y(0)=0,y’(0)=1 0<x<100

Solution: y(x):%sin(SOx).
We choose H = 50h for EHM5IPA and EHMS5IIPA codes.

Problem 3 (almost periodic orbit problem)
" _ 1 ix _ ’ — H
2"(x)+2(x) = o0 2(0)=1,2'(0)=0.9995i, z € C,

0<x<100.

The theoretical solution is z(x)= (1 0.0005ix)e™ .

If z(x)=y,(x)+iy,(x). y;,y, € R, then the problem can be
transformed into the equivalent form

" l !
yi=-y, + mCOS(X), y,(0)=1 y;(0)=0

" l - ’
Y5 ==Y, + MS'”(X)’ y,(0)=0, y;(0)=0.9995

with the theoretical solution:
y, (x) = cos(x)+0.0005x sin(x),
¥, (x) = sin(x)—0.0005x cos(x).
We choose H = h for EHM5IPA and EHMS5IIPA codes.

Problem 4 (perturbed system)

2
y; +100y, + yzyiyzz = f,(x),y,(0)=1 y;(0)=¢

1 2

2 2
Y. - Y,
2 2
1Y

yI 425y, + = 1,(x).y,(0)=—¢,y5(0)=5

with & =10 and

f,(x) = [(2 cos(10x)sin(5x)+ 2&(sin(5x)sin(x)
— cos(10x)cos(x))— & sin(2x))/(cos? (10x) + sin? (5x)
+2¢(sin(x)cos(10x) - cos(x)sin(5x)) + £ )]
+99¢sin(x),

f,(x) =(cos?(10x)—sin? (5x)+ 2z(sin(x)cos(10x)
+cos(x)sin(5x))— &2 cos(2x))/(cos? (10x) + sin? (5x)
+2¢(sin(x)cos(10x) - cos(x)sin(5x)) + £ )]— 24¢ cos(x).

(Advance online publication: 16 August 2013)
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Solution:

y, (x) = cos(10x)+ e sin(x), y, (x) = sin(5x) - & cos(x),

0 <x<10.

For EHM5IPA and EHMS5IIPA codes, we choose H = 10h
for the first component and H = 5h for the second
component.

From the numerical results, it is observed that EHM5I is
almost as accurate as FETSH method. In addition, the
maximum global error for EHM5II is of the same order as
that for FETSH method with advantage for EHM5II as
EHMS5II is more stable for solving Problem 2. For Problem
3, EHMSIPA is the most accurate followed by TSI7. TSI7 is
unstable when it was used to solve Problem 2 and Problem
4 for big step-size. Of all methods, EHM5IPA and
EHMSIIPA are the most accurate for solving most problems
considered. This is because EHM5IPA and EHMS5IIPA are
being phase fitted and amplification fitted compared to other
methods.

HNON-HOMOGENEOQIS: PROELEM
@ FET:EH [J Tarm #  EHMSI
4 EHMLISIPA (O EHMSIIPA ——

% EHMSII

log
[ MWAXGE)

T T T T T T T T T T T 1
0ol 002 003 004 005 006 007 008 009 040
Btep -size(h)

Fig. 3. Numerical results for Problem 1

HOLOGENEOUS PROBLEM
@ FET:H O Taz “ EHMSI % EHMSI
& EHMSFA (O EHMSIPA ——
154
10
5
log 1
{ MLAXGE )
(=
1 K
-5
_ID_-

0.04

0.02 003
Step-aize(h)

001

Fig. 4. Numerical results for Problem 2

ALMOBT PERIODIC ORBIT PROBELEM

@ FET:H
4 EHLIJIPA

O Tarr = EHMISI
) EHMSIIPA ——

% EHMSTI

log
[ LIAXGE)

002 004 006 D0F 010 012 014 016 012 020
Btep-size (k)

Fig. 5. Numerical results for Problem 3
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PERTUREED 3YATEL
@ FET:H 0 Tarr e EHMSI % EHMSII
& EHMSIPA (O EHMWSIIPA ——
|:|_

log
(MAXGE) ~

T T T T T T T T T T T T T T T T T T 1
002 004 006 002 010 012 014 016 018 02
Step-aize(h)

Fig. 6. Numerical results for Problem 4

V. CONCLUSION

In this paper, we investigate the implementation of phase
fitted and amplification fitted explicit hybrid methods for
solving second order ordinary differential equations. From
numerical observations, we conclude that the phase fitted
and amplification fitted explicit hybrid methods are very
accurate for solving second-order ordinary differential
equations having oscillating solutions. The results also
indicate that phase fitting and amplification fitting gives us
methods with better accuracy compared to the base
methods. Moreover, all of the new methods are capable to
solve any physical problems whose solutions are in the
oscillatory form. All codes are designed using Microsoft
Visual C++ version 6.0 software in HP computer with
specification Intel(R)Core(TM)2DuoCPU
P8600@2.40GHz.
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