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Abstract—In this paper, based on certain variable transfor-
mation, we apply the known (G’/G) method to seek exact
solutions for three fractional partial differential equations:
the space fractional (2+1)-dimensional breaking soliton equa-
tions, the space-time fractional Fokas equation, and the space-
time fractional Kaup-Kupershmidt equation. The fractional
derivative is defined in the sense of modified Riemann-liouville
derivative. With the aid of mathematical software Maple, a
number of exact solutions including hyperbolic function solu-
tions, trigonometric function solutions, and rational function
solutions for them are obtained.

Index Terms—(G’/G) method, fractional partial differential
equation, exact solution, variable transformation.

I. INTRODUCTION

In the literature, research on the theory of differential
equations, integral equations and matrix equations include
various aspects, such as the existence and uniqueness of
solutions [1,2], seeking for exact solutions [3,4], numerical
method [5-7]. Among these investigations, research on the
theory and applications of fractional differential and integral
equations has been the focus of many studies due to their
frequent appearance in various applications in physics, biol-
ogy, engineering, signal processing, systems identification,
control theory, finance and fractional dynamics, and has
attracted much attention of more and more scholars. For
example, Bouhassoun [8] extended the telescoping decompo-
sition method to derive approximate analytical solutions of
fractional differential equations. Bijura [9] investigated the
solution of a singularly perturbed nonlinear system fractional
integral equations. Blackledge [10] investigated the applica-
tion of a certain fractional Diffusion equation, and applied it
for predicting market behavior.

Among the investigations for fractional differential equa-
tions, research for seeking exact solutions and approximate
solutions of fractional differential equations is a hot topic.
Many powerful and efficient methods have been proposed
so far (for example, see [11-24]) including the fractional
variational iteration method, the Adomian’s decomposition
method, the homotopy perturbation method, the fractional
sub-equation method, the finite difference method, the finite
element method and so on. Using these methods, solutions
with various forms for some given fractional differential
equations have been established.

In [25], we extended the known (G’/G) method [26-28] to
solve fractional partial differential equations, and obtained
some exact solutions for the space-time fractional general-
ized Hirota-Satsuma coupled KdV equations and the time-
fractional fifth-order Sawada-Kotera equation successfully.
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In this paper, we will furthermore test the validity of the
(G’/G) method by applying it to solve other fractional partial
differential equations. The fractional derivative is defined
in the sense of modified Riemann-liouville derivative. We
list the definition and some important properties for the
modified Riemann-Liouville derivative of order α as follows
[22-24,29]:

Dα
t f(t) =





1
Γ(1− α)

d
dt

∫ t

0
(t− ξ)−α(f(ξ)− f(0))dξ,

0 < α < 1,
(f (n)(t))(α−n), n ≤ α < n + 1, n ≥ 1.

Dα
t tr =

Γ(1 + r)
Γ(1 + r − α)

tr−α, (1)

Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t), (2)

Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α. (3)

The rest of this paper is organized as follows. In Section
2, we give the description of the (G’/G) method for solving
fractional partial differential equations. Then in Section 3
we apply this method to seek exact solutions for the space
fractional (2+1)-dimensional breaking soliton equations, the
space-time fractional Fokas equation, and the space-time
fractional Kaup-Kupershmidt equation. Some conclusions
are presented at the end of the paper.

II. DESCRIPTION OF THE (G’/G) METHOD FOR SOLVING
FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS

In this section we give the description of the (G′
G ) method

for solving fractional partial differential equations.
Suppose that a fractional partial differential equation, say

in the independent variables t, x1, x2, ..., xn, is given by

P (u1, ...uk, Dα
t u1, ..., D

α
t uk, Dβ

x1
u1, ...,

Dβ
x1

uk, ..., Dγ
xn

u1, ..., D
γ
xn

uk, ...) = 0, (4)

where ui = ui(t, x1, x2, ..., xn), i = 1, ..., k are unknown
functions, P is a polynomial in ui and their various partial
derivatives including fractional derivatives.

Step 1. Execute certain variable transformation

ui(t, x1, x2, ..., xn) = Ui(ξ), ξ = ξ(t, x1, x2, ..., xn), (5)

such that Eq. (4) can be turned into the following ordinary
differential equation of integer order with respect to the
variable ξ:

P̃ (U1, ..., Uk, U ′
1, ..., U

′
k, U ′′

1 , ..., U ′′
k , ...) = 0. (6)

Step 2. Suppose that the solution of (6) can be expressed
by a polynomial in (G′

G ) as follows:

Uj(ξ) =
mj∑

i=0

aj,i(
G′

G
)i, j = 1, 2, ..., k, (7)
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where G = G(ξ) satisfies the second order ODE in the form

G′′ + λG′ + µG = 0, (8)

and λ, µ, aj,i, i = 0, 1, ..., mj , j = 1, 2, ..., k are constants
to be determined later, aj,m 6= 0. The positive integer mj

can be determined by considering the homogeneous balance
between the highest order derivatives and nonlinear terms
appearing in (6).

By the generalized solutions of Eq. (8) we have

(
G′

G
) =





−λ
2 +

√
λ2 − 4µ

2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

),

λ2 − 4µ > 0,

−λ
2 +

√
4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

),

λ2 − 4µ < 0,

−λ
2 + C2

C1 + C2ξ
, λ2 − 4µ = 0,

(9)
where C1, C2 are arbitrary constants.

Step 3. Substituting (7) into (6) and using (8),
collecting all terms with the same order of (G′

G )
together, the left-hand side of (6) is converted into
another polynomial in (G′

G ). Equating each coefficient of
this polynomial to zero, yields a set of algebraic equations
for λ, µ, aj,i, i = 0, 1, ..., mj , j = 1, 2, ..., k.

Step 4. Solving the equations system in Step 3, and using
(9), we can construct a variety of exact solutions for Eq. (4).

III. APPLICATION OF THE PROPOSED METHOD TO SPACE
FRACTIONAL (2+1)-DIMENSIONAL BREAKING SOLITON

EQUATIONS

We consider the space fractional (2+1)-dimensional break-
ing soliton equations





ut + a∂2α+βu
∂x2αyβ + 4au∂αv

∂xα + 4a∂αu
∂xα v = 0,

∂βu
∂yβ = ∂αv

∂xα ,
, (10)

where 0 < α, β ≤ 1. Eqs. (10) are variation of the following
(2+1)-dimensional breaking soliton equations equations [30-
33] {

ut + auxxy + 4auvx + 4auxv = 0,
uy = vx.

(11)

For Eqs. (11), some periodic wave solutions, non-traveling
wave solutions, and Jacobi elliptic function solutions were
found in [20-23]. But we notice no research has been paid
for Eqs. (10) so far. In the following, we will apply the
described method in Section 2 to Eqs. (10).

To begin with, we suppose u(x, y, t) = U(ξ), v(x, y, t) =
V (ξ), where ξ = ct + k1

Γ(1 + α)xα + k2
Γ(1 + β)yβ + ξ0,

k1, k2, c, ξ0 are all constants with k1, k2, c 6= 0.
Then by use of (1) and the first equality in Eq. (3), we

obtain Dα
x u = Dα

x U(ξ) = U ′(ξ)Dα
x ξ = k1U

′(ξ), Dβ
y u =

Dβ
y U(ξ) = U ′(ξ)Dβ

y ξ = k2U
′(ξ), ut = cU ′(ξ), and then

Eqs. (10) can be turned into
{

cU ′ + ak2
1k2U

′′′ + 4ak1UV ′ + 4ak1V U ′ = 0,
k2U

′ = k1V
′. (12)

Suppose that the solution of Eqs. (12) can be expressed
by 




U(ξ) =
m1∑
i=0

ai(G′
G )i,

V (ξ) =
m2∑
i=0

bi(G′
G )i.

(13)

Balancing the order of U ′′′ and UV ′, U ′ and V ′ in (12) we
have m1 = m2 = 2. So




U(ξ) = a0 + a1(G′
G )1 + a2(G′

G )2,

V (ξ) = b0 + b1(G′
G )1 + b2(G′

G )2.
(14)

Substituting (14) into (12), using Eq. (8) and collecting all
the terms with the same power of (G′

G ) together, equating
each coefficient to zero, yields a set of algebraic equations.
Solving these equations yields:

a0 = a0, a1 = −3
2
k2
1λ, a2 = −3

2
k2
1,

b0 = −8ak2
1k2µ + ak2

1k2λ
2 + c + 4aa0k2

4ak1
,

b1 = −3
2
k1k2λ, b2 = −3

2
k1k2,

where λ, µ, a0 are arbitrary constants.
Substituting the result above into Eqs. (14), and combining

with (9) we can obtain the following exact solutions for Eqs.
(10).

When λ2 − 4µ > 0, we obtain the hyperbolic function
solutions:



u1(x, y, t) = a0 − 3
2k2

1λ[−λ
2 +

√
λ2 − 4µ

2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]

−3
2k2

1[−λ
2 +

√
λ2 − 4µ

2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]2,

v1(x, y, t) = −8ak2
1k2µ + ak2

1k2λ
2 + c + 4aa0k2

4ak1

−3
2k1k2λ[−λ

2 +
√

λ2 − 4µ
2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]

−3
2k1k2[−λ

2 +
√

λ2 − 4µ
2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]2,

(15)
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where ξ = ct + k1
Γ(1 + α)xα + k2

Γ(1 + β)yβ + ξ0.

In particular, if we take C2 = 0, then we obtain the
following solitary wave solutions, which are shown in Figs.
1-2.





u2(x, y, t) = a0 + 3
8k2

1λ
2

−3
8k2

1(λ
2 − 4µ)[tanh

√
λ2 − 4µ

2 ξ]2,

v2(x, y, t) = −8ak2
1k2µ + ak2

1k2λ
2 + c + 4aa0k2

4ak1

+3
8k1k2λ

2 − 3
8k1k2(λ2 − 4µ)[tanh

√
λ2 − 4µ

2 ξ]2,

When λ2 − 4µ < 0, we obtain the periodic function
solutions:





u3(x, y, t) = a0 − 3
2k2

1λ[−λ
2 +

√
4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]

−3
2k2

1[−λ
2 +

√
4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]2,

v3(x, y, t) = −8ak2
1k2µ + ak2

1k2λ
2 + c + 4aa0k2

4ak1

−3
2k1k2λ[−λ

2 +
√

4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]

−3
2k1k2[−λ

2 +
√

4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]2,

(16)
where ξ = ct + k1

Γ(1 + α)xα + k2
Γ(1 + β)yβ + ξ0.

When λ2 − 4µ = 0, we obtain the rational function
solutions:





u4(x, y, t) = a0 − 3
2k2

1λ[−λ
2 + C2

C1 + C2ξ
]

−3
2k2

1[−λ
2 + C2

C1 + C2ξ
]2,

v4(x, y, t) = −8ak2
1k2µ + ak2

1k2λ
2 + c + 4aa0k2

4ak1

−3
2k1k2λ[−λ

2 + C2
C1 + C2ξ

]

−3
2k1k2[−λ

2 + C2
C1 + C2ξ

]2,
(17)

where ξ = ct + k1
Γ(1 + α)xα + k2

Γ(1 + β)yβ + ξ0.

Remark 1. The established solutions above for the space
fractional (2+1)-dimensional breaking soliton equations are
new exact solutions so far in the literature.

IV. APPLICATION OF THE PROPOSED METHOD TO
SPACE-TIME FRACTIONAL FOKAS EQUATION

We consider the space-time fractional Fokas equation

4
∂2αq

∂tα∂xα
1

− ∂4αq

∂x3α
1 ∂xα

2

+
∂4αq

∂x3α
2 ∂xα

1

+ 12
∂αq

∂xα
1

∂αq

∂xα
2

+12q
∂2αq

∂xα
1 ∂xα

2

− 6
∂2αq

∂yα
1 ∂yα

2

= 0, 0 < α ≤ 1. (18)

In [24], the authors solved Eq. (18) by a fractional Riccati
sub-equation method, and obtained some exact solutions for
it. Now we will apply the described method in Section 3 to
Eq. (18).

Suppose q(x, y, t) = U(ξ), where ξ = c
Γ(1 + α) tα +

k1
Γ(1 + α)xα

1 + k2
Γ(1 + α)xα

2 + l1
Γ(1 + α)yα

1 + l2
Γ(1 + α)yα

2 +
ξ0, k1, k2, l1, l2, c, ξ0 are all constants with
k1, k2, l1, l2, c 6= 0. Then by use of (1) and the first
equality in Eq. (3), Eq. (18) can be turned into

4ck1U
′′ − k3

1k2U
(4) + k3

2k1U
(4) + 12k1k2(U ′)2

+12k1k2UU ′′ − 6l1l2U
′′ = 0. (19)

Suppose that the solution of Eq. (19) can be expressed by

U(ξ) =
m∑

i=0

ai(
G′

G
)i, (20)
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where G = G(ξ) satisfies Eq. (8). By Balancing the order
between the highest order derivative term and nonlinear term
in Eq. (19) we can obtain m = 2. So we have

U(ξ) = a0 + a1(
G′

G
) + a2(

G′

G
)2. (21)

Substituting (21) into (19) and collecting all the terms with
the same power of (G′

G ) together, equating each coefficient
to zero, yields a set of algebraic equations. Solving these
equations, yields:

a0 =
k3
1k2λ

2 − k1k
3
2λ

2 + 8k3
1k2µ− 8k1k

3
2µ− 4ck1 + 6l1l2

12k1k2
,

a1 = λ(k2
1 − k2

2), a2 = k2
1 − k2

2.

Substituting the result above into Eq. (21), and combining
with (9) we can obtain the following exact solutions to Eq.
(18).

When λ2 − 4µ > 0,

q1(t, x1, x2, y1, y2) =

k3
1k2λ

2 − k1k
3
2λ

2 + 8k3
1k2µ− 8k1k

3
2µ− 4ck1 + 6l1l2

12k1k2

+λ(k2
1 − k2

2)[−
λ

2
+

√
λ2 − 4µ

2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]

+(k2
1 − k2

2)[−
λ

2
+

√
λ2 − 4µ

2

(
C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ

)]2, (22)

where ξ = c
Γ(1 + α) tα + k1

Γ(1 + α)xα
1 + k2

Γ(1 + α)xα
2 +

l1
Γ(1 + α)yα

1 + l2
Γ(1 + α)yα

2 + ξ0.

When λ2 − 4µ < 0,

q2(t, x1, x2, y1, y2) =

k3
1k2λ

2 − k1k
3
2λ

2 + 8k3
1k2µ− 8k1k

3
2µ− 4ck1 + 6l1l2

12k1k2

+λ(k2
1 − k2

2)[−
λ

2
+

√
4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]

+(k2
1 − k2

2)[−
λ

2
+

√
4µ− λ2

2

(
−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ

)]2, (23)

where ξ = c
Γ(1 + α) tα + k1

Γ(1 + α)xα
1 + k2

Γ(1 + α)xα
2 +

l1
Γ(1 + α)yα

1 + l2
Γ(1 + α)yα

2 + ξ0.
In Fig. 3, the periodic function solution (23) is demon-

strated with some certain parameters.
When λ2 − 4µ = 0,

q3(t, x1, x2, y1, y2) =

k3
1k2λ

2 − k1k
3
2λ

2 + 8k3
1k2µ− 8k1k

3
2µ− 4ck1 + 6l1l2

12k1k2
+

λ(k2
1−k2

2)[−
λ

2
+

C2

C1 + C2ξ
]+(k2

1−k2
2)[−

λ

2
+

C2

C1 + C2ξ
]2,

(24)
where ξ = c

Γ(1 + α) tα + k1
Γ(1 + α)xα

1 + k2
Γ(1 + α)xα

2 +
l1

Γ(1 + α)yα
1 + l2

Γ(1 + α)yα
2 + ξ0.

Remark 2. As one can see, the established solutions
for the space-time fractional Fokas equation above are
different from the results in [24], and are new exact
solutions so far to our best knowledge.

V. APPLICATION OF THE PROPOSED METHOD TO
SPACE-TIME FRACTIONAL KAUP-KUPERSHMIDT

EQUATION

We consider the following space-time fractional Kaup-
Kupershmidt equation

Dα
t u + D5β

x u + 45u2Dβ
xu− 75

2
Dβ

xuD2β
x u

−15uD3β
x u = 0, 0 < α, β ≤ 1, (25)

which is a variation of the following Kaup-Kupershmidt
equation [34-36]:

ut + uxxxxx + 45uxu2 − 75
2

uxuxx − 15uuxxx = 0, (26)

To begin with, we suppose u(x, t) = U(ξ), where ξ =
c

Γ(1 + α) tα + k
Γ(1 + β)xβ + ξ0, k, c, ξ0 are all constants

with k, c 6= 0. Then by use of (1) and the first equality in
Eq. (3), Eq. (25) can be turned into

cU ′ + k5U (5) + 45kU2U ′ − 75
2

k3U ′U ′′ − 15k3UU ′′′ = 0.

(27)
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Suppose that the solution of Eq. (27) can be expressed by

U(ξ) =
m∑

i=0

ai(
G′

G
)i. (28)

Balancing the order of U (5) and UU ′′′ in Eq. (27) we have
m = 2. So

U(ξ) = a0 + a1(
G′

G
) + a2(

G′

G
)2. (29)

Substituting (29) into (27), using Eq. (8) and collecting all
the terms with the same power of (G′

G ) together, equating
each coefficient to zero, yields a set of algebraic equations.
Solving these equations, yields:

Case 1:

a2 = 8k2, a1 = 8k2λ, a0 =
2
3
k2(λ2 + 8µ), k = k,

c = −11k5(−8λ2µ + 16µ2 + λ4),

g =
1664

9
k7µ3 +

104
3

k7λ4µ− 416
3

k7λ2µ2. (30)

Substituting the result above into Eq. (29) and combining
with (9) we can obtain the following exact solutions to Eq.
(25).

When λ2 − 4µ > 0,

u1(x, t) = −2k2λ2 + 2k2(λ2 − 4µ)



C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ




2

+
2
3
k2(λ2 + 8µ), (31)

where ξ = −11k5(−8λ2µ + 16µ2 + λ4)
Γ(1 + α) tα+ k

Γ(1 + β)xβ +
ξ0.

In particular, when λ > 0, µ = 0, C1 6= 0, C2 = 0, we
can deduce the soliton solutions of the Kaup-Kupershmidt
equation as follows:

u2(x, t) = 2k2λ2sech2(
λξ

2
) +

2
3
k2λ2. (32)

When λ2 − 4µ < 0,

u3(x, t) = −2k2λ2 + 2k2(4µ− λ2)


−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ




2

+
2
3
k2(λ2 + 8µ), (33)

where ξ = −11k5(−8λ2µ + 16µ2 + λ4)
Γ(1 + α) tα+ k

Γ(1 + β)xβ +
ξ0.

When λ2 − 4µ = 0,

u4(x, t) = −2k2λ2 +
8k2C2

2

(C1 + C2ξ)2
+

2
3
k2(λ2 + 8µ), (34)

where ξ = −11k5(−8λ2µ + 16µ2 + λ4)
Γ(1 + α) tα+ k

Γ(1 + β)xβ +
ξ0.

Case 2:

a2 = k2, a1 = k2λ, a0 =
1
12

k2(λ2 + 4µ), k = k,

c = − 1
16

k5(−8λ2µ + 16µ2 + λ4),

g = −2
9
k7µ3 − 1

24
k7λ4µ +

1
6
k7λ2µ2 +

1
288

k7λ6.

Substituting the result above into Eq. (29) and combining
with (9) we can obtain the following exact solutions to Eq.
(25).

When λ2 − 4µ > 0,

u5(x, t) = −1
4
k2λ2 +

1
4
k2(λ2 − 4µ)




C1 sinh

√
λ2 − 4µ

2
ξ + C2 cosh

√
λ2 − 4µ

2
ξ

C1 cosh

√
λ2 − 4µ

2
ξ + C2 sinh

√
λ2 − 4µ

2
ξ




2

+
1
12

k2(λ2 + 4µ), (35)

where ξ =
− 1

16
k5(−8λ2µ + 16µ2 + λ4)

Γ(1 + α) tα+ k
Γ(1 + β)xβ+

ξ0.

In particular, when λ > 0, µ = 0, C1 6= 0, C2 = 0, we
can deduce the soliton solutions of the Kaup-Kupershmidt
equation as follows:

u6(x, t) =
1
4
k2λ2sech2(

λξ

2
) +

1
12

k2λ2. (36)

When λ2 − 4µ < 0,

u7(x, t) = −1
4
k2λ2 +

1
4
k2(4µ− λ2)



−C1 sin

√
4µ− λ2

2
ξ + C2 cos

√
4µ− λ2

2
ξ

C1 cos

√
4µ− λ2

2
ξ + C2 sin

√
4µ− λ2

2
ξ




2

+
1
12

k2(λ2 + 4µ), (37)

where ξ =
− 1

16
k5(−8λ2µ + 16µ2 + λ4)

Γ(1 + α) tα+ k
Γ(1 + β)xβ+

ξ0.

When λ2 − 4µ = 0,

u8(x, t) = −1
4
k2λ2 +

k2C2
2

(C1 + C2ξ)2
+

1
12

k2(λ2 +4µ), (38)
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where ξ =
− 1

16
k5(−8λ2µ + 16µ2 + λ4)

Γ(1 + α) tα+ k
Γ(1 + β)xβ+

ξ0.

Remark 3. The established solutions in Eqs. (31)-
(38) are new exact solutions for the space-time fractional
Kaup-Kupershmidt equation.

VI. CONCLUSION

We have applied the known (G’/G) method to solve the
space fractional (2+1)-dimensional breaking soliton equa-
tions, the space-time fractional Fokas equation, and the
space-time fractional Kaup-Kupershmidt equation. Based on
certain fractional transformation, such fractional partial dif-
ferential equations can be turned into ordinary differential
equations of integer order, the solutions of which can be
expressed by a polynomial in (G′

G ), where G satisfies the
ODE G′′(ξ) + λG′(ξ) + µG(ξ) = 0. With the aid of
mathematical software, a variety of exact solutions for these
fractional partial differential equations are obtained. Being
concise and powerful, we note that this approach can also be
applied to solve other fractional partial differential equations.
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