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Analysis of Model of Soil Freezing and Thawing

Alexandr Zak, Michal Bene$, and Tissa H. lllangasekare

Abstract—The article studies a time dependent mathematical front due to the regelation mechanism. Referring to the
model of two-dimensional two-phase system describing a cross-dependence on one of the forming mechanisms, the terms
section of saturated soil sample in terms of its temperature. The primary and secondary heaving, respectively, are used. The

model is used to control the structural conditions in the medium . | i db i f ter f bel
by coupling it with the Navier equations. The computational 'C€ '€NS growin IS caused by a suction of water irom beiow

studies of this coupling are presented at the end of the article. 0 the lens basal surface, where it freezes. . .
The thermal model setting and its variational formulation are The secondary heaving mechanism is more important in

presented as well asabasig: analysis of mathematical propertiesQeneraL as it heaves larger loads, and was described by
of the partial problem solution. Miller in 1978 ([2]). After that, some prediction models of
Index Terms—analysis, freezing, model, phase-change, soil frost heave rate and ice lensing have followed considering
the thermomechanical processes at the microscopic level
I. INTRODUCTION and aiming at fundamental gndersta_nding of the phenomena
. . . (e.g., Gilpin 1980, [3], O’'Neil and Miller 1985, [4], Fowler
OlL is a common material covering the Ia_nd §u_rfaceI989’ [5]). An opposite (macroscopic) approach to the frost
It plays a significant role, among others, in civil €Mheave modeling can be found in the constitutive models

gineering when designing structures. From the engineeriuging the definition of frost susceptibility as the property of

wevypomt, the term S.O” can be u.ndersto-od as a porolgy; and focusing on quantitative and qualitative prediction
basically loose, material whose solid constituent consists frost heave (e.g., Michalowski 1993, [6], Michalowski

rock particles (grain_s) and whose pores are usually filled wi d Zhu 2005, [7]). Some models describing partial aspects
water (saturated soil) or water and gases (unsaturated SP84ated to the frost heave mechanism have been separately

Physical properties of soil vary depending on the size a veloped as well. For example, the model for coupled water

the material of the grains, on the proportional representatiﬂgw and heat transport ([8]), the model for solidification

of the sizes and the materials in a given volume, on t )] porous material under natural convection ([9]), or the

MNodels concerning fluid flow in porous media (e.g. [11], [10],

3]). Only lately, the first more comprehensive models based
thermodynamics and coupling more physical quantities

ve been presented. They include the soil freezing model

geological conditions, and the climate. As these paramet
change in time, the physical properties may gradually chan
as well. In consequence of the interaction of soil surface ap

environs, the deformations of the ground surface may appegr \jiiola and Hartikainen (1997 [13], 2001 [14]), which
in the course _of time. As the structure or building fo_undatlo_q corporates some parameters without physical meaning, the
are (mechamcally) affected by great mass of S_O'I mate”%lasic modeling framework for freezing soil by Li et al. (2002
even a_relatwely small change of the soil properties can ha[\i%], 2008 [16]), and the poroelastic modeling framework of
a considerable impact . . freezing materials by Coussy (2005 [17]), which was further
One of _the processes Igadmg to the considerable Chan%ﬁﬁeralized by Aichi and Tokunaga (2012 [18]). It can be
.Of :Ee so;(lj Iaye_rs pro;)(tarr]tlesE |st;hehfrost tEeave_.I It 't?\cirl: ticed that the so far developed soil freezing models mostly
N the coid regions of ne Larth where he Soil Wi o not consider the inverse process of soil thawing and that

specific range of soll grain sizes and the sufficient amo e respective computational studies are usually oriented to
of the pore water can be found. The frost heave causgs freezing scenario only
upward displacement of the top ground layer when the urrently, many regions of the globe face the observable

ground temperature decreases below the freezing Point Ahhate change. It includes shifts in seasonal temperatures,

\t/va:ﬁr. ;rhe ptr_mup?l_ callee of tge _I_robst hea\llgzvg\)/as 1asc_|r_|rt])8 stal erosion, increased storm effects, sea ice retreat, and
0 he formation ot ice lenses by Taber In ({1D- ermafrost thawing. In cold regions, especially in those areas

:;:_e for:_natllton .takhes tpllflice at the fhre?[zggt front stJ)e to ttﬁhere permafrost currently or in the future may be subjected
Iscontinuity inheat flux or-a short distance above '}% excessive thawing, serious risks of changes in mechanical

Manuscript received September 26, 2012; revised July 22, 2013. Parfighaviour of upper soil layers arise. The climate change
support of the project of the "Numerical Methods for Multi-phase Flovintroduces uncertainty and variability into the design of

and Transport in Subsurface Environmental Applications, project of Cze: ; ; ; ;
Ministry of Education, Youth and Sports Kontakt ME10009, 2010-2012ﬁ]ture infrastructures and into the operation and maintenance

and of the project "Advanced Supercomputing Methods for Implementati@f infrastructures already placed there. Thus, it is desirable
of Mathematical Models, project of the Student Grant Agency of the Czett improve knowledge of the effect of permafrost thawing on

Technical University in Prague No. SGS11/161/OHK4/3T/14, 2011-13". foundations. roads. and runways or the effect of the thermal

A. Z&k and M. Bene$ are with the Department of Mathematics, Facular file of d th di land il f
of Nuclear Sciences and Physical Engineering, Czech Technical Univ rofile of structures and the adjacent land use on soll ireeze-

sity in Prague, e-mail: alexandr.zak@fjfi.cvut.cz (corresponding authothaw cycling.
michal.benes@fjfi.cvut.cz, respectively. In an effort to contribute to better understanding of the

T. H. llangasekare is with the Center for Experimental Study of f cli h hanical behavi f i
Subsurface Environmental Processes, Colorado School of Mines, e-mﬁmpaCtS ot cimate change on mechanical behaviour ot sol

tissa@mines.edu. surface, a two-dimensional thermomechanical model of a

(Advance online publication: 16 August 2013)



TAENG International Journal of Applied Mathematics, 43:3, [JAM 43 3 06

soil layer profile is introduced in this paper. The modekherep is the soil density]" stands for
is based on continuum approach. It considers the heat and

i L 0 9
momentum balance relations and adopts an empirical linking (¥ — Dazv —vg;w N — (iv n gw)
term. Thus, it allows to obtain the computational studie (1+v)(1-2v) "2(14w) \v O
of the subsurface thawing and freezing layers. The model _ g o o *Va%” + (v - 1)8%1(; ’
is supposed to be the first step towards the design of gV T asw) s B +&

pp p g D1 +v) \9% (1+v)(1—2v)

comprehensive soil freezing and thawing model which woul
be as computationally undemanding as possible and, at fhés Young's modulus, and is Poisson’s ratio.

same time, still sufficiently accurate. The model governed by (1) and (3) and supplemented
by the suitable boundary and initial conditions serves as
[l. MATHEMATICAL MODEL a simple phase and structure change model. This model

The proposed model serves for the description of a twg@n be solved numerically. Corresponding computational
dimensional soil profile and, in contrast to, e.g., [13], [16Ftudies are presented in Section V. They provide a qualitative
[17], views soil as an elementary continuum material. THBformation on the soil freezing and thawing processes in a
soil material is assumed to be continuously and uniformygrtical 2D cut.
spread out over the occupied space and is characterized
at each point of the space by the temperature and by the
displacement vector.

To express the heat transport in the studied soil, theThe model (1), (3) can become subject of mathematical
modified heat equation for the soil temperature- u(¢,Xx) interest as well. In particular, energy equation (1) controlling
(in °C), which describes the phase change in a neighborhdbd phase change process is discussed in detail here.
of the freezing point depressiom* (temperature at which Let Q be the rectangular domai, z1[x]z1,0[ and Q
pore water freezes and which is slightly lower than theenote]0,7[x) for someT > 0. The problem given by
freezing point of pure water)y* < 0, is considered. The equation (1) is considered as follows
equation has the form 5 9

9 9 C&u(t,x) + L&G(u(t,x)) = Mu(t,x), (t,X) €Q,
C—u+ L—=0(u) = \u, 1)
ot ot where C', L, and A are, for simplicity, constants. Further,

vyhereC’, L, A are the yolumetnc heat capacity, the VOlum,etthe equation is supplemented by the initial temperature
ric latent heat of freezing of water, and thermal CondUCt'V'%istribution

respectively. Using approach taken from [19], the volumetric _

IIl. ANALYSIS

unfrozen water content is described by the power fundion u(0,%) = uo(x), x €€, (4)
1 Cou > ur and by the homogeneous Dirichlet boundary conditions

O(u) =nd(u), G(u) =19 . L
W ou<u u(t,x) =0, xe€0Q, t€)0,T]. (5)

wherey) is the soil porosity of melt-state soil; represents consjdering the model settings, it is possible to find an

the liquid pore water fraction, anblis a positive constant 4 516qy between this problem and the Stefan problem ([20],
related to the material characteristic of the soil. [21], [22]).

When interested in the deformation effects of the freezing
and thawing on saturated soil, the momentum conservation
is considered. With regard to the fact that the deformation ¢ Enthalpy formulation
caused by the inner stress change in the material induced b . o
the water-ice phase transition of the water fraction, a stresQV: or the purpose of the mathematical analysis, it is pro-

switch function can be used to couple the temperature and ﬁ’?@ded to an enthalpy formulation of equation (1)

displacement vector. Motivated by the empirical knowledge b
that freezing water in a fixed volume increases abruptly the 5 (4) = Adu, (6)
inner stress, the function can be written in the form of the . o
step function which can be obtained by the substitution
E(u) = xd(u* —u), (2)

H(u) = uC dé + Lo(u)

Umin

wherey is internal stress rate expressing the jump in stress
during the cooling the material below* and whered
denotes the Heaviside step function. Then, the appropri
scaling of xy can incorporate the stress increase resultin
from the water density change during the water-ice transiti
and the average effect of the lens formation as well. Tth&,)
assuming the stress change induced by (2), the Navier
equations for the displacement vector w) are as follows

%the left-hand sideu(,,;,, is a constant value). Note that
continuous and its first derivative is continuous everywhere
cept foru*. The valueu* becomes a singularity in equation
or (6).

B. Variational formulation

+LV-T=0, 3) Equation (6) is _mu_ltiplied by a test function from
C%(Q) N CY(Q) vanishing for allx € 99, t € [0,7T] and

Yo7 | w
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Fig. 1. lllustration of the functiorH.

for all x € , t = T and integrated ovef. Using the Green
formula, it can be gradually treated:

0= / (QH(u)v - )\Auv) dxdt,
o\ ot

T
0= / (QH(u)v + )\Vqu) dxdt — )\/ Vunv dsdt ,
Q\ 0t 0Joq
: T 9
0= [ H(u)v dx] — / (H(u)—v - )\VUVU) dxdt,
Q 0 Q ot
0= / <H(u)gv — AVqu) dxdt
0 ot

+/ H (up(x))v(0,x) dx.

It is now possible to define the weak solution.

(7)

Definition 1ll.1. The weak solution of problem (6) with (4)
and (5) is the function: € H'(Q) which satisfies relation

(5) in the sense of traces and (7) for all test functions
C((Q)Nnc(Q), v = 0 for ¥x € 99, t € [0,T] and for

WeQ, t="T.

Remark [1.1.
problem (6) with (4), (5) is the weak solution.

C. Unigueness of solution

It is obvious that each classical solution o

2¢

Hy(u)

Fig. 2. lllustration of the functiony,.

Now, the following lemma, which is referred to in [23] (and
which can be verified for this case), can be used.

Lemma Ill.1.
LWWﬂH@M¢M&0

holds for all ¢ € C>°(Q) with supp¢ C Q.

Thus, considering the fact that a set of such functigris
dense inL?(Q), it can be concluded thatf (u;) = H (us)
almost everywhere o and, sincef{ is monotone, also that
U1 = Ug. | ]

Remark 111.2. Remark Ill.1 implies that the classical solu-
tion is unique as well.

IV. EXISTENCE OF SOLUTION

Since the functionH has convenient properties for the
purpose of analysis except the behavior at the potntthe
existence of a solution is investigated by regularization. The
sequence of problems with mollified functiod,, whose

ffirst derivative is continuous everywhere and whose limit

is the functionH, is constructed. The regularized functions
can be gradually constructed by substitution of the original
function H on some interval for a part of a smooth function
when, simultaneously, the length of superseded interval tends

Theorem I1.1. The weak solution of the problem (6) witH© Z€ro as the sequence index increases. For specific choice

(4), (5) is unique.

Proof: Let there exist two different solutions; and

ug Of the problem. Inserting them into equation (7) and

subtracting these equations, it follows

LQHwnHwﬂa

al}
A [Vuy — Vug] VU) dxdt =0.
The Green formula yields
gv +A

J(16) = 1101

The equation is further rewritten as

L(W@ﬂH@MX

U — u2

X [%v + )\MAUD dxdt = 0.

[ty — us] Av) dxdt =0.

of functions H;, sequence, it can be referred to, e.g., [24].
Thus, the following sequence of problems is considered

%Hk(u) = MNu,
u(0) = uo,
U|BQ = 0)

wherek € N and H, — H ask — oo. The solution of the
problem with H;, is denoted as:”; the limit of {u*},en
will be studied. Next, the existence of their solutions is
investigated.

A. Galerkin method

The solution existence of an arbitrary {s now fixed)
smoothed problem can be shown by means of the Galerkin
approximation. LetV,,, n € N, be the finite dimensional
subspace of.?(Q) generated by the first (normed) eigen-
vectors,vy, ..., v,, Of the Laplace operator oft coupled
with the homogeneous Dirichlet boundary conditions, and let

(Advance online publication: 16 August 2013)
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(.,.) denote the scalar product ai?(92). The solutionu®  The last inequality is integrated ovigr; 7], 7 < T'; it follows
from [0, T'[ to V;, of an auxiliary problem is sought using the 5
variational formulation in the space, HV“ HL2 Q) = Hv“ )HL2(Q)
B = [IVPauoll72(0) < Vuoll72q)
0=(=H A (Vuk, v Yo €V,
<8t k(u ) U>+ ( U U) ) v e ) ®) < |Qer (uo) (12)

k _
U (0) =Pnuo, where the constant; depends on the initial functiom, and

whereP,, : L%(Q) — V,, is the projection operator. |2| denotes the Lebesgue measure of the donfhirmhe
1) System of ODE’sThe solution of (8) is expressed adPoincaré inequality is used to obtain the lower bound. Then,
the linear combination of the basis functionsiof together, it yields
n 1 k 2
= Zaf(t)vi, 2(Q) [ HL2 @ = < [[Vun(r )HL2(Q) < Qe (uo)
i=1 (13)
where ¢, is the Poincaré constant. Further, from (11), it
wherea?, i € {1,...,n}, are the unknown time-dependen¥0||0W562 (11)

coefficients. Equation (8) is tested by, j € {1,...,n} to )

obtain a system of differential equations for the coefficients . 9 uk (7) + A HVuk (T)H2
beta. Then for arbitrary, it follows 0115 n 2@ 2 " L2(Q)
9 2
- (8tHk( n)>v ) +A Vg, Voj) T2 HWQ(O)HB(Q) =0
Z Z and then
= a; Hk UZ, vi) — A ﬂz Uza vj)
ot ] j e k ? k 2
<o || 57 Un(7) < HWn(O)Hp(m
0= i j &g
Z Jui, v;) = ABja ( < Vuollzza) < [Qler(uo). (14)

where ; are the corresponding eigenvalues of the opdrinally, relations (12), (13), and (14) yield
ator. Denotingak = (a¥,...,ak), time derivative ofa” )

: = di ko — MPF (aF) = k|2 k|2 9 k|2
by /a A = diag{$,..., .}, and MY, M (& ) HunHHl(Q) < H“nHLz(Q) + H&un + HVunHLZ(Q)
(H;, ( ¥)vi,v;), the required system of (9), wherg € L2(Q)
{1,...,n}, can be written as
<|QerT (e + T+1 =c3, (15)
MF (a)a" — AAak = 0. (10)

_ ) wherecs = ¢3(C, A\ ug, Q). Therefore, the following remark
System (10) is a system of ODE's. For arbitrdry= R™ — /45

{0}, it is observed that
N Remark IV.1. Inequality (15) means that sequence

kY . is uniformly bounded inH(Q)-norm indepen-
AMF R Z ME Rty = S (Hjwi,v) hih; égﬁt}ly%ﬁ%;sa:;;germy ounded inH'(Q)-norm indepen

7,j=1 1,j=1
n n 3) Passage to limit:Remark (IV.1) implies that there ex-
= Hy Y hivi, > hjv; | = (Hip, ) ists a subsequence ¢f:%} _ - which is weakly converging
i=1 j=1 in H'(Q). The subsequence is identified wifhy; } .. Its
> COH‘PH%Q(Q) >0, limit with respect ton is denoted byu*. From the Rellich-

Kodrachov theorem, it follows thati'(Q) is compactly
which implies thatM* is positive-definite for alb*. There- embedded in.2(Q); therefore, it can be seen thalf — u*
fore, there always exists the inverse matrixMf. Then, in 2(Q). It remains to examine the convergence of the non-
(10) can be converted into the normal system, and the ushaéar termsHy, (u”).
existence theory of ODE's can be applied. To do this, it will be verified that the function;, are
2) A priori estimates:Estimates for investigation of the Lipschitz continuous. Considering functions and @ from
convergence of{u}}nen Will be derived. Equation (8) is L2(Q) and k fixed, auxiliary functiong is defined almost

tested by u¥, which implies that everywhere or as a mapping fronf0, 1] into the interval
with marginsHy,(w) and Hy(w) in the following way
O:<H( )8 e 9 k) <Vu vﬁu>
ktn) g s g Un ot ") g(k) = Hy(kw + (1 — &)D).
a . 0
0= (Hk( )8t upy, P ﬁ) +3 E HVu"HLQ(Q) : Using the mean value theorem and the boundedness of the

derivative of Hy, (achieved by the particular form dfy), it
(11) can be seen that

- | Hi(w) = Hy, (@) = |g(1) = g(0)| = [g'(n)]
< vt 20 - — |HL||w — ] < calw — | (16)

2

9. k
0= co |z o) + 2)\dt [V, ||L2(Q) '

_dt

(Advance online publication: 16 August 2013)
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almost everywhere o). An arbitraryw as above is assumed. flux(t) = - 0.5 [W]

Then, inequality (16) yields L L=
k k c 5
& )
= ‘/ [Hyp(uf) — Hy(u¥)] wdxdt‘ § S
Q c
< /’Hk(uf;) - Hk(uk)‘ |w]dxdt
Q Uini
k k
<a /Q‘un —u ‘ |w|dth Fig. 3. The initial conditions and the thermal boundary caods.
<y l|uf —uF w|L2(0) - a7)
| 20 Illz2c@ flux(t) = - 5sin(2nt/1500000) - 0.01 [W]
Sinceu® — u¥, (17) implies thatH (u?) — Hy(u*) as r
n = 0. ———
Now, using the variational formulation of problem (8) s 5
5 5 — —— =S
— - QL
0= / (Hk(uf;)—v - )\Vuf;Vv) dxdt 2 — ——— 2
) ot £ S
+ [ Hu(Paun)p(0.0) dx,
Q
it is possible to pass to the weak limit with respectitand i
to get Fig. 4. The initial conditions and the thermal boundary cdodi.
N k
0= Hk(u )EU — AVu" Vo | dxdt flux(t) = - 0.5 [W]
Q
R —
+/ Hi (uo(x))v(0,x) dx. 23 = —
Q c ——  —c— s
o 7]
Then, u* becomes the weak solution of auxiliary problem & s
> ~+
®). g g
B. Convergence of the auxiliary solutions
Remark IV.1 implies that Ui
2112 Fig. 5. The initial conditions and the thermal boundary caods.
[ 1 ) <
i) = -

Therefore, there exists a weakly converging subsequence of
{u*}, o In HY(Q). Identifying it with {u*} _, the term V. COMPUTATIONAL STUDIES

(Hy(uF) — H(u),w)Lz(Q)
= (Hk(uk) — Hi(u) + Hi(u) — H(u),w)

Computational studies based on the model given by (1)

and (3) with heterogeneities in the thermal and mechanical

L*(Q) properties are presented in Figure 6, 7, and 8. To reduce
computational constraints, the modification of the model

analogous process to (17) aitl — H by the construction within the meaning of employing the regularized functigns

L9 . . o

of {Hy.}ren. Consequently, it is possible to pass to the wedl'd? With & = 107 (see Figure 2) was applied. Considering

limit in the variational formulation of original problem (6) small temperature range use and thus small potential portion
(n = 0.3) of the ice fraction, all soil parameters were

N, :
0— / (Hk(uk)—v _ )\Vuva) dxdt assumed_ to be_ constant. _ o
Q ot The simulation settings are illustrated in Figure 3, 4,

tends to zero ag — oo becausey, (u*) — Hy(u) — 0 by

and 5, where inner rectangles denote the distribution of the
+ /Q Hi(uo(x))v(0,x) dx property heterogeneities; the side and bottom boundaries are
fixed. Different letters in the figures denote the materials

to obtain weak equality (7) of different properties, and these property differences are

B distinguished by adding the index to the property symbol.
0= / (H(U)EU - )\VUVU) dxdz The values of the used parameters have rather testing than

@ practical meaning. The scale is in meters. Figure 6 gives

+ [ H(uo(x))v(0,x)dx. the qualitative comparison of the strain evolution during

Q freezing of the soil sample with three heterogeneities. As
Then, the limitu of the sequence of the auxiliary problenthe freezing front passes the heterogeneities, the various rate
solutionsu” satisfies Definition 1I1.1. of strain response is observed depending on the type of

(Advance online publication: 16 August 2013)
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TABLE |
PARAMETERS OF THE MODEL(RELATED TO FIGURE 3) L FineGes Surfaces e[°C] Contour: -0.1[°C] e 6. 0560
‘ -0.06
Parameter Symbol Value Unit
freezing point depression u* -0.1 | °C B
initial temperature uo —0.05 | °C . o1
internal stress rate X 5-107 1 06
Poisson’s ratio v, Uy 0.33 1 -0.12
Poisson’s ratio Vp, Up 8251072 | 1 - o1s
soil density 0, or 1.5-103 | kg-m=3 02 '
soil parameter b 0.5 1 -0.16
thermal conductivity A Ay 2| W-(m-K)~! °
thermal conduct|v|ty )\p, )\T 01 W(mK)_l 0.2 0.4 0.6 0.8 1 1.2 1.4 16 1.8 2 Min: -0.177
vol. heat capacity C.Cy 5-10° J~(m3 'K)71 Time=1.2e6 Surface: Temperature [°C] Contour: -0.1[°C] Max: -0.0500
vol. heat capacity Cp, Cr 2.5-107 | J-(m3-K)~! i o0
vol. latent heat of water | L 3.33.108 | J-m™3 '
Young's modulus E,E,. 2:10% | Pa -0.08
Young's modulus Ey, Ep 5-107 | Pa oy o
TABLE I i o2
PARAMETERS OF THE MODEL(RELATED TO FIGURE 4) 0.4
-0.14
Parameter Symbol Value Unit = o6
freezing point depression u* —0.05 °C 0 '
initial temperature uQ —0.02 °C 02 04 06 08 1 12 14 16 18 2  Min:-0177
internal stress rate % 7.5-107 1
POISsonvs I’atIO v 033 1 152 Time=2.4e6 Surface: Temperature [°C] Contour: -0.1[°C] Max: -0.0500
Poisson’s ratio vp 0.165 1 =0.06
soil density 0, or 1.75-10% kg-m—3 008
soil parameter b 0.4 1
thermal conductivity A 3 W(m-K)~1 01
thermal conductivity Ar 0.225 W-(m-K)~1 o s
vol. heat capacity C 4-108 J-(m3-K)~1 0.4
vol. heat capacity C 1.6-107 J-(m3-K)~1 -0.14
vol. latent heat of water | L 3.33-108 J-m™3 o
Young's modulus E 1.8-108 Pa P e
Young's modulus Er 4.5-107 Pa 02 04 06 08 1 12 14 16 18 2  Min-0177

Time=3.6e6 Surface: Temperature [°C] Contour: -0.1[°C] Max: -0.0500

1.2
-0.06

heterogeneity below the observed location. On the left-hant
pat of the sample, a slight negative rate is even observe( *
owing to the long relaxation time for temperature of the ., : R—
heterogeneity and no difference in Young’s modulus of the 0.1
left-hand heterogeneity and of the surrounding material. ~ °°
The parameters, the initial and boundary conditions of thiso.
model are given by Table | and Figure 3. -0.14
A simulation of the development of soil freezing and °*
thawing deformation effects is shown in Figure 7. The figure o
covers one period of a heat exchange and demonstrates tl 0z 04 06 08 1 12 14 16 18 2  Min-0177
elastic property of soil in relation to the reverse thermal
processes. The setting is similar to the previous simulatior ..
and is illustrated in Figure 4 and given by Table II.
Figure 8 represents the progress of the gradual soil freez i
ing with its deformation effect, where the initial and thermal os

-0.08

-0.12

-0.16

Time=4.8e6 Surface: Temperature [°C] Contour: -0.1[°C] Max: -0.0500

-0.06

-0.08

boundary conditions are illustrated in Figure 5. The values e
of the parameters used for the shown simulation are writter - 012
in Table IlI. 0.4
-0.14
0.2
VI. CONCLUSION 0.1
The presented model includes a basic heat and forc °

0.2 0.4 0.6 0.8 1 1.2 14 16 1.8 2 Min: -0.177

balance and was designed for the purpose of the prelimi
nary study of structural changes in saturated soils caug_e;& 6. Strain response rate comparison.
by the phase transition of the water content due to the

(Advance online publication: 16 August 2013)
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Time=3.3e5 Surface: Temperature [°C] Contour: -0.05[°C] Max: 0.0710

0.05
: o
: -0.05
‘ 0.1
| -0.15

0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 Min: -0.175
Time=6.3e5 Surface: Temperature [°C] Contour: -0.05[°C] Max: 0.0710
0.05
0
~0.05
-0.1
-0.15
0 0.2 0.4 0.6 0.8 1 1.2 1.4 16 18 Min: -0.175
Time=9.3e5 Surface: Temperature [°C] Contour: -0.05[°C] Max: 0.0710

0.05
;i (!
) -0.05
‘ -0.1
| -0.15

0 02 0.4 0.6 0.8 1 12 14 16 18 Min: -0.175

Time=1.23e6 Surface: Temperature [°C] Contour: -0.05[°C]
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TABLE Il
PARAMETERS OF THE MODEL(RELATED TO FIGURE 5) [10] A. R. Ansati et. al., "A Note on Certain Perturbation Methods for

Solving the Problem of Fully Developed Flow Through a Porous
Channel”, IAENG International Journal of Applied Mathematics, Vol.

Parameter Symbol Value Unit 40, No. 4, pp. 224-232, 2010.

freezing point depressiof u* “01 | °C [11] L. H. Wiryanto, "Unste_ady Waves Generat_ed by Flow over a Porous

il : o Layer", IAENG International Journal of Applied Mathematics, Vol. 40,

?nl ial temperature uo —0.05 No. 4, pp. 233238, 2010.

internal stress rate X 5-107 | 1 [12] Z.A.Aziz and F. Salah and D. L. Ch. Ching, "On Accelerated Flow for

Poisson’s ratio v 033 | 1 MHD Generalized Burgers’ Fluid in a Porous Medium and Rotating

- ; - Frame", IAENG International Journal of Applied Mathematics, Vol.
Po!ssonﬁs ratfo Vpy Up 0.2475 | 1 41, No. 3, pp. 199-205, 2011.

Poisson’s ratio Vg, Vr,Vy 0.165 | 1 [13] J. Hartikainen and M. Mikkola, "Thermomechanical Model of Freez-
soil density 0, Ob, Or 1.5:103 | kg-m—3 ing Soil by Use of the Theory of Mixtures", in Proc. of the 6th Finnish
soil densit , 1.8-10% | kg-m~3 Mechanics Days, pp. 1-6, 1997. . ) )

- -y &p, Oy 3 J m_3 [14] M. Mikkola and J. Hartikainen, "Mathematical Model of Soil Freezing
soil density 0g 2.25-10° | kg-m and Its Numerical Implementation”, International Journal for Numeri-
soil parameter b 05| 1 cal Methods in Engineering, Vol. 52, pp. 543-557, 2001.
thermal conductivity X\ Ag 2 | W-(m-K)™! [15] N. Li et al., "Theoretical Frame of the Saturated Freezing Soil", Cold

— — Regions Science and Technology, Vol. 35, pp. 73-80, 2002.
1
thermal conduct!v!ty Ab, Ar 0.1 | W-(m-K) - [16] N. Li et al., "Theoretical Modeling Framework for an Unsaturated
thermal conductivity Ap, Ay 4| W-(m-K)~ Freezing Soil", Cold Regions Science and Technology, Vol. 54, pp.
vol. heat capacity C,Cp, Cy 5.106 | J-(m3-K)~! 19-35, 2008. _ ) )

h - 25107 I3 K1 [17] ©. Coussy, "Poromgchanlcs _of Freezing Materials", Journal of the
vol. heat capac!ty Cp, Cr b 06 J (m3 )71 Mechanics and Physics of Solids, Vol. 53, pp. 1689-1718, 2005.
vol. heat capacity Cy 2.5-10 J-(m*-K) [18] M. Aichi and T. Tokunaga, "Material Coefficients of Multiphase Ther-
vol. latent heat of water | L 3.33-10% | J-m~3 moporoelasticity for Anisotropic Micro-hetorogenous Porous Media",
Young's modulus E 2.10° | Pa International Journal of Solids and Structures, Vol. 49, pp. 3388-3396,

2012.
, 8
Young’s modulus Ey, Ep 2.5-10 Pa [19] D. J. Nicolsky, V. E. Romanovsky, G. G. Panteleev: "Estimation of
Young's modulus Eg, Er, Ey 5-107 | Pa soil thermal properties using in-situ temperature measurements in the

active layer and permafrost”, Cold Regions Science and Technology,
Vol. 55, pp. 120-129, 2009.
[20] O. A. Oleinik, "One Method for Solving General Stefan Problem"”,

alternations of climate conditions. The thermal part of the Proc. of USSR Acad. of Sci., pp. 1054-1057, 1960 (in Russian).

: - [21] B. M. Budak and E. N. Solov’eva and A. B. Uspenskij, "Difference
model aIIowmg for the phase change of the water fraCtIOﬁ Method with Smoothing Factors for Solution of Stefan Problem"”,

was mathematically analyzed providing the information on  GvM&MF, pp. 828-840, 1965 (in Russian).
the weak solution existence. [22] A. Visintin, Models of Phase Transitions, Boston, USA: Birkauser,

. . 1996, ch. 5, pp. 123-152.
Although the model is based on the continuum approaféa;] S. L. Kamenomostskaya, "On Stefan’s Problem", Math. Col. 53, pp.

and built on simplified relations, the produced simulations = 489-514, 1961 (in Russian).
reflect adequately the common empirical knowledge of th&# M. Benes, "Numerical Solution of Two-Dimensional Stefan Problem

. . . . by Finite Difference Method", Acta Polytechnica, pp. 61-87, 1989 (in
soil freezing and thawing process and the related mechanical c);ech). Y PP (

manifestations. Further development will involve an appli-
cation of more sophisticated and more descriptive relations
taking laws of thermodynamics and balances of dynamic
guantities into consideration. For example, the heat capacity
and thermal conductivity should be also considered to be
depended on the phase change.
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