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Abstract—The article studies a time dependent mathematical
model of two-dimensional two-phase system describing a cross-
section of saturated soil sample in terms of its temperature. The
model is used to control the structural conditions in the medium
by coupling it with the Navier equations. The computational
studies of this coupling are presented at the end of the article.
The thermal model setting and its variational formulation are
presented as well as a basic analysis of mathematical properties
of the partial problem solution.
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I. I NTRODUCTION

SOIL is a common material covering the land surface.
It plays a significant role, among others, in civil en-

gineering when designing structures. From the engineering
viewpoint, the term soil can be understood as a porous,
basically loose, material whose solid constituent consists of
rock particles (grains) and whose pores are usually filled with
water (saturated soil) or water and gases (unsaturated soil).
Physical properties of soil vary depending on the size and
the material of the grains, on the proportional representation
of the sizes and the materials in a given volume, on the
amount of the pore water (saturation), on the neighbouring
geological conditions, and the climate. As these parameters
change in time, the physical properties may gradually change
as well. In consequence of the interaction of soil surface and
environs, the deformations of the ground surface may appear
in the course of time. As the structure or building foundations
are (mechanically) affected by great mass of soil material,
even a relatively small change of the soil properties can have
a considerable impact.

One of the processes leading to the considerable changes
of the soil layers properties is the frost heave. It occurs
in the cold regions of the Earth where the soil with the
specific range of soil grain sizes and the sufficient amount
of the pore water can be found. The frost heave causes
upward displacement of the top ground layer when the
ground temperature decreases below the freezing point of
water. The principal cause of the frost heave was ascribed
to the formation of ice lenses by Taber in 1929 ([1]). The
ice formation takes place at the freezing front due to the
discontinuity in heat flux or a short distance above the
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front due to the regelation mechanism. Referring to the
dependence on one of the forming mechanisms, the terms
primary and secondary heaving, respectively, are used. The
ice lens growth is caused by a suction of water from below
to the lens basal surface, where it freezes.

The secondary heaving mechanism is more important in
general, as it heaves larger loads, and was described by
Miller in 1978 ([2]). After that, some prediction models of
frost heave rate and ice lensing have followed considering
the thermomechanical processes at the microscopic level
and aiming at fundamental understanding of the phenomena
(e.g., Gilpin 1980, [3], O’Neil and Miller 1985, [4], Fowler
1989, [5]). An opposite (macroscopic) approach to the frost
heave modeling can be found in the constitutive models
using the definition of frost susceptibility as the property of
soil and focusing on quantitative and qualitative prediction
of frost heave (e.g., Michalowski 1993, [6], Michalowski
and Zhu 2005, [7]). Some models describing partial aspects
related to the frost heave mechanism have been separately
developed as well. For example, the model for coupled water
flow and heat transport ([8]), the model for solidification
of porous material under natural convection ([9]), or the
models concerning fluid flow in porous media (e.g. [11], [10],
[12]). Only lately, the first more comprehensive models based
on thermodynamics and coupling more physical quantities
have been presented. They include the soil freezing model
by Mikkola and Hartikainen (1997 [13], 2001 [14]), which
incorporates some parameters without physical meaning, the
basic modeling framework for freezing soil by Li et al. (2002
[15], 2008 [16]), and the poroelastic modeling framework of
freezing materials by Coussy (2005 [17]), which was further
generalized by Aichi and Tokunaga (2012 [18]). It can be
noticed that the so far developed soil freezing models mostly
do not consider the inverse process of soil thawing and that
the respective computational studies are usually oriented to
the freezing scenario only.

Currently, many regions of the globe face the observable
climate change. It includes shifts in seasonal temperatures,
costal erosion, increased storm effects, sea ice retreat, and
permafrost thawing. In cold regions, especially in those areas
where permafrost currently or in the future may be subjected
to excessive thawing, serious risks of changes in mechanical
behaviour of upper soil layers arise. The climate change
introduces uncertainty and variability into the design of
future infrastructures and into the operation and maintenance
of infrastructures already placed there. Thus, it is desirable
to improve knowledge of the effect of permafrost thawing on
foundations, roads, and runways or the effect of the thermal
profile of structures and the adjacent land use on soil freeze-
thaw cycling.

In an effort to contribute to better understanding of the
impacts of climate change on mechanical behaviour of soil
surface, a two-dimensional thermomechanical model of a
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soil layer profile is introduced in this paper. The model
is based on continuum approach. It considers the heat and
momentum balance relations and adopts an empirical linking
term. Thus, it allows to obtain the computational studies
of the subsurface thawing and freezing layers. The model
is supposed to be the first step towards the design of a
comprehensive soil freezing and thawing model which would
be as computationally undemanding as possible and, at the
same time, still sufficiently accurate.

II. M ATHEMATICAL MODEL

The proposed model serves for the description of a two-
dimensional soil profile and, in contrast to, e.g., [13], [16],
[17], views soil as an elementary continuum material. The
soil material is assumed to be continuously and uniformly
spread out over the occupied space and is characterized
at each point of the space by the temperature and by the
displacement vector.

To express the heat transport in the studied soil, the
modified heat equation for the soil temperatureu = u(t, x)
(in ◦C), which describes the phase change in a neighborhood
of the freezing point depressionu⋆ (temperature at which
pore water freezes and which is slightly lower than the
freezing point of pure water),u⋆ < 0, is considered. The
equation has the form

C
∂

∂t
u+ L

∂

∂t
θ(u) = λ∆u , (1)

whereC, L, λ are the volumetric heat capacity, the volumet-
ric latent heat of freezing of water, and thermal conductivity,
respectively. Using approach taken from [19], the volumetric
unfrozen water content is described by the power functionθ,

θ(u) = ηφ(u) , φ(u) =







1 : u ≥ u⋆

∣

∣

∣

u⋆

u

∣

∣

∣

b

: u < u⋆
,

whereη is the soil porosity of melt-state soil,φ represents
the liquid pore water fraction, andb is a positive constant
related to the material characteristic of the soil.

When interested in the deformation effects of the freezing
and thawing on saturated soil, the momentum conservation
is considered. With regard to the fact that the deformation is
caused by the inner stress change in the material induced by
the water-ice phase transition of the water fraction, a stress
switch function can be used to couple the temperature and the
displacement vector. Motivated by the empirical knowledge
that freezing water in a fixed volume increases abruptly the
inner stress, the function can be written in the form of the
step function

ξ(u) = χϑ(u⋆ − u) , (2)

whereχ is internal stress rate expressing the jump in stress
during the cooling the material belowu⋆ and whereϑ
denotes the Heaviside step function. Then, the appropriate
scaling of χ can incorporate the stress increase resulting
from the water density change during the water-ice transition
and the average effect of the lens formation as well. Thus,
assuming the stress change induced by (2), the Navier
equations for the displacement vector(v, w) are as follows

̺
∂2

∂t2

[

v

w

]

+∇ · Γ = 0 , (3)

where̺ is the soil density,Γ stands for










E
(ν − 1) ∂

∂x
v − ν ∂

∂y
w

(1 + ν)(1 − 2ν)
+ ξ ,

−E

2(1 + ν)

(

∂
∂y

v + ∂
∂x

w
)

−E

2(1 + ν)

(

∂
∂y

v + ∂
∂x

w
)

, E
−ν ∂

∂x
v + (ν − 1) ∂

∂y
w

(1 + ν)(1 − 2ν)
+ ξ











,

E is Young’s modulus, andν is Poisson’s ratio.
The model governed by (1) and (3) and supplemented

by the suitable boundary and initial conditions serves as
a simple phase and structure change model. This model
can be solved numerically. Corresponding computational
studies are presented in Section V. They provide a qualitative
information on the soil freezing and thawing processes in a
vertical 2D cut.

III. A NALYSIS

The model (1), (3) can become subject of mathematical
interest as well. In particular, energy equation (1) controlling
the phase change process is discussed in detail here.

Let Ω be the rectangular domain]0, x1[×]z1, 0[ and Q

denote]0, T [×Ω for someT > 0. The problem given by
equation (1) is considered as follows

C
∂

∂t
u(t, x) + L

∂

∂t
θ(u(t, x)) = λ∆u(t, x) , (t, x) ∈ Q ,

whereC, L, and λ are, for simplicity, constants. Further,
the equation is supplemented by the initial temperature
distribution

u(0, x) = u0(x) , x ∈ Ω̄ , (4)

and by the homogeneous Dirichlet boundary conditions

u(t, x) = 0 , x ∈ ∂Ω , t ∈]0, T [ . (5)

Considering the model settings, it is possible to find an
analogy between this problem and the Stefan problem ([20],
[21], [22]).

A. Enthalpy formulation

For the purpose of the mathematical analysis, it is pro-
ceeded to an enthalpy formulation of equation (1)

∂

∂t
H(u) = λ∆u , (6)

which can be obtained by the substitution

H(u) =

∫ u

umin

C dξ + Lθ(u)

on the left-hand side (umin is a constant value). Note thatH
is continuous and its first derivative is continuous everywhere
except foru⋆. The valueu⋆ becomes a singularity in equation
(1) or (6).

B. Variational formulation

Equation (6) is multiplied by a test functionv from
C2(Q) ∩ C1(Q̄) vanishing for allx ∈ ∂Ω, t ∈ [0, T ] and
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u★ 0

H(u)

Fig. 1. Illustration of the functionH.

for all x ∈ Ω̄, t = T and integrated overQ. Using the Green
formula, it can be gradually treated:

0 =

∫

Q

(

∂

∂t
H(u)v − λ∆uv

)

dxdt ,

0 =

∫

Q

(

∂

∂t
H(u)v + λ∇u∇v

)

dxdt− λ

∫ T

0

∫

∂Ω

∇u~nv dsdt ,

0 =

[∫

Ω

H(u)v dx
]T

0

−

∫

Q

(

H(u)
∂

∂t
v − λ∇u∇v

)

dxdt ,

0 =

∫

Q

(

H(u)
∂

∂t
v − λ∇u∇v

)

dxdt

+

∫

Ω

H(u0(x))v(0, x) dx . (7)

It is now possible to define the weak solution.

Definition III.1. The weak solution of problem (6) with (4)
and (5) is the functionu ∈ H1(Q) which satisfies relation
(5) in the sense of traces and (7) for all test functionsv ∈
C2(Q) ∩ C1(Q̄), v = 0 for ∀x ∈ ∂Ω, t ∈ [0, T ] and for
∀x ∈ Ω̄, t = T .

Remark III.1. It is obvious that each classical solution of
problem (6) with (4), (5) is the weak solution.

C. Uniqueness of solution

Theorem III.1. The weak solution of the problem (6) with
(4), (5) is unique.

Proof: Let there exist two different solutionsu1 and
u2 of the problem. Inserting them into equation (7) and
subtracting these equations, it follows

∫

Q

(

[H(u1)−H(u2)]
∂

∂t
v

−λ [∇u1 −∇u2]∇v

)

dxdt = 0 .

The Green formula yields
∫

Q

(

[H(u1)−H(u2)]
∂

∂t
v + λ [u1 − u2] ∆v

)

dxdt = 0 .

The equation is further rewritten as
∫

Q

(

[H(u1)−H(u2)]×

×

[

∂

∂t
v + λ

u1 − u2

H(u1)−H(u2)
∆v

])

dxdt = 0 .

u★ 0

Hk(u)

2ε

Fig. 2. Illustration of the functionHk.

Now, the following lemma, which is referred to in [23] (and
which can be verified for this case), can be used.

Lemma III.1.
∫

Q

[H(u1)−H(u2)]φdxdt = 0

holds for all φ ∈ C∞(Q) with suppφ ⊂ Q.

Thus, considering the fact that a set of such functionsφ is
dense inL2(Q), it can be concluded thatH(u1) = H(u2)
almost everywhere onQ and, sinceH is monotone, also that
u1 = u2.

Remark III.2. Remark III.1 implies that the classical solu-
tion is unique as well.

IV. EXISTENCE OF SOLUTION

Since the functionH has convenient properties for the
purpose of analysis except the behavior at the pointu⋆, the
existence of a solution is investigated by regularization. The
sequence of problems with mollified functionsHk, whose
first derivative is continuous everywhere and whose limit
is the functionH , is constructed. The regularized functions
can be gradually constructed by substitution of the original
functionH on some interval for a part of a smooth function
when, simultaneously, the length of superseded interval tends
to zero as the sequence index increases. For specific choice
of functionsHk sequence, it can be referred to, e.g., [24].

Thus, the following sequence of problems is considered

∂

∂t
Hk(u) = λ∆u ,

u(0) = u0 ,

u|∂Ω = 0 ,

wherek ∈ N andHk → H ask → ∞. The solution of the
problem withHk is denoted asuk; the limit of {uk}n∈N

will be studied. Next, the existence of their solutions is
investigated.

A. Galerkin method

The solution existence of an arbitrary (k is now fixed)
smoothed problem can be shown by means of the Galerkin
approximation. LetVn, n ∈ N, be the finite dimensional
subspace ofL2(Q) generated by the firstn (normed) eigen-
vectors,v1, . . . , vn, of the Laplace operator onΩ coupled
with the homogeneous Dirichlet boundary conditions, and let
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(., .) denote the scalar product onL2(Ω). The solutionuk
n

from [0, T [ to Vn of an auxiliary problem is sought using the
variational formulation in the space,

0 =

(

∂

∂t
Hk(u

k
n), v

)

+λ
(

∇uk
n,∇v

)

, ∀v ∈ Vn ,

uk
n(0) =Pnu0 ,

(8)

wherePn : L2(Q) → Vn is the projection operator.
1) System of ODE’s:The solution of (8) is expressed as

the linear combination of the basis functions ofVn

uk
n(t) =

n
∑

i=1

aki (t)vi ,

whereaki , i ∈ {1, . . . , n}, are the unknown time-dependent
coefficients. Equation (8) is tested byvj , j ∈ {1, . . . , n} to
obtain a system of differential equations for the coefficients
beta. Then for arbitraryj, it follows

0 =

(

∂

∂t
Hk(u

k
n), vj

)

+λ
(

∇uk
n,∇vj

)

,

0 =
n
∑

i=1

∂

∂t
aki

(

H ′

k(u
k
n)vi, vj

)

− λ

n
∑

i=1

βia
k
i (vi, vj) ,

0 =

n
∑

i=1

∂

∂t
aki

(

H ′

k(u
k
n)vi, vj

)

− λβja
k
j , (9)

where βi are the corresponding eigenvalues of the oper-
ator. Denotingak = (ak1 , . . . , a

k
n), time derivative ofak

by ȧk, Λ = diag{β1, . . . , βn}, and M
k
ij = M

k
ij(a

k) =
(

H ′

k(u
k
n)vi, vj

)

, the required system of (9), wherej ∈
{1, . . . , n}, can be written as

M
k(ak)ȧk − λΛak = 0 . (10)

System (10) is a system of ODE’s. For arbitraryh ∈ R
n −

{0}, it is observed that

hMkh =

n
∑

i,j=1

M
k
ijhihj =

n
∑

i,j=1

(H ′

kvi, vj)hihj

=



H ′

k

n
∑

i=1

hivi,

n
∑

j=1

hjvj



 = (H ′

kϕ, ϕ)

≥ c0‖ϕ‖
2
L2(Ω) > 0 ,

which implies thatMk is positive-definite for allak. There-
fore, there always exists the inverse matrix toMk. Then,
(10) can be converted into the normal system, and the usual
existence theory of ODE’s can be applied.

2) A priori estimates:Estimates for investigation of the
convergence of{uk

n}n∈N will be derived. Equation (8) is
tested by ∂

∂t
uk
n, which implies that

0 =

(

H ′

k(u
k
n)

∂

∂t
uk
n,

∂

∂t
uk
n

)

+ λ

(

∇uk
n,∇

∂

∂t
uk
n

)

,

0 =

(

H ′

k(u
k
n)

∂

∂t
uk
n,

∂

∂t
uk
n

)

+
1

2
λ
d

dt

∥

∥∇uk
n

∥

∥

2

L2(Ω)
,

0 ≥ c0

∥

∥

∥

∥

∂

∂t
uk
n

∥

∥

∥

∥

2

L2(Ω)

+
1

2
λ
d

dt

∥

∥∇uk
n

∥

∥

2

L2(Ω)
, (11)

0 ≥
d

dt

∥

∥∇uk
n

∥

∥

2

L2(Ω)
.

The last inequality is integrated over[0, τ ], τ ≤ T ; it follows
∥

∥∇uk
n(τ)

∥

∥

2

L2(Ω)
≤

∥

∥∇uk
n(0)

∥

∥

2

L2(Ω)

= ‖∇Pnu0‖
2
L2(Ω) ≤ ‖∇u0‖

2
L2(Ω)

≤ |Ω|c1(u0) , (12)

where the constantc1 depends on the initial functionu0 and
|Ω| denotes the Lebesgue measure of the domainΩ. The
Poincaré inequality is used to obtain the lower bound. Then,
together, it yields

1

c2(Ω)

∥

∥uk
n(τ)

∥

∥

2

L2(Ω)
≤

∥

∥∇uk
n(τ)

∥

∥

2

L2(Ω)
≤ |Ω|c1(u0) ,

(13)
where c2 is the Poincaré constant. Further, from (11), it
follows

c0

∥

∥

∥

∥

∂

∂t
uk
n(τ)

∥

∥

∥

∥

2

L2(Q)

+
λ

2

∥

∥∇uk
n(T )

∥

∥

2

L2(Ω)

−
λ

2

∥

∥∇uk
n(0)

∥

∥

2

L2(Ω)
≤ 0

and then

c′0

∥

∥

∥

∥

∂

∂t
uk
n(τ)

∥

∥

∥

∥

2

L2(Q)

≤
∥

∥∇uk
n(0)

∥

∥

2

L2(Ω)

≤ ‖∇u0‖
2
L2(Ω) ≤ |Ω|c1(u0) . (14)

Finally, relations (12), (13), and (14) yield

∥

∥uk
n

∥

∥

2

H1(Q)
≤

∥

∥uk
n

∥

∥

2

L2(Q)
+

∥

∥

∥

∥

∂

∂t
uk
n

∥

∥

∥

∥

2

L2(Q)

+
∥

∥∇uk
n

∥

∥

2

L2(Q)

≤ |Ω|c1T

(

c2 +
1

c′0T
+ 1

)

= c3 , (15)

wherec3 = c3(C, λ,u0, Q). Therefore, the following remark
holds

Remark IV.1. Inequality (15) means that sequence
{

uk
n

}

n∈N
is uniformly bounded inH1(Q)-norm indepen-

dently ofn and k.

3) Passage to limit:Remark (IV.1) implies that there ex-
ists a subsequence of

{

uk
n

}

n∈N
which is weakly converging

in H1(Q). The subsequence is identified with
{

uk
n

}

n∈N
. Its

limit with respect ton is denoted byuk. From the Rellich-
Kodrachov theorem, it follows thatH1(Q) is compactly
embedded inL2(Q); therefore, it can be seen thatuk

n → uk

in L2(Q). It remains to examine the convergence of the non-
linear termsHk(u

k
n).

To do this, it will be verified that the functionsHk are
Lipschitz continuous. Considering functionsw and ŵ from
L2(Q) and k fixed, auxiliary functiong is defined almost
everywhere onQ as a mapping from[0, 1] into the interval
with marginsHk(w) andHk(ŵ) in the following way

g(κ) = Hk(κw + (1 − κ)ŵ) .

Using the mean value theorem and the boundedness of the
derivative ofHk (achieved by the particular form ofHk), it
can be seen that

|Hk(w) −Hk(ŵ)| = |g(1)− g(0)| = |g′(µ)|

= |H ′

k||w − ŵ| ≤ c4|w − ŵ| (16)
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almost everywhere onQ. An arbitraryw as above is assumed.
Then, inequality (16) yields

∣

∣

∣

(

Hk(u
k
n)−Hk(u

k), w
)

L2(Q)

∣

∣

∣

=

∣

∣

∣

∣

∫

Q

[

Hk(u
k
n)−Hk(u

k)
]

wdxdt

∣

∣

∣

∣

≤

∫

Q

∣

∣Hk(u
k
n)−Hk(u

k)
∣

∣ |w|dxdt

≤ c4

∫

Q

∣

∣uk
n − uk

∣

∣ |w|dxdt

≤ c4
∥

∥uk
n − uk

∥

∥

L2(Q)
‖w‖L2(Q) . (17)

Sinceuk
n → uk, (17) implies thatHk(u

k
n) ⇀ Hk(u

k) as
n → ∞.

Now, using the variational formulation of problem (8)

0 =

∫

Q

(

Hk(u
k
n)

∂

∂t
v − λ∇uk

n∇v

)

dxdt

+

∫

Ω

Hk(Pnu0(x))v(0, x) dx ,

it is possible to pass to the weak limit with respect ton and
to get

0 =

∫

Q

(

Hk(u
k)

∂

∂t
v − λ∇uk∇v

)

dxdt

+

∫

Ω

Hk(u0(x))v(0, x) dx .

Then,uk becomes the weak solution of auxiliary problem
(8).

B. Convergence of the auxiliary solutions

Remark IV.1 implies that
∥

∥uk
∥

∥

2

H1(Q)
≤ c3 .

Therefore, there exists a weakly converging subsequence of
{

uk
}

n∈N
in H1(Q). Identifying it with

{

uk
}

n∈N
, the term

(

Hk(u
k)−H(u), w

)

L2(Q)

=
(

Hk(u
k)−Hk(u) +Hk(u)−H(u), w

)

L2(Q)

tends to zero ask → ∞ becauseHk(u
k) −Hk(u) ⇀ 0 by

analogous process to (17) andHk → H by the construction
of {Hk}k∈N. Consequently, it is possible to pass to the weak
limit in the variational formulation of original problem (6)

0 =

∫

Q

(

Hk(u
k)

∂

∂t
v − λ∇uk∇v

)

dxdt

+

∫

Ω

Hk(u0(x))v(0, x) dx

to obtain weak equality (7)

0 =

∫

Q

(

H(u)
∂

∂t
v − λ∇u∇v

)

dxdt

+

∫

Ω

H(u0(x))v(0, x) dx .

Then, the limitu of the sequence of the auxiliary problem
solutionsuk satisfies Definition III.1.

Fig. 3. The initial conditions and the thermal boundary conditions.

Fig. 4. The initial conditions and the thermal boundary conditions.

Fig. 5. The initial conditions and the thermal boundary conditions.

V. COMPUTATIONAL STUDIES

Computational studies based on the model given by (1)
and (3) with heterogeneities in the thermal and mechanical
properties are presented in Figure 6, 7, and 8. To reduce
computational constraints, the modification of the model
within the meaning of employing the regularized functionsφ

andϑ with ε = 10−4 (see Figure 2) was applied. Considering
small temperature range use and thus small potential portion
(η = 0.3) of the ice fraction, all soil parameters were
assumed to be constant.

The simulation settings are illustrated in Figure 3, 4,
and 5, where inner rectangles denote the distribution of the
property heterogeneities; the side and bottom boundaries are
fixed. Different letters in the figures denote the materials
of different properties, and these property differences are
distinguished by adding the index to the property symbol.
The values of the used parameters have rather testing than
practical meaning. The scale is in meters. Figure 6 gives
the qualitative comparison of the strain evolution during
freezing of the soil sample with three heterogeneities. As
the freezing front passes the heterogeneities, the various rate
of strain response is observed depending on the type of
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TABLE I
PARAMETERS OF THE MODEL(RELATED TO FIGURE 3)

Parameter Symbol Value Unit

freezing point depression u⋆
−0.1 ◦C

initial temperature u0 −0.05 ◦C

internal stress rate χ 5·107 1

Poisson’s ratio ν, νr 0.33 1

Poisson’s ratio νb, νp 8.25·10−2 1

soil density ̺, ̺r 1.5·103 kg ·m−3

soil parameter b 0.5 1

thermal conductivity λ, λb 2 W ·(m·K)−1

thermal conductivity λp, λr 0.1 W ·(m·K)−1

vol. heat capacity C,Cb 5·106 J ·(m3
·K)−1

vol. heat capacity Cp, Cr 2.5·107 J ·(m3
·K)−1

vol. latent heat of water L 3.33·108 J ·m−3

Young’s modulus E,Er 2·108 Pa

Young’s modulus Eb, Ep 5·107 Pa

TABLE II
PARAMETERS OF THE MODEL(RELATED TO FIGURE 4)

Parameter Symbol Value Unit

freezing point depression u⋆
−0.05 ◦C

initial temperature u0 −0.02 ◦C

internal stress rate χ 7.5·107 1

Poisson’s ratio ν 0.33 1

Poisson’s ratio νr 0.165 1

soil density ̺, ̺r 1.75·103 kg ·m−3

soil parameter b 0.4 1

thermal conductivity λ 3 W ·(m·K)−1

thermal conductivity λr 0.225 W ·(m·K)−1

vol. heat capacity C 4·106 J ·(m3
·K)−1

vol. heat capacity Cr 1.6·107 J ·(m3
·K)−1

vol. latent heat of water L 3.33·108 J ·m−3

Young’s modulus E 1.8·108 Pa

Young’s modulus Er 4.5·107 Pa

heterogeneity below the observed location. On the left-hand
part of the sample, a slight negative rate is even observed
owing to the long relaxation time for temperature of the
heterogeneity and no difference in Young’s modulus of the
left-hand heterogeneity and of the surrounding material.

The parameters, the initial and boundary conditions of this
model are given by Table I and Figure 3.

A simulation of the development of soil freezing and
thawing deformation effects is shown in Figure 7. The figure
covers one period of a heat exchange and demonstrates the
elastic property of soil in relation to the reverse thermal
processes. The setting is similar to the previous simulation
and is illustrated in Figure 4 and given by Table II.

Figure 8 represents the progress of the gradual soil freez-
ing with its deformation effect, where the initial and thermal
boundary conditions are illustrated in Figure 5. The values
of the parameters used for the shown simulation are written
in Table III.

VI. CONCLUSION

The presented model includes a basic heat and force
balance and was designed for the purpose of the prelimi-
nary study of structural changes in saturated soils caused
by the phase transition of the water content due to the

Fig. 6. Strain response rate comparison.
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Fig. 7. Soil freezing and thawing deformation effects. Fig. 8. Soil freezing deformation effects.
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TABLE III
PARAMETERS OF THE MODEL(RELATED TO FIGURE 5)

Parameter Symbol Value Unit

freezing point depression u⋆
−0.1 ◦C

initial temperature u0 −0.05 ◦C

internal stress rate χ 5·107 1

Poisson’s ratio ν 0.33 1

Poisson’s ratio νb, νp 0.2475 1

Poisson’s ratio νg, νr, νy 0.165 1

soil density ̺, ̺b, ̺r 1.5·103 kg ·m−3

soil density ̺p, ̺y 1.8·103 kg ·m−3

soil density ̺g 2.25·103 kg ·m−3

soil parameter b 0.5 1

thermal conductivity λ, λg 2 W ·(m·K)−1

thermal conductivity λb, λr 0.1 W ·(m·K)−1

thermal conductivity λp, λy 4 W ·(m·K)−1

vol. heat capacity C,Cp, Cy 5·106 J ·(m3
·K)−1

vol. heat capacity Cb, Cr 2.5·107 J ·(m3
·K)−1

vol. heat capacity Cg 2.5·106 J ·(m3
·K)−1

vol. latent heat of water L 3.33·108 J ·m−3

Young’s modulus E 2·108 Pa

Young’s modulus Eb, Ep 2.5·108 Pa

Young’s modulus Eg, Er, Ey 5·107 Pa

alternations of climate conditions. The thermal part of the
model allowing for the phase change of the water fraction
was mathematically analyzed providing the information on
the weak solution existence.

Although the model is based on the continuum approach
and built on simplified relations, the produced simulations
reflect adequately the common empirical knowledge of the
soil freezing and thawing process and the related mechanical
manifestations. Further development will involve an appli-
cation of more sophisticated and more descriptive relations
taking laws of thermodynamics and balances of dynamic
quantities into consideration. For example, the heat capacity
and thermal conductivity should be also considered to be
depended on the phase change.
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