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Abstract—With the aid of the known Darboux transforma-
tion, starting from an arbitrary constant solution, a series of
explicit two-soliton and three-soliton solutions to the Korteweg-
de Vries (KdV) equation are constructed.

Index Terms—KdV equation, two-soliton solution, three-
soliton solution, Darboux transformation.

I. INTRODUCTION

AS a prototype example for the exactly integrable non-
linear equations, we consider the KdV equation

ut + 6uux + uxxx = 0, (1)

which plays an outstanding role in physical problems, for ex-
ample, stratified internal waves, ion-acoustic waves, plasma
physics, lattice dynamics and so on [1]. We know that the
most remarkable property of exactly integrable equations is
the presence of exact solitonic solutions, and the existence
of one-soliton solution is not itself a specific property of
integrable partial differential equations, many non-integrable
equations also possess simple localized solutions that may
be called one-solitonic. However, there are integrable equa-
tions only, which posses exact multi-soliton solutions which
describe purely elastic interactions between individual soli-
tons [2], and the KdV equation is one of these integrable
equations.

Although the inverse scattering method [3], the Bäcklund
transformation method [4,5,6] and the Hirota method [7]
pave the way to generation of multi-soliton solutions to
the nonlinear evolution equation, the explicit multi-soliton
solution cannot be obtained by pure intuition or by ele-
mentary calculations because of itself complications [8,9].
The known multi-wave solutions to the KdV equation are
scarce [10,11,12,13,14,15], it has been known for a long time
that equation (1) possesses explicit multi-soliton solutions
described in [1].

II. EXPLICIT TWO-SOLITON SOLUTIONS

As mentioned in [16], the Lax pair for equation (1) is
given by





Φx =

(
0 1

λ− u 0

)
Φ,

Φt =

(
ux −(4λ + 2u)

A −ux

)
Φ,

(2)
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where A = −(4λ + 2u)(λ − u) + uxx, with the Darboux
matrix

D(x, t, λ) =

( −σi 1

λ− λi + σ2
i −σi

)
, (3)

where i = 0, 1, 2, λ, λi are the spectral parameters, in partic-
ular, when Φi(x, tλ) = (a(i)

jk (x, t, λ))2×2 is the fundamental
solution matrix to the lax pair on ui, σi is defined as

σi =
a
(i)
21 (x, t, λi)µi + a

(i)
22 (x, t, λi)γi

a
(i)
11 (x, t, λi)µi + a

(i)
12 (x, t, λi)γi

, (4)

here, µi and γi are arbitrary constants, but µ2
i + γ2

i 6= 0.
A theorem borrowed from [16] points out, if ui is a given
solution to equation (1), then

ui+1 = 2λi − ui − 2σ2
i (5)

becomes new solution based on ui.
The starting point for constructing two-soliton solution

is to solve the fundamental solution matrix of the lax pair
on constant solution u0. Substituting u0 into the system (2)
yields





Φx =

(
0 1

λ− u0 0

)
Φ,

Φt = −(4λ + 2u0)

(
0 1

λ− u0 0

)
Φ.

(6)

By the eigenvalue method, we obtain the fundamental solu-
tion matrix to the system (6)

Φ0(x, t, λ) =

(
eη e−η

ω eη −ω e−η

)
, (7)

where η = η(λ) = ω [x − (4λ + 2u0)t], ω = ω(λ) =√
λ− u0, λ > u0.
For simplicity, we set ωi =

√
λi − u0, ηi = η(λi), θi =

ηi + ci, where ci is an arbitrary constant, and i = 0, 1, 2.
From (4), we get

σ0 = ω0
eη0µ0 − e−η0γ0

eη0µ0 + e−η0γ0
. (8)

Choosing µ0 = ec0 , γ0 = e−c0 in (8), we have

σ0t = ω0 tanh θ0, (9)

then substituting (9) into (5), we obtain the solitary wave
solution

u11 = u0 + 2ω2
0sech2θ0.

Similarly, choosing µ0 = ec0 , γ0 = −e−c0 in (8), we have

σ0c = ω0 coth θ0, (10)
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which further leads to

u12 = u0 − 2ω2
0csch2θ0.

Now we construct the two-soliton solutions generated from
u1. For convenience, we first give the new solution which is
expressed in terms of σ0 rather than u1, then substitute (9)
and (10) into the relative solution, respectively. According to
[16], we can obtain the fundamental solution matrix to the
lax pair associated with the known solitary wave solution u1

in the following manner

Φ1(x, t, λ) =

( −σ0 1

λ− λ0 + σ2
0 −σ0

)
Φ0(x, t, λ)

=

(
(−σ0 + ω)eη −(σ0 + ω)e−η

Beη De−η

)
, (11)

where B = λ − λ0 + σ2
0 − σ0ω, D = λ − λ0 + σ2

0 + σ0ω.
From (4) and (11), we have

σ1 =
(λ1 − λ0 + σ2

0)− σ0ω1
eη1µ1−e−η1γ1
eη1µ1+e−η1γ1

−σ0 + ω1
eη1µ1−e−η1γ1
eη1µ1+e−η1γ1

. (12)

By analogy with µ0, γ0 in (8), there are two special cases
to consider in (12).

1) Choosing µ1 = ec1 , γ1 = e−c1 in (12), we get

σ1t =
(λ1 − λ0 + σ2

0)− σ0ω1 tanh θ1

−σ0 + ω1 tanh θ1
, (13)

combining (5) and (13), we see that

u2 = u0 +
2(λ1 − λ0)(ω2

0 − σ2
0 − ω2

1sech2θ1)
(σ0 − ω1 tanh θ1)2

. (14)

Substituting (9) and (10) into (14), respectively, we obtain
explicit two-soliton solutions

u21 = u0 +
2(λ1 − λ0)(ω2

0sech2θ0 − ω2
1sech2θ1)

(ω0 tanh θ0 − ω1 tanh θ1)2
(15)

and

u22 = u0 − 2(λ1 − λ0)(ω2
0csch2θ0 + ω2

1sech2θ1)
(ω0 coth θ0 − ω1 tanh θ1)2

, (16)

respectively.
2) Choosing µ1 = ec1 , γ1 = −e−c1 in (12), in a totally

parallel way, we obtain

σ1c =
(λ1 − λ0 + σ2

0)− σ0ω1 coth θ1

−σ0 + ω1 coth θ1
, (17)

which together with (5) gives

u23 = u0 +
2(λ1 − λ0)(ω2

0sech2θ0 + ω2
1csch2θ1)

(ω0 tanh θ0 − ω1 coth θ1)2

and

u24 = u0 − 2(λ1 − λ0)(ω2
0csch2θ0 − ω2

1csch2θ1)
(ω0 coth θ0 − ω1 coth θ1)2

.

we notice that u23 is just a given solution in [1], when u0 =
0.

III. EXPLICIT THREE-SOLITON SOLUTIONS

As shown in [16], the fundamental solution matrix
Φ2(x, t, λ) to the lax pair associated with u2 is given by

Φ2(x, t, λ) =
( −σ1 1

λ− λ1 + σ2
1 −σ1

)
Φ1(x, t, λ)

=

(
Peη Qe−η

Reη Se−η

)
, (18)

where P = λ− λ0 + (σ0 + σ1)(σ0 − ω),
Q = λ− λ0 + (σ0 + σ1)(σ0 + ω),
R = (λ− λ1 + σ2

1)(−σ0 + ω) + σ1(−λ + λ0 − σ2
0 + σ0ω),

S = (λ− λ1 + σ2
1)(−σ0 − ω) + σ1(−λ + λ0 − σ2

0 − σ0ω).
From (4) and (18), we further see that

σ2 = −σ0(λ− λ1 + σ2
1) + σ1(λ− λ0 + σ2

0)
λ− λ0 + (σ0 + σ1)(σ0 − ω)K

∣∣∣∣
λ=λ2

+
ω(λ− λ1 + σ2

1 + σ1σ0)K
λ− λ0 + (σ0 + σ1)(σ0 − ω)K

|λ=λ2 , (19)

with K = (eηµ2−e−ηγ2)
(eηµ2+e−ηγ2)

. Because

u3 = 2λ2 − u2 − 2σ2
2

= u0 + 2(λ0 − u0 − σ2
0) + 2[(λ2 − λ1 + σ2

1)− σ2
2 ], (20)

we first give u3 which depends upon σ0 and σ1 in order to
avoid tedious calculation, then consider the expressions for
σ0 and σ1 in the relative solution.

For the special cases of σ2 in (19), we have two groups
of three-soliton solutions for equation (1).

1) Choosing µ2 = ec2 , γ2 = e−c2 in (19), we obtain

σ2t = − (λ2 − λ1)(σ0 − ω2 tanh θ2)
λ2 − λ0 + (σ0 + σ1)(σ0 − ω2 tanh θ2)

+
σ1[λ2 − λ0 + (σ0 + σ1)(σ0 − ω2 tanh θ2)]

λ2 − λ0 + (σ0 + σ1)(σ0 − ω2 tanh θ2)
. (21)

Substituting (21) into (20) yields

u3 = u0 + 2(λ0 − u0 − σ2
0)

+
2(λ2 − λ1)(λ1 − λ0 + σ2

0 − σ2
1)(σ0 − ω2 tanh θ2)2

[λ2 − λ0 + (σ0 + σ1)(σ0 − ω2 tanh θ2)]2

+
2(λ2 − λ1)(λ2 − λ0)(σ2

0 − ω2
0 + ω2

2sech2θ2)
[λ2 − λ0 + (σ0 + σ1)(σ0 − ω2 tanh θ2)]2

. (22)

Seeing that the structure of the three-soliton solution is
overlong, we set ω21 = ω2

2−ω2
1 , ω20 = ω2

2−ω2
0 , ω10 = ω2

1−
ω2

0 , Ti = ωi tanh θi and Ci = ωi coth θi, where i = 0, 1, 2 .
Substituting (9) and (13), (10) and (13) into (22), respec-

tively, we get

u31 = u0 + 2ω2
0sech2θ0

+
2ω21ω10(ω2

0sech2θ0 − ω2
1sech2θ1)(T0 − T2)2

[ω20(T1 − T0) + ω10(T0 − T2)]2

+
2ω21ω20(ω2

2sech2θ2 − ω2
0sech2θ0)(T1 − T0)2

[ω20(T1 − T0) + ω10(T0 − T2)]2

and

u32 = u0 − 2ω2
0csch2θ0

−2ω21ω10(ω2
0csch2θ0 + ω2

1sech2θ1)(C0 − T2)2

[ω20(T1 − C0) + ω10(C0 − T2)]2

+
2ω21ω20(ω2

2sech2θ2 + ω2
0csch2θ0)(T1 − C0)2

[ω20(T1 − C0) + ω10(C0 − T2)]2
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respectively. Similarly, substituting (9) and (17), (10) and
(17) into (22), respectively, we have

u33 = u0 + 2ω2
0sech2θ0

+
2ω21ω10(ω2

0sech2θ0 + ω2
1csch2θ1)(T0 − T2)2

[ω20(C1 − T0) + ω10(T0 − T2)]2

+
2ω21ω20(ω2

2sech2θ2 − ω2
0sech2θ0)(C1 − T0)2

[ω20(C1 − T0) + ω10(T0 − T2)]2

and

u34 = u0 − 2ω2
0csch2θ0

−2ω21ω10(ω2
0csch2θ0 − ω2

1csch2θ1)(C0 − T2)2

[ω20(C1 − C0) + ω10(C0 − T2)]2

+
2ω21ω20(ω2

2sech2θ2 + ω2
0csch2θ0)(C1 − C0)2

[ω20(C1 − C0) + ω10(C0 − T2)]2
.

2) Choosing µ2 = ec2 , γ2 = −e−c2 in (19), in a similar
manner, we obtain

u35 = u0 + 2ω2
0sech2θ0

+
2ω21ω10(ω2

0sech2θ0 − ω2
1sech2θ1)(T0 − C2)2

[ω20(T1 − T0) + ω10(T0 − C2)]2

−2ω21ω20(ω2
2csch2θ2 + ω2

0sech2θ0)(T1 − T0)2

[ω20(T1 − T0) + ω10(T0 − C2)]2
,

u36 = u0 − 2ω2
0csch2θ0

−2ω21ω10(ω2
0csch2θ0 + ω2

1sech2θ1)(C0 − C2)2

[ω20(T1 − C0) + ω10(C0 − C2)]2

−2ω21ω20(ω2
2csch2θ2 − ω2

0csch2θ0)(T1 − C0)2

[ω20(T1 − C0) + ω10(C0 − C2)]2
,

u37 = u0 + 2ω2
0sech2θ0

+
2ω21ω10(ω2

0sech2θ0 + ω2
1csch2θ1)(T0 − C2)2

[ω20(C1 − T0) + ω10(T0 − C2)]2

−2ω21ω20(ω2
2csch2θ2 + ω2

0sech2θ0)(C1 − T0)2

[ω20(C1 − T0) + ω10(T0 − C2)]2
,

and

u38 = u0 − 2ω2
0csch2θ0

−2ω21ω10(ω2
0csch2θ0 − ω2

1csch2θ1)(C0 − C2)2

[ω20(C1 − C0) + ω10(C0 − C2)]2

−2ω21ω20(ω2
2csch2θ2 − ω2

0csch2θ0)(C1 − C0)2

[ω20(C1 − C0) + ω10(C0 − C2)]2
.

IV. CONCLUSION

As a soliton equation which is widely used in various
fields, the soliton solutions to the KdV equation have been in-
vestigated extensively in the papers and literatures, however,
most of the multi-soliton solutions have been obtained in
numerical form, and its explicit exact three-soliton solutions
are very few, the main reason is that the calculation is too
tedious to obtain succinct expression, rather than the lack
of methods. Overcoming the difficulties of calculations by
some techniques, we finally construct some new explicit two-
soliton and three-soliton solutions for the KdV equation.
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