
 

 

 

Abstract— The efficiency of several preconditioned 
Conjugate Gradient (PCG) schemes for solving of large sparse 
linear systems arising from application of interior point methods 
to nonlinear Finite Element Limit Analysis (FELA) is studied. 
Direct solvers fail to solve these linear systems in large sizes, such 
as large 2D and 3D problems, due to their high storage and 
computational cost. This motivates using iterative methods. 
However, iterative solvers are not efficient for difficult problems 
without preconditioning techniques. In this paper, the effect of 
various preconditioning techniques on the convergence behavior 
of the preconditioned Conjugate Gradient (PCG) is investigated 
through a detailed comparative study. Furthermore, numerical 
results of applying PCG to several sample systems are presented 
and discussed thoroughly in a parametric study. Our results 
suggest that while incomplete Cholesky preconditioners are by 
far the most efficient techniques for sequential computations, 
significant gains may result from use of sparse approximate 
inverse methods in parallel environment in this field. 
 

Index Terms— incomplete Cholesky factorization, 
approximate inverse preconditioner, limit analysis, 
preconditioned conjugate gradient method, cone programming 

I. INTRODUCTION 

The application of second order cone programming (SOCP) 
to solving optimization problems arising in Geomechanics has 
recently been of growing interest and significant advances 
have been made in this field. Some of the most important 
applications include traditionally difficult problems in 
plasticity [24], finite element limit analysis [26] and most 
recently granular contact dynamics [25]. In this paper, we 
focus on the case of finite element limit analysis (FELA). 
Upon formulating the original problem as SOCP, it can be 
solved by primal-dual interior point method (IPM). An 
efficient IPM algorithm for conic quadratic optimization was 
proposed by Anderson et al [2]. However, in each step of this 
method, a symmetric positive definite (SPD) linear system of 
equation needs to be solved. Due to their robustness and 
accuracy, the direct solvers have been traditionally used for 
this task [2], [38].  
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However, for large 3D problems direct solvers require 

prohibitively high storage and computational efforts. 
Therefore, the use of iterative solvers becomes imperative. But 
highly ill-conditioning of the linear systems arising in IPM 
iterations for our application leads to extremely slow 
convergence and lack of accuracy for iterative solvers. This 
motivates using appropriate preconditioners to enhance the 
efficiency of the iterative solution schemes.  

In this study, we use preconditioned Conjugate Gradient 
method (PCG) with various preconditioning techniques and 
make a comparison of their effects on the robustness of PCG 
method. A comparison with another similar preconditioned 
iterative approach is given in [27]. The preconditioning 
methods we studied fall into two major groups of 
preconditioners. 

The first group consists of the incomplete factorization 
schemes. These are actually different variants of the 
incomplete LU factorization which have been extensively 
studied and proved to be efficient for ill-conditioned systems. 
A recent study of such preconditioners with some 
modifications can be found in [32]. Since the systems we are 
addressing in our application involve symmetric positive 
definite (SPD) coefficient matrices, we employed incomplete 
Cholesky (IC) factorization techniques which are particularly 
designed for SPD systems [4], [15] and [34]. For a fairly 
recent survey see [4] and references therein.   

The other class of preconditioning techniques we studied is 
sparse approximate inverse preconditioners. These techniques 
have been vigorously studied and developed during the last 
decade [4], [7]. They are of particular interest when parallel 
implementation of the solution schemes is considered [12].   

The remaining structure of the paper is as follows: in 
section 2, the SOCP as well as its application to finite element 
limit analysis is briefly introduced and the linear systems 
arising in this context are reviewed. In section 3, PCG method 
with various preconditioners from two mentioned classes of 
preconditioning techniques is briefly discussed. Then, 
numerical results of applying the PCG method to some 
samples systems arising in our specific application are 
presented and discussed in section 4. Finally, conclusions and 
future work are given in section5. 

II. FINITE ELEMENT LIMIT ANALYSIS AS SOCP PROBLEM 

Conic programming in the field of plasticity is concerned 
with the following standard form of problems: 
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in which constant and variable loads are given by 
0

p  and p , 

respectively. denotes the load multiplier and TB is the 
discrete equilibrium operator. Also, σ  is the vector of the 
stresses and   denotes an admissible stress space.  

Krabbenhoft et al. [26] proposed a practical form of SOCP 
for limit analysis by casting the Mohr-Coulomb criterion 
under  plane strain conditions as quadratic cone. The resulting 
optimization problem then reads: 
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where q  is the following quadratic cone 
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with   and c  denoting the friction angle and cohesion, 

respectively.  
The problems of the form (2) can be efficiently solved using 

primal-dual interior point method for conic quadratic 
optimization proposed by Anderson et al [2]. In each step of 
this method, after some computationally cheap calculations, in 
order to update the current solution approximate, a Newton 
search direction vector is calculated by a system of linear 
equations of the general form 

                                  
                                 Au b ,                                     (4) 

 
in which A  is a large sparse and symmetric positive definite 
(SPD) matrix, needs to be solved in order to find the search 
direction. These systems have been traditionally solved by 
performing a Cholesky factorization [2]. However, for 3D and 
large 2D problems the time and space complexity to build and 
store Cholesky factors are quite expensive. As a potential 
solution to this problem, use of iterative solver methods is 
considered. 

III. PRECONDITIONED CONJUGATE GRADIENT 

METHOD 

  As mentioned earlier, system (4) is problematic to solve by 
direct solvers for three dimensional and large two dimensional 

problems with millions of equation and unknowns involved. 
This necessitates exploiting efficient iterative schemes. Since 
the system is SPD, one of the most efficient iterative solvers is 
the famous Conjugate Gradient (CG) method [34]. In terms of 
convergence, it is well known that the number of iterations of 
the CG method to satisfy a certain stopping criterion is 

proportional to  , in which   is called the condition 

number of the coefficient matrix and max

min




  where 

max and min are the largest and smallest eigenvalues in 

magnitude of the coefficient matrix, respectively [34]. As a 
result, CG shows poor convergence behaviour for solving ill-
conditioned linear systems. This is the case with the linear 
systems encountered in our application. Therefore, it seems 
logical to develop methods in order to enhance the efficiency 
of iterative solution schemes by improving the condition of the 
linear system. These improving methods are called 
preconditioning techniques. We are exploring two major 
classes of preconditioning techniques and their effect on the 
convergence behaviour of preconditioned CG (PCG) solver. 
Before discussing these techniques, let us present the PCG 
algorithm here for ease of reference.  

 
Algorithm 1 – PCG Linear Solver 
Initialize: 

1. 0Let  be an arbitrary initial guessx  

2. 0 0 r Ax b  

3. 1
0 0

z M r  

4. 0 0p z  

5.  For  0,1,2,...,j MaxIter  

6. 
T

j j
j T

j j

 
r z

p Ap
 

7. 1j j j j  x x p  

8. 1   j j j j  r r Ap  

9. If the stopping criterion is met, exit the loop. 

10. 1
1 1j j


 z M r  

11. 1 1
T

j j
j T

j j

  
r z

z r
 

12. 1 1    j j j j  p z p  

13. End For 
 

The calculation involved once in step 3 and then in every 
CG iteration in step 10 of the above algorithm is known as 
preconditioning operation. Matrix M  is called the 
preconditioner and is actually an sparse approximate of the 
coefficient matrix A . In the remaining of this section we 
focus on different methods of forming the preconditioner .M  
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A. INCOMPLETE CHOLESKY FACTORIZATION 

Since system (4) is SPD, one of the most efficient iterative 
solvers is PCG method preconditioned with incomplete 
Cholesky (IC) factorization techniques [4], [15] and [34].  IC 
factorization is done by the same procedure as the complete 
form. The only difference is that some of the fill-ins in the 
course of the factorization process are discarded. This leads to 
sparse factors which approximate exact Cholesky factors. 
Discarding new fill-ins is controlled by employing a dropping 
rule. In this way, a number of incomplete Cholesky 
factorization preconditioners can be constructed such as drop 
tolerance-based IC, IC with fixed fill-in and double threshold 
IC.  

Drop tolerance-based incomplete Cholesky factorization 
One way to control the amount of fill-in allowed in the 

factorization process is to accept or discard new entries with 
regards to their absolute values. For this purpose, a drop 
tolerance 0  , which is a positive real number, is used and 

fill-ins in step 
thk can be controlled in the following manner: 

 
( ) ( ) ( ) ( )

( )

is kept

is dropped

k k k k

ij ij i j

k

ij

a a d d

a otherwise





,        (5) 

 

in which ( )k

id and  ( )k

jd are the 
thi and thj diagonal elements 

of the matrix in step 
thk , respectively. This class of 

incomplete factorization methods are studied widely and 
shown to be very reliable preconditioners provided the 
suitable drop tolerance is chosen [4], [10], [31], [34]. 
 

Incomplete Cholesky factorization with fixed fill-in 
Incomplete factorization with fixed fill-in was first 

introduced by Jones and Plassmann [19]. In their proposed 
algorithm, the fill-in is controlled by keeping a limited number 
of elements which have the largest absolute values in each row 
of the Cholesky factor. They set this fixed number of fill-ins 
for each row to be the number of nonzero elements in the 
same row of the triangular part of the original matrix. A 
similar strategy was used by Lin and More [28]. However, in 
their method, they let a fixed number of additional elements to 
be accepted in each row of the Cholesky factor. Again, the 
acceptance of fill-ins is based on their absolute value. By 
denoting this fixed number by  , this preconditioner is known 

as FFIC(  ) . Note that in the special case  = 0, the Jones 

and Plassmann’s preconditioner [19] is obtained. 

Double threshold incomplete Cholesky factorization 
The idea of using two different levels of dropping in the 

process of incomplete factorization is first proposed by Saad 
[33]. He designed a so called ILUT( ,  )  preconditioner 

with two thresholds  , which is a drop tolerance and  , 

which is in fact the maximum number of nonzero elements 
allowed in each row of the incomplete factors. This 
preconditioner was shown to be quite powerful for difficult 

problems [4], [33]. The same strategy can be employed for 
incomplete Cholesky factorization of SPD matrices to produce 
so-called ICT( ,  ) preconditioner.   

Robust Incomplete Cholesky Factorization  
IC has been proved to exist for M-matrices [31] and also H-

matrices with positive diagonals [30]. However, it can fail for 
general SPD matrices due to pivot breakdowns; that is, 
occurring a zero or negative pivot during the factorization 
process. There are several remedies for this problem. 

One way is to apply a global shift to the diagonal of the 
matrix before starting the factorization. In this method which 
was proposed by Manteuffel [30], the original matrix A is 
replaced by 

A D ,                                        (6) 
 

where D  is the diagonal of A  and    is known as diagonal 
shifting parameter. Applying this diagonal shifting strategy 
with an appropriate shift parameter   to the diagonally scaled 

form the coefficient matrix which is 1/ 2 1/2 D AD  can be quite 
efficient and leads to very powerful preconditioners [28], [35], 
and [36]. However, the process of choosing  is based on trial 
and error. 

Another strategy to achieve a stable factorization without 
any pivot breakdowns for general SPD matrices is to design a 
modified incomplete factorization without modifying the 
original matrix. The most famous and widely used strategy in 
this category is the robust incomplete factorization presented 
by Ajiz and Jennings [1]. Their method, which is abbreviated 
as AJRIC( ), is in fact a modified form of drop tolerance-
based IC factorization. It proceeds by adding the absolute 
value of each dropped element (or a factor of it [17]) to both 
corresponding diagonal elements of the matrix. This strategy 
leads to a breakdown-free IC factorization. Similar strategies 
can be found in [37]. 

 

B. SPARSE APPROXIMATE INVERSE 

Sparse approximate inverse preconditioners have been 
widely developed and investigated during the recent years. In 
contrast to incomplete factorization approach, these 
preconditioners, in fact, approximate the inverse of the 
coefficient matrix. Hence, their main advantage is that the 
implementation of the preconditioner within the iterative 
solution scheme requires only matrix-vector products and as a 
result the preconditioning operation can be effectively 
parallelized. In addition, they have been shown to be robust 
since they never suffer from pivot breakdowns such as those 
happen in the process of incomplete factorization [4].  

Generally, the inverse of a sparse matrix is usually a dense 
matrix. However, in most cases, it has been shown that a lot of 
elements in the inverse matrix are very small in absolute 
value. As a result, it is possible to approximate the inverse 
matrix with a sparse matrix. Sparse approximate inverses are 
classified into two groups based on whether the preconditioner 
is presented in the form of a single matrix or a product of two 
or more matrices [4].  
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Minimizing the Frobenius norm of the error matrix 
These preconditioners which are first proposed by Benson 

[3] try to find sparse matrix M  as the solution of the 
following problem 

min
FM

I AM  ,                           (7) 

in which   is a set of sparse matrices and .
F

 denotes the 

Frobenius norm of a matrix. With the knowledge that 
2 2

2 2
1

n

k k
k 

  I AM e Am ,       (8) 

in which ke shows the thk  column of the identity matrix and 

km is the thk  column of M . Finding M  for the problem 

(9) can be fulfilled by solving n  independent linear least-
square problems. Note that these problems need to be solved 
with respect to sparsity conditions imposed by . Letting 
 be a fixed sparsity pattern leads to some popular sparse 
approximate inverses such as so called SPAI preconditioner 
proposed by Grote and Huckle [16]. As matrix M  obtained 
from (9) is not necessarily SPD even for SPD matrix A , 
SPAI preconditioner cannot be used for preconditioned 
Conjugate Gradient solver. 
 

Kolotilina and Yeremin [22] proposed a factored 
approximate inverse preconditioner known as FSAI. Similar to 
SPAI, FSAI is also based on the minimization of the 
Frobenius norm. However, in order to obtain a SPD 
preconditioner, FSAI computes a sparse lower triangular 
matrix F  which is in fact an approximation of the inverse of 

the Cholesky Factor of A , i.e. 1F L . Then, the 

preconditioner is set to be TM = F F . The only issue is again 
choosing an appropriate sparsity pattern in advance. There 
have been several studies devoted to this matter in references 
[11], [18]. The FSAI preconditioner is robust for general SPD 
matrices and have shown to be efficient for ill-conditioned 
problems [5], [14], [21] and [22].  

 
Incomplete biconjugation process 

Another approach which is originally proposed for 
nonsymmetric matrices by Benzi and Tuma [8] is to factorize 
the inverse of a matrix incompletely using a two way Gram-

Schmidt process applied to A  and TA  at the same time. This 
process is known as A -biorthogonalization. The 
preconditioner obtained in this way is called AINV  and is of 
the form  

1 1T M = S D R A ,                    (9) 
 

where 
1( , ..., )ndiag d dD  is a diagonal matrix where 

, (1 )j j jd j n  
A

s s  and 
1[ , ..., ]nS S S  and 

1[ , ..., ]nR R R  are unit diagonal upper triangular 

matrices. In addition, a dropping rule is applied after each 
update the columns of S  and R . Note that in the SPD case, 
S R  and as the pivots are nonzero, the preconditioner 

does not encounter any breakdowns for general SPD 

matrices, hence its name SAINV for stabilized AINV [5], 
[20]. 
In the next section, we present the numerical results of 

applying the preconditioners discussed in this section to PCG 
method in an attempt to solve sample systems of the form (4) 
arising from solving problem (2) by primal-dual interior point 
method.  

IV. NUMERICAL RESULTS 

In this section numerical results of applying PCG method 
preconditioned with different preconditioners are presented 
and discussed. As discussed earlier, we have implemented 
several preconditioners from two main classes of 
preconditioning techniques. Among the incomplete Cholesky 
(IC) factorization variants, our experiments involve IC with 
fixed fill-in (FFIC), Ajiz-Jennings’ Robust IC (AJRIC) and IC 
with double threshold (ICDT). In addition, factorized 
approximate inverse (FSAI) and stabilized approximate 
inverse (SAINV) have been implemented from the variants of 
approximate inverse preconditioners. 

The algorithms are coded and compiled using Intel Fortran 
Compiler XE 12.1 in the Visual Studio 2010 environment. 
Finally, the computations are all carried out on a desktop 
computer with 2.8 GHz quad-core processor and 4.0 GB of 
RAM operating under 64-bit Windows 7. 
 
Sample Systems  

The set of eight sample systems use in this study are all 
arising in the course of IPM method applied to finite element 
limit analysis for Geotechnical problems. A summary of the 
features of the sample coefficient matrices, including the 
dimension of the matrix (size), the number of nonzero 
elements of the matrix (NNZ), the minimum and maximum 
eigenvalues in magnitude (Min Eig and Max Eig ) and the 
condition number of the matrix (CN) (calculated by dividing 
the maximum eigenvalue by the minimum one) are presented 
in Table I. 

 
TABLE I 

PROPERTIES OF SAMPLE MATRICES 

Sample 
Matrix 

Size NNZ Min 
Eig 

Max  
Eig 

CN 

C_Small 45,473 3,161,485 2.8E-3 9.1E5 3.2E8 
C_Mid 231,170 3,290,336 3.4E-4 3.2E6 9.4E9 
C_Large 452,402 6,109,998 2.6E-5 6.4E6 2.5E11 
C_Xlarge 1,530,902 21,786,298 1.8E-5 1.6E7 8.9E11 
T_Small 26,365 1,794,413 1.3E-4 4.3E5 3.3E9 
T_Mid 207,153 14,461,305 2.8E-6 9.7E7 3.5E13 
T_Large 402,958 28,281,869 1.8E-6 4.5E6 2.5E12 

T_Xlarge 893,239 79,549,743 1.5E-6 7.2E7 4.8E13 

 
As seen from the Table I, all three sample matrices are very 

ill-conditioned due to very poor scaling of the entries of the 
matrices. This suggests a weak performance of the iterative 
solvers without any preconditioning.  

 
Pre-processing of Sample Systems 

In order to improve our preconditioning techniques some 
changes have been made to the coefficient matrix in all or 
some of the samples before performing the preconditioning 
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process. These modifications are a result of extensive 
numerical experiments performed on similar systems [23]. 
First of all, for all preconditioners and systems, the coefficient 
matrices were diagonally scaled as in (8). According to large 
amount of literature this scaling can improve the 
preconditioning procedure, mostly in terms of speed of the 
preconditioner construction and also the efficiency of the 
resulting preconditioner (see [4] and references therein). 

Secondly, some reordering has been applied to the 
coefficient matrices before building the preconditioning 
matrix. For IC preconditioners, the coefficient matrices were 
pre-ordered using reverse Cuthill-McKee (RCM) [13]. This is 
because RCM has shown the best effect among all ordering 
schemes with regards to both computational cost and 
robustness of the incomplete Cholesky factorization 
preconditioners [4], [6]. For Sparse approximate inverse 
methods, on the other hand, we used Multiple Minimum 
Degree (MMD) [29]. This ordering scheme has proven to have 
promising effects on improving the computational cost of 
constructing approximate inverse preconditioners as well as 
the degree of parallelism of the resulting preconditioner [4, 5, 
9].  

Finally, in some of the samples when applying 
preconditioners FFIC and ICDT, the factorization process 
encountered a pivot breakdown. This is because these 
preconditioners are not essentially robust, i.e. breakdown-free, 
for general SPD matrices. In such cases, the preconditioner 
construction phase was re-performed on the diagonally shifted 
version of the coefficient matrix as in (7). Note that in these 
cases a fixed and probably not optimal value of 0.2 was used, 
which prevented the factorization from breakdown in all such 
cases.  

 
PCG Convergence Results 

The implemented preconditioners are all implemented in the 
PCG method as in Algorithm 1. Moreover, the following 
stopping criterion is utilized for all PCG method runs: 
 

( )k k
   
  r b Ax ,               (15) 

 
in which 


b , 

k 
r and 

k 
x are the infinity norm of the 

right hand side vector, the current residual and solution 
vectors, respectively. Also, 


A denotes the infinity norm of 

the coefficient matrix, which is in fact the maximum of the 
row sums of the matrix. In the following reported results the 

value of stop tolerance  is set to 1210 . The maximum 
number of CG iterations allowed is also set to be equal to the 
dimension of the corresponding coefficient matrix in each 
case.  

Before proceeding with our numerical experiments, some 
pre-processing procedures were performed on some or all of 
our sample systems in order to improve the efficiency of the 
preconditioning techniques. These procedures which will be 
discussed next include ordering, scaling and diagonal shifting. 

In this sub-section, the results from applying the previously 
mentioned iterative solvers are presented. In each case, 
different parameters for the preconditioners have been tested 

and results are given and compared. In addition, in all 
following tables, some common notations are used as follows: 
PCN: condition number of the preconditioned matrix; 
P-Time: CPU time (in seconds) spent on building the 
preconditioner; 
CG-Time: CPU time (in seconds) spent on CG process until a 
stopping criterion is met;  
CG-Iter: the number of iterations performed by CG algorithm 
until convergence; 
Total time: Total time of the algorithm including P-Time and 
CG-Time. 

Incomplete Cholesky factorization with fixed fill-in 
(FFIC(  )) 

Table II shows the convergence behavior of the PCG method 
preconditioned with FFIC(  ) for different values of  . In all 

cases, the algorithm failed due to pivot breakdown. A global 
diagonal shifting strategy, therefore, has been employed.  

 
TABLE II 

CONVERGENCE RESULTS OF PCG WITH FFIC PRECONDITIONER 

Matrix   PCN 
P-Time CG 

Time 
CG  
Iter 

Total 
Time 

C_Small 0 7.6E3 4.12 10.08 560 14.20 
 10 7.7E3 4.75 12.41 564 17.16 
 50 7.4E3 5.51 14.93 553 20.44 
 100 7.0E3 6.98 17.22 538 24.20 
       
C_Mid 0 3.4E4 16.32 22.22 1186 38.54 
 10 3.3E4 16.78 26.74 1168 43.52 
 50 3.3E4 17.68 32.82 1168 50.50 
 100 2.8E4 19.35 35.84 1076 55.19 
       
C_Large 0 5.8E4 45.69 53.89 1549 99.58 

10 5.9E4 46.12 66.46 1563 112.58 
 50 5.6E4 47.85 79.42 1522 127.27 
 100 5.2E4 49.27 90.73 1467 140.00 
       
C_Xlarge 0 8.3E4 83.42 229.85 1853 313.27 
 10 8.5E4 85.68 284.41 1876 370.09 
 50 8.4E4 92.48 347.00 1865 439.48 
 100 7.9E4 101.62 398.69 1808 500.31 
       
T_Small 0 8.2E3 5.29 5.95 582 11.24 
 10 8.4E3 6.01 7.35 589 13.36 
 50 7.6E3 4.12 10.08 560 14.20 
 100 7.7E3 4.75 12.41 564 17.16 
       
T_Mid 0 7.4E3 5.51 14.93 553 20.44 
 10 7.0E3 6.98 17.22 538 24.20 
 50 3.4E4 16.32 22.22 1186 38.54 
 100 3.3E4 16.78 26.74 1168 43.52 
       
T_Large 0 3.3E4 17.68 32.82 1168 50.50 
 10 2.8E4 19.35 35.84 1076 55.19 
 50 5.8E4 45.69 53.89 1549 99.58 
 100 5.9E4 46.12 66.46 1563 112.58 
       
T_Xlarge 0 5.6E4 47.85 79.42 1522 127.27 
 10 5.2E4 49.27 90.73 1467 140.00 
 50 8.3E4 83.42 229.85 1853 313.27 
 100 8.5E4 85.68 284.41 1876 370.09 

 
According to Table II, in some samples additional fill-ins 

lead to fewer number of CG iterations. This can be interpreted 
as the result of improvement in the condition number of the 
coefficient matrix. On the other hand, by allowing more fill-
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ins, the preconditioner becomes less sparse and consequently 
the time of even fewer number of CG iterations grows. With 
regards to total time taken for both preconditioning and 
solving process, allowing no fill-ins seems to be the best 
option in most cases.  

Ajiz-Jennings’ robust incomplete Cholesky factorization 
(AJRIC( ) ) 

This is one of the most popular versions of incomplete 
Cholesky factorization which is widely used in different 
engineering applications [4]. As mentioned in the previous 
section, it is a breakdown-free version of the incomplete 
Cholesky factorization with drop tolerance for general SPD 
matrices. The convergence analysis of the PCG method 
preconditioned with AJRIC( ) for different values of the drop 
tolerance   applied to our three sample matrices are given in 
Tables III.  

TABLE III 
CONVERGENCE RESULTS OF PCG WITH AJRIC PRECONDITIONER 

Matrix   PCN 
P-Time CG 

Time 
CG 
Iter 

Total 
Time 

C_Small 1.0E-2 6.8E3 4.83 9.54 530 14.37 
 1.0E-3 6.5E3 5.12 11.40 518 16.43 
 1.0E-4 6.7E3 8.63 14.20 526 22.83 
 1.0E-5 6.5E3 10.49 16.58 518 27.07 
       
C_Mid 1.0E-2 3.1E4 15.76 21.21 1132 36.97 
 1.0E-3 2.9E4 17.48 25.07 1095 42.55 
 1.0E-4 3.2E4 20.22 32.34 1151 52.56 
 1.0E-5 2.8E4 22.30 35.84 1076 58.14 
       
C_Large 1.0E-2 5.3E4 43.16 51.52 1481 94.68 
 1.0E-3 5.2E4 47.94 62.37 1467 110.31 
 1.0E-4 5.3E4 48.59 77.28 1481 125.87 
 1.0E-5 5.1E4 52.13 89.86 1453 141.99 
       
C_Xlarge 1.0E-2 7.9E4 84.64 224.27 1808 308.91 
 1.0E-3 8.0E4 89.05 275.92 1820 364.97 
 1.0E-4 8.0E4 97.67 338.63 1820 436.30 
 1.0E-5 7.8E4 112.19 396.27 1797 508.46 
       
T_Small 1.0E-2 7.8E3 4.01 5.80 568 9.81 
 1.0E-3 7.8E3 5.12 7.09 568 12.21 
 1.0E-4 7.9E3 7.86 8.75 571 16.61 
 1.0E-5 7.9E3 9.24 10.37 571 19.61 
       
T_Mid 1.0E-2 7.1E5 24.61 446.43 5422 471.04 
 1.0E-3 6.9E5 27.04 537.88 5345 564.92 
 1.0E-4 7.1E5 32.10 669.64 5422 701.74 
 1.0E-5 7.0E5 36.19 787.93 5383 824.12 
       
T_Large 1.0E-2 6.3E5 45.17 822.35 5107 867.52 
 1.0E-3 6.3E5 48.01 1005.09 5107 1053.10 
 1.0E-4 6.2E5 55.26 1223.62 5066 1278.88 
 1.0E-5 6.3E5 64.50 1461.95 5107 1526.45 
       
T_Xlarge 1.0E-2 8.9E5 87.26 2749.22 6070 2836.48 
 1.0E-3 9.1E5 90.11 3397.80 6138 3487.91 
 1.0E-4 9.2E5 101.64 4193.12 6172 4294.76 
 1.0E-5 8.9E5 124.15 4887.48 6070 5011.63 

 
Table III shows that by choosing a smaller value for the drop 

tolerance, the expense of constructing the preconditioner 
increases since more fill-ins allowed in the incomplete factor. 
However, in most cases the number of iterations of CG 
method decreases for smaller drop tolerances, yet the 
preconditioner is less sparse and as a result the CG solver is 

more time consuming. Looking for a balance between these 
two features, one can suggest the values in the interval 
[1.0 2,1.0 3]e e  to be more appropriate in our application. 

Furthermore, a comparison between Tables II and III reveals 
that the AJRIC preconditioner is generally more efficient than 
FFIC for our sample problems. 

Incomplete Cholesky factorization with double threshold 
(ICDT( ,  )) 

In Tables IV, the convergence behavior of the PCG method 
preconditioned with ICDT( ,  ) is given for different values 

of   and   applied to our sample matrices. Here the test 

values for the fill-in parameter   and the drop tolerance   

have been selected from the most effective ones according to 
Tables III and IV, respectively. Note that the choice of  =0 

the preconditioner will be identical to FFIC(0), hence skipped 
in Table IV. Again, the factorization breakdowns were 
encountered, so a global diagonal shifting strategy has been 
utilized. 

TABLE IV 
CONVERGENCE RESULTS OF PCG WITH ICDT PRECONDITIONER 

Matrix 

 

  PCN 
P-

Time 
CG 
Time 

CG 
Iter 

Total 
Time 

C_Small 10 1E-2 7.3E3 4.0 9.8 549 14.9 
 1E-3 7.2E3 4.2 12.0 546 17.3 
 50 1E-2 7.0E3 6.9 14.5 538 21.4 
 1E-3 7.1E3 8.2 17.3 542 26.6 
        
C_Mid 10 1E-2 3.1E4 13.0 21.2 1132 36.7 
 1E-3 3.0E4 14.8 25.5 1114 42.3 
 50 1E-2 3.3E4 15.0 32.8 1168 49.8 
 1E-3 3.1E4 18.4 37.7 1132 57.2 
        
C_Large 10 1E-2 5.6E4 40.6 52.9 1522 98.6 

1E-3 5.5E4 43.2 64.1 1509 111.4 
 50 1E-2 5.3E4 45.1 77.2 1481 126.4 
 1E-3 5.3E4 46.8 91.5 1481 143.4 
        
C_Xlarge 10 1E-2 8.3E4 77.6 229.8 1853 314.5 
 1E-3 8.1E4 83.4 277.5 1831 363.0 
 50 1E-2 8.2E4 85.9 342.7 1842 432.6 
 1E-3 8.2E4 89.3 406.2 1842 497.5 
        
T_Small 10 1E-2 8.3E3 3.5 5.9 586 12.5 
 1E-3 8.1E3 4.6 7.2 579 13.8 
 50 1E-2 8.1E3 6.0 8.8 579 16.9 
 1E-3 8.0E3 7.3 10.4 575 19.8 
        
T_Mid 10 1E-2 7.1E5 20.1 446.4 5422 472.5 
 1E-3 7.0E5 23.4 541.7 5383 569.2 
 50 1E-2 7.2E5 26.6 674.3 5460 704.0 
 1E-3 7.0E5 27.7 787.9 5383 818.6 
        
T_Large 10 1E-2 6.5E5 41.8 835.3 5188 888.2 
 1E-3 6.3E5 43.1 1005.0 5107 1058.2 
 50 1E-2 6.3E5 55.3 1233.5 5107 1293.8 
 1E-3 6.0E5 58.1 1426.7 4984 1488.8 
        
T_Xlarge 10 1E-2 9.1E5 82.2 2780.0 6138 2875.2 
 1E-3 8.9E5 85.4 3360.1 6070 3457.5 
 50 1E-2 9.2E5 96.0 4193.1 6172 4299.1 
 1E-3 9.0E5 108. 4914.8 6104 5025.6 

 
It appears that the computation time taken by CG to solve 

the preconditioned system is far more dependent on the 
number of fixed fill-ins rather than on the drop tolerance since 
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the fixed fill-in parameter determines the density of the 
preconditioner. The same comment can be given on the 
storage requirements of the preconditioner. However, in most 
cases, the drop tolerance has an obvious effect on 
improvement of the number of iterations of the CG method. 
According to these observations, the drop tolerance can be 
interpreted as a parameter responsible for the accuracy of the 
solution and the fixed fill-in number as a parameter to control 
the storage requirement and computational expense of the 
solver.  
 
Factorized sparse approximate inverse (FSAI) 

The results from applying PCG with FSAI preconditioner on 
our samples systems are presented in Table V. To build the 
preconditioner, a priori sparsity pattern needs be determined. 
In the reported results in Table V, two different sparsity 
patterns are considered. One is the same as the sparsity pattern 
of the coefficient matrix A  and the other one is identical to 

that of the squared coefficient matrix
2A . Extensive 

experiments suggest that considering higher powers of matrix 
A for this purpose is of no further improvement in the 
efficiency of the preconditioner since the cost of constructing 
the preconditioner grows significantly.    

 
TABLE V 

CONVERGENCE RESULTS OF PCG WITH FSAI PRECONDITIONER 

Matrix 
A 

PRIORI 
PCN 

P-Time CG 
Time 

CG 
Iter 

Total 
Time 

C_Small A 1.1E+4 5.24 9.76 723 15.00 
 A2 9.5E+3 9.32 13.61 672 22.93 
       
C_Mid A 8.6E+4 15.01 28.42 2023 43.43 
 A2 8.4E+4 24.72 42.13 1999 66.85 
       
C_Large A 9.9E+4 41.46 56.64 2171 98.10 
 A2 9.5E+4 58.59 83.20 2126 141.79 
       
C_Xlarge A 1.6E+5 82.43 256.76 2760 339.19 
 A2 1.2E+5 102.15 333.51 2390 435.66 
       
T_Small A 2.5E+4 6.01 8.35 1090 14.36 
 A2 2.1E+4 12.89 11.48 999 24.37 
       
T_Mid A 1.0E+6 20.30 426.09 6900 446.39 
 A2 9.8E+5 46.14 632.65 6830 678.79 
       
T_Large A 9.6E+5 51.15 816.39 6760 867.54 
 A2 

9.3E+5 
83.82 

1205.3 6654 
1289.2

0 
       
T_Xlarge A 2.3E+6 92.07 3554.5 10464 3646.5 
 A2 1.9E+6 145.41 4845.6 9510 4991.0 

 
The results from Table V suggest that for all of the sample 

systems, although use of the sparsity pattern of 
2A  leads to a 

better conditioned matrix and reduces the number of CG 
iteration, the cost of construction of the preconditioner and the 
solution time of the PCG algorithm is much higher than the 
case of employing the sparsity patter of A . Moreover, 
compared to other preconditioning techniques reported so far, 
the efficiency of FSAI preconditioner in terms of total solution 
time of the PCG algorithm is quite comparable to ICDT and in 
most cases slightly better than FFIC. However, it is still 
outperformed by AJRIC with quite a considerable margin.  

 
Stabilized approximate inverse (SAINV( )) 

Table VI presents the results of the employment of PCG 
method preconditioned with SANIV to solve the sample 
systems with two different values of drop tolerance . Smaller 
values of the drop tolerance make the preconditioner 
construction time prohibitively longer. Note that as all sample 
systems are SPD, the SANIV preconditioner is computed 
without any breakdowns. 

TABLE VI 
CONVERGENCE RESULTS OF PCG WITH SAINV PRECONDITIONER 

Matrix   PCN 
P-Time CG 

Time 
CG 
Iter 

Total 
Time 

C_Small 0.1 1.0E+4 5.31 9.18 680 14.49 
 0.01 9.6E+3 10.12 13.49 666 23.61 
       
C_Mid 0.1 8.5E+4 14.30 27.85 1982 42.15 
 0.01 8.4E+4 20.72 41.52 1970 62.24 
       
C_Large 0.1 9.7E+4 40.17 55.23 2117 95.40 

0.01 9.5E+4 56.39 81.99 2095 138.38 
       
C_Xlarge 0.1 1.7E+5 82.19 260.77 2803 342.96 
 0.01 1.4E+5 96.71 355.00 2544 451.71 
       
T_Small 0.1 2.5E+4 6.49 8.24 1075 14.73 
 0.01 2.2E+4 10.75 11.59 1008 22.34 
       
T_Mid 0.1 9.8E+5 21.62 415.65 6731 437.27 
 0.01 9.7E+5 39.79 620.33 6697 660.12 
       
T_Large 0.1 9.7E+5 50.83 808.78 6697 859.61 
 0.01 9.3E+5 78.36 1187.8 6557 1266.1 
       
T_Xlarge 0.1 2.1E+6 91.42 3347.3 9854 3438.7 
 0.01 1.8E+6 129.01 4648.4 9123 4777.4 

 
 
Table VI reveals that while the time of constructing SAINV 

preconditioner is comparable to that of FSAI, the total time of 
the PCG algorithm is slightly shorter in the former case. 
Furthermore, selecting a smaller drop tolerance seems to 
increase the preconditioning time even higher with generally 
no significant achievement in terms of the CG time.  

In addition, similar to FSAI, the SAINV preconditioner is 
also not as efficient as incomplete Cholesky variants at least in 
sequential computations. However, in parallel computations 
this comparison may lead to a totally different statement. 
Figure I compares the CPU time per PCG iteration with two 
major classes of preconditioners studied so far, i.e. incomplete 
Cholesky (IC-CG) and approximate inverse (AI-CG) 
techniques. As the purpose of such a comparison is to reveal 
the possible advantage of the approximate inverse 
preconditioners over incomplete Cholesky techniques in 
parallel environment, only the best performance results of 
each class of preconditioners for each problem are included in 
Figure I.  

Figure I shows that the CG time per iteration is higher for 
CG preconditioned with incomplete Cholesky preconditioner. 
It is of no surprise as each iteration of an incomplete Cholesky 
preconditioned CG (IC-CG) includes one matrix-vector 
product and two triangular system solution while each 
iteration of an approximate inverse preconditioned CG (AI-
CG) involves three matrix vector products. 
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FIGURE I: TIME PER CG ITERATION WITH IC AND AI PRECONDITIONERS 

 
According to Figure I, even in sequential environment, a 

matrix-vector product is computationally cheaper than a 
triangular system solution. 

V. CONCLUSION AND FUTURE RESEARCH 

In this paper we make an extensive numerical study of the 
preconditioning techniques for large sparse linear systems 
arising in the course of the interior point method applied to 
optimization problems in finite element limit analysis. We 
included in our study to most widely used classes of 
preconditioners, the incomplete Cholesky (IC) techniques and 
the approximate inverse (AI) methods. The systems arising in 
the specified application are usually highly ill-conditioned. As 
direct solvers can handle these systems efficiently in smaller 
sizes, we focus our attention to large sparse systems where the 
use of direct solvers is not practical due to prohibitive 
computational and memory costs.  

Three variants of IC preconditioners and two variants of AI 
preconditioners which differ in the employed dropping rules 
were considered. In each case, a detailed parametric numerical 
study was conducted and the results were discussed and 
compared with other methods. The parametric study results 
can serve as a guide to choose the appropriate preconditioner 
with regards to the problem in hand and specific goals of the 
application. 

Overall, the IC variants seem to be more efficient than the 
AI techniques in terms of their effect on the conditioning of 
the system and as a result the speed of the convergence of the 
method. Among various IC preconditioners, the Ajiz-
Jennings’ robust incomplete Cholesky preconditioner (AJRIC) 
showed the best effect on the CG convergence, followed by 
the incomplete Cholesky preconditioner with double threshold 
(ICDT) and Incomplete Cholesky preconditioner with fixed 
fill-in (FFIC). Note that as for ICDT, the exact size of 
preconditioner is predictable in advance, in applications where 
this is desirable, ICDT could be an efficient choice. 

The performances of the two AI preconditioners are closely 
comparable with a slight advantage toward the SAINV 
preconditioner. Although both AI variants are less effective 
compared to IC techniques, they possess a significant 
advantage over IC variants. In fact, even in sequential 
computations, the each iteration of PCG preconditioned with 
AI techniques is computationally cheaper than one obtained 
from IC preconditioning. Indeed, in a parallel computational 

environment, the much more efficient parallelism 
characteristics of a matrix-vector product compared to a 
triangular system solution may compensate the more number 
of required CG iterations and, in total, outperform the 
incomplete Cholesky variants. This is an interesting direction 
for our future research.  
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