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Unbiased Simultaneous Prediction Limits on
Future Order Statistics with Applications

Nicholas A. Nechval, Member, IAENG, Konstantin N. Nechval

Often one desires to construct from the results of a
Abstract — Statistical prediction is the earliest and most previous sample an interval which will have a high
prevalent form of statistical inference. It is the provision of an  probability of containing the values of all df future

estimate, usually in the one-sided or two-3|ded.|nterval form, observations. For example, such an interval would be
for future observations based on the results obtained from past . . . -
required in establishing limits on the values of some

observations. In particular, the minimum, maximum, mean, . . .
median of a future sample or ranges of given number of Performance variable for a small shipment of equipment
samples could also be aims of prediction. Prediction has its useswhen the satisfactory performance of all units is to be
in a variety of disciplines such as medicine, engineering and guaranteed, or in setting acceptance limits on a specific lot
business. In this paper, we consider the problems of of material, when acceptance requires the values of all items
constructing unbiased simultaneous prediction limits on the 5 ,1yre sample to fall within the limits. An interval which

order statistics of all ofk future samples using the results of a tai th | f ified b ffut
previous sample from the same underlying distribution contains € values of a speciied number or future

belonging to invariant family. The prediction limits obtained in  Observations with a specified probability is known as a
the paper are generalizations of the usual prediction limits on prediction interval. Such an interval need be distinguished
observations or functions of observations of only one future both from a confidence interval on an unknown distribution

sample. Attention is restricted to invariant families of parameter, and from a tolerance interval to contain the
distributions. The technique used here emphasizes pivotal |5 e of 4 specified proportion of the population. Research
quantities relevant for obtaining ancillary statistics and is . . .

applicable whenever the statistical problem is invariant under a WOI’!(S. on prediction intervals related to a single future

group of transformations that acts transitively on the Statistic are abundant (see Hahn and Meeker [1], Patel [2],
parameter space. It does not require the construction of any and references therein).

tables and is applicable whether the data are complete or Type  In many situations of interest, it is desirable to construct
Il censored. Applications of the proposed procedures are given |ower simultaneous prediction limits that are exceeded with

for the two-parameter exponential and Weibull distributions. - . . .
The propose% technigue ig conceptually simple and easy to uselprobablhtyy by observations or functions of observations of

The exact prediction limits are found and illustrated using some &l OT k futu.re. samples, each consisting mf units. The
practical examples. prediction limits depend upon a previously available

complete or type Il censored sample from the same

Index Terms — Future samples of observations, order distribution. For instance, two situations where such limits
statistics, simultaneous prediction limits are required are:

1. A customer has placed an order for a product which has
an underlying time-to-failure distribution. The terms of his

ANY statistical applications involve the prediction ofpurchase call fok monthly shipments. From each shipment
future values of some random variables, based ome customer will select a random samplenofinits and
previously observed data. We consider here a geneegcept the shipment only if the smallest time to failure for
parametric framework in which prediction is based on this sample exceeds a specified lower limit. The
family of models specified up to unknown paramefgin  manufacturer wishes to use the results of a previous sample

general, vector). Statistical intervals used by engineers aofin units to calculate this limit so that the probabilityyis
others include confidence intervals on a populatiothat allk shipments will be accepted. It is assumed thahthe
parameter, such as the mean, and tolerance intervglast units and thkm future units are random samples from
Confidence intervals give information about parameter ofe same population. This situation is considered in [3].

the population or a function of population parameters such2, A system consists aif identical components whose

as a percentile; tolerance intervals give information abouttitnes to failure follow an underlying distribution. Initially
region which contains a specified proportion of a populatiomne component is operating and the remainimgl

components are in a standby mode; a new component goes
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various product maintenance and servicing problems. distributions.

Prediction limits can be of several forms. Hahn [4] dealt The technique used here emphasizes pivotal quantities
with simultaneous prediction limits on the standardelevant for obtaining ancillary statistics. It is a special case
deviations of all of thek future samples from a normal of the method of invariant embedding of sample statistics
population. Hahn [5] considered the problem of obtaininmpto a performance index [9-12] applicable whenever the
simultaneous prediction limits on the means of alt bfture statistical problem is invariant under a group of
samples from an exponential distribution. In addition, Hahimansformations which acts transitively on the parameter
and Nelson [6] discussed such limits and their applicationspace (i.e., in problems where there is a unique best
Mann, Schafer, and Singpurwalla [7] gave an interval thaivariant procedure). The exact unbiased simultaneous
contains, with probability; all m observations of a single prediction limits on order statistics of all kffuture samples
future sample from the same population. Fertig and Marate obtained via the technique of invariant embedding and
[8] constructed prediction intervals to contain at least k illustrated with some numerical examples.

+ 1 out ofm future observations from a normal distribution

with probability 4. They considered life-test data, and the Il MATHEMATICAL PRELIMINARIES

performance variate of interest is the failure time of an item. The main theorem, which shows how to construct lower
Their lower prediction limit constitutes a “warranty period”. (upper) simultaneous prediction limit for the order statistics

In this paper we give an expression for obtaining unbias@gl all of k future samples when prediction limit for a single
simultaneous prediction limits on order statistics of alk of future sample is available, is given below.
future samples. In order to obtain the unbiased simultaneousTheorem 1 (Lower (upper) simultaneous prediction limit
prediction limits, attention is restricted to invariant familiesinder complete information). Lety “future” observations

of distributions. In particular, the case is considered where & ,...)Y. ) represent thgth random sample from the cdf
previously available complete or type Il censored sample is :

from a continuous distribution with cumulative distribution” ¢ (-), whereg is the parameter (in general, vectgE{1,
function (cdf) F((x~)/0) and probability density function K} and €LY ¢, m, denote thejth order statistic in thith
(pdf) 1/of((x-£)/0), where F(0) is known but both the sample of sizem.. Assume that all ok samples from the

location ) and scaled) parameters are unknown. For suclsame cdf are independent. Then a lower simultaneeus (1
family of distributions the decision problem remaingprediction limith on therjth order statistic;, ) =1, ...,
invariant under a group of transformations (a subgroup gf of all ofk future samples may be obtained from
the full affine group) which takes (the location parameter)
lies in the range of;, ¢ > 0. This group acts transitively on P‘Q{Y(flyrm) P Yy 2 Y > h}
the parameter space and, consequently, the risk of any Y
equivariant estimator is a constant. Among the class of such
estimators there is therefore a “best’ one. The effect of 2T G (m) (m) (m
PIP IS B
reduce the class of all possible estimators to one. In the
present paper we investigate this question for the problem of
constructing the unbiased simultaneous prediction limits on PH{YGZ +1mg) >h}‘Pe{Y(izymz) >h}
order statistics in future samples. X my
where the time until the first failure in a group of several [ }
items in service provides a measure of assurance regardivitgre
the operation of the items. The simultaneous prediction ) k k
limits are required as specifications on future life for z =Z‘1'i r M= lmj' (2)
j= i=
a specified number of systems with standby units, and in(Observe that an uppeimultaneousa prediction limith
various other applications. Prediction limit is an importangay be obtained from a lower simultaneous prediction limit
sj[atlsncal tool in t.he. are.a.of quality control. The Iowe"Oy replacing ta by a.)
simultaneous prediction limits are often used as warranty pyqoqf.
samples are available, and the manufacturer wants to have a { }
. : % >h,..Y >h,...,Y >h
high assurance that all of thle future orders will be (n,m) (rj m;) (e, m)
accepted. It is assumed throughout that 1 samples are
obtained by taking random samples from the same
remains constant. The results in this paper are
generalizations of the usual prediction limits on observations Kl m. ' _
or functions of observations of only one future sample. In =M > ( ‘J[ Fo(h)] L - Fy(h))™ ™
the paper, attention is restricted to invariant families of J=1ii=o\ ']

=0 ;=0 =0 \ 1

=1-a, (1)

and o (the scale) int@y + b andcg, respectively, wherb
imposing the principle of invariance, in this case, is to
The results have direct application in reliability theory, i
z
components, as warranty limits for the future performance of j
criteria by manufacturers. The initial sample dnduture
k
. . = >
population. In other words, the manufacturing process upﬁ{Y(rj,mj) h}

[ey

i
]
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nl 1ol . .
L Z[ } [ }"{mla(h)l'zn—Fg(m]”t"? Pg{YmmS“’---’Y(mj,mnSh*---’Y<mk,mk>5h}

=0 ;=0 k=0
3) = PQ{Y < h} =1-a. (8)

Since (my,my)

[Fo(]'Z[L- Fp(h)]™ 2

S M i My —i

-1 Z( - J[Fﬁ(h)]l[l—Fg(h)] z

_(rnzj K I : K m;
R 5 i Pg{Ymv m; Sh}: [Fo(M)]™

i=0

< < <
Pg{v(%ml) <PV <Y ) S h}

— ms _
=[Fo™ =Y, ) <h): (9)
PH{Y 4 >h}_P5{Y_ >h}
- (z r1my) (z.my) , (4) This ends the proof!]
[mz} Theorem 2 (Lower (upper) unbiased simultaneous
s prediction limit under parametric uncertainty). L¥{ € ... <

X;) be ther smallest observations in a random sample of size
n from the cdfF, (), where thed is the parameter (in
} general, vector), and Iet(\(lj ,...,ij) be thejth random
(re,my)

the joint probability can be written as

P@{Y(r ) >h,...,Y(r_ m) > _ _
1M 1 sample ofmy “future” observations from the same cffi{ 1,
., k}. Assume that K+1) samples are independent and the
i rk_l[ ] [ ] [m(] parameterd is unknown. LetH=H(X;, ..., X,) be any
y

s |J_o i iy statistic based on the preliminary sample and Y%Ij,mj)

denote therjth order statistic in th¢th sample of sizem.
{ h}— {Y h} Then an unbiased lower simultaneousdjLprediction limit
(x+1img) iz ms) 5) H on ther;th order statistics((rj mp), i=1, ...,k of all ofk

[mz} future samples may be obtained from
Iz

This ends the proofL] Eg Py H.,.,Y >H .., >H
_ . (r,my) (rj m;) (e, my)
Corollary 1.1. If r= 1, Oj=1(1)k, then a lower

simultaneous (#a) prediction limith on the smallest order he1 1L or-1
statistich(Lmj)y j=1, ...,k, of all ofk future samples may be = Z z z [rlnlJ [rlnl}[rlnkJ
obtained from i1=0 ij=0 ix=0 \ 1 i k
Pg{Y >h,..Y >h,..Y >h} _
) ) ) EH{PH{YGZ +1mg) g H}} EH{PH{Y(iz'mz) g H}}
X ~ =1l-a.
= PH{Y(l,mz) > h} =1-a. (6) [iz ]
Proof. (10)
P,y Sh .Y ShoY >h Proof. For the proof we refer to Theorem 1. .
& my) & m;) (& my) Corollary 2.1. If rj= 1, 0j=1(1)k, then an unbiased lower
simultaneous (#a) prediction limit H on the first order
X « - tatisticsY, =1 k, of all of k future samples may be
=|'|Pe{ >h}=I'I[1—Fe(h)1m' s ), JZ 25 e ples may
@ .
obtained from
=[1-Fy(h mz=P{Y >h}. 7
[1-Fp(h)] 21 Yw,mg) @) EotPoiYomy > H = Yom) > H Yy > H
This ends the proofl]
Corollary 1.2. If r=m, Oj=1(1k, then an upper =E5{P9{Y(1’mz) >H}} =1-a. (11)

simultaneous (#a) prediction limith on the largest order

statistich(mj m), j=1, ...,k of all of k future samples may Corollary 2.2. If ;= m, Dj=1(1), then an unbiased upper
be obtained from simultaneous (da) prediction limit H on the last order
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statistich(mj m), i=1, ..., k, of all of k future samples may (x,0), to construct the predictive density function of ttie
order statisticy; from a set o future ordered observations
Y.< ... £ Yy, By using the technique of invariant embedding

}} [9-12] of (X?,9), if X,<Y,, or (%%,9), if XY, into a

be obtained from

< < <
EH{PH{YMM) <H ""’Y(mj mp) T H ""'Y(mk,mk) sH pivotal quantity (Y|5 -wlo or (Xf - )/ o, respectively,

we obtain an ancillary statistic

= EH{PH{Y < H}} =1-a. (12)

(ms, mys)

w =(y? - x?)/s. (17)
Remark 1. In this paper, in order to find the unbiased; a1 be shown that the pdf\ef is given by

lower simultaneous (a) prediction limit H on therjth
order statistich(rj'mj ), 1=1, ...k, of all ofk future samples,

(' i_l)ezi[lww -1+ +3]

the technique of invariant embedding [9-12] is used. ( Dl(m]'i
n(r - -
A. Left-Truncated Weibull Distribution = n+m-|+i+1
Theorem 3 ((Lower (upper) unbiased prediction lint Fw) =1 if w >0, (18)
for the Ith order statisticY; in a new (future) sample aoh n(r -1) m(n+m-I)! f-rw)~
observations from the left-truncated Weibull distribution on (m=D!(n+m!
the basis of the preliminary data sample) Xek ... < X, be if w<0.
the firstr ordered observations from the preliminary sample
of sizen from the left-truncated Weibull distribution with It follows from (18) that
the pdf
_ =1 ; -(r-1)
fuos) (x):%x‘y Yexp[~(x° - )/ a], (x°=u,0,0>0), 0 ,_1[ : j(—]) [L+w (m=1 +i +1)]
nl : -
(13) | (n+m-=l +i +)m-1 +i +1)
wheredis the shape parameterjs the scale parameter, and PW >W,)=1 jf w, =0, (19)
M is the truncation parameter. It is assumed that the _ m(m+n-1)! N
parameter 0 is known. Then a lower unbiased —-@ (m=1)!(m+n)! tnw,
prediction limitH on thelth order statisti¢y; from a set ofn if w, <O.
future ordered observationg < ... < Y, also from the
distribution (13) is given by where
(g _ys
H =(X16+WH 5)1/5’ (14) Wy —(H X1 )/S (20)
where This ends the proof!]
-1y . ) Corollary 3.1. If I = 1, then a lower @) prediction limit
N D [L+wy (=1 +i +1)] H on the minimumY,; of a set ofm future ordered
argnl =l-a|, i < ... <VYpisgi
(I j; (n+m—1 +i + D] +i +1 observation¥; Y. is given by
1 1/
_J m(n+m-I)! X9 +3 [ n Jr_l—l if a>—T
=if a>———7-"""; 1 _ '
W (m-Di(n+m! m/ @-a)n+m n+m
H= (21)
Nl /
artl- n’!(m+n |) _env\h _g_l)z g , % 1/5
(m=D)Y(m+n)! ) -3 [ - Jr = if g<—.
. m(n+m-1)! n| Lafn+n] n+m
if gs————,
(m=Di(n+m!
(15) B. Two-parameter Exponential Distribution
r Theorem 4 (Lower (upper) unbiased prediction linkitfor
S=) (X2 =X)+(n=r)(X] = X{). (16) the Ith order statisticY, in a new (future) sample ah

i=1 observations from the two-parameter exponential
(Observe that an upper unbiasggrediction limitH on distribution on the basis of the preliminary data sample) Let
the Ith order statisticy; may be obtained from a lower X1 < ... < X be the firstr ordered observations from the
unbiased (%a) prediction limit by replacing4a by a.) preliminary sample of sizen from the two-parameter
Proof. It can be justified by using the factorizationexponential distribution with the pdf

theorem that(xf ,S) is a sufficient statistic forg o). We

-1
f X)==exp[-(x-w)/o], &=zu,o>0), (22
wish, on the basis of the sufficient statistix,’,S) for (o) Q)= FexpE(x =)l o], k= 4 ). (22)
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whereois the scale parameter, ands the shift parameter. Remark 2. Let us assume that the parent distributions are
It is assumed that these parameters are unknown. Thethetwo-parameter exponential

lower unbiased (@a) prediction limitH on thelth order

statisticY, from a set ofm future ordered observationg < Fp )= 1- ex;{—
... £ Yy, also from the distribution (22) is given by

X_Hz

j, x28,, 6,>0, (29)
1

H=X,+wyS, (23) where&=(6,,6,), and the Pareto distribution

where ,
FokF + 6, kY% ,x=26,>0 6,>0. (30)

4 (l i 1}(—])' L+w, (m-1 +i +2)] Let X be a random variable with the Pareto distribution (30),
arg nl( ]Z . . =1-g and defineY = InX. ThenY becomes a random variable with
V= (m-l+i+Dm-l+i+]) the exponential distribution (29), whe# is replaced by
Ing. Therefore it is enough to consider only the exponential

Y distribution, because the results for the Pareto distribution
_J. m(n+m-I)! ) - ’
Wy =4 if a>ma are easily obtained from those for the exponential
| ' distribution.
m(m+n-1)! _
ar PW(WH;)' vy, = ia’j C. Two-parameter Weibull Distribution
' ' In this paper, the two-parameter Weibull distribution with
. m(n+m-I)!
if gs—————"—, the pdf
(m=D}(n+m)! 50\ s
X X
(24) fis (x)=—[—] ex —[—] ,X>0,8>0,0>0,
r (8.9) B\ B ;
S=206G=X)+ (=X, - Xy) (25) 31)

indexed by scale and shape paramefeesnd d is used as

(Observe that an upper unbiasegrediction limitH on the underlying distribution of a random variabfein a

the .Ith order stati§ti<?\ﬁ may be obtai.ned from a lower sample of the lifetime data.
unbiased (%0) prediction limit by replacingda by a) The Weibull distribution is widely used in reliability and
Proof. For the proof we refer to Theorem 3. survival analysis due to its flexible shape and ability to

Corollary 4.1. If | = 1, then a lower (ia) prediction limit  model a wide range of failure rates. It can be derived
H on the minimumY; of a set ofm future ordered theoretically as a form of extreme value distribution,

observations; < ... <Y, is given by governing the time to occurrence of the “weakest link” of
many competing failure processes. Its special case with
S N r—fl m shape parameted=2 is the Rayleigh distribution which is
X += [ ] 1| if a> ' commonly used for modeling the magnitude of radial error
m|| @-a){n+m) +m . .
B t-a) : when x and y coordinate errors are independent normal
H = 1 (26)  variables with zero mean and the same standard deviation
x._S ( m jr—l _ : m while the cased=1 corresponds to the widely used
1= if a< . e . T
n| Laln+m) n+m exponential distribution. LeX follow a Weibull distribution

with scale parametef and shape parametér
We consider both parametgfsdto be unknown. LetX;,
..., X) be a random sample from the two-parameter Weibull

distribution (31), and letB, dbe maximum likelihood
estimates of, 0 computed on the basis oky( ..., X,). In

Corollary 4.2. (Prediction a total lifetime in a future
sample) A lower (2a) prediction limitH on Z:an, of m

future observation¥;, i=1, ...,m, is given by

S terms of the Weibull variates, we have that
H =r‘r{xl+—wH } (27)
N 5 N
where A :(ﬁ] . V==, V. :(ﬁ) (32)
B o B
T +i-2) @+ /n)™* m
arg Z‘( . \(1 W, /1) i 1—( m j =l-a are pivotal quantities. Furthermore, let
S0 ) penem))' | (men
\NH B if a,>[rn/(m+n)]m’ Zi = (XI /ﬂ)d, i=1, N (33)
o gi( m jm aw, ¥ = 1a It is readily verified that any|—2 of theZi’s, sayZ, ..., Z.”'z
m+n form a set ofn-2 functionally independent ancillary
) m statistics. The appropriate conditional approach, first
if a<[m/(m+n)]™.

suggested by Fisher [13], is to consider the distributions of
(28) V4, V,, V; conditional on the observed valueZP = (Z,, ...,

(Advance online publication: 29 November 2013)
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Zy). (For purposes of symmetry of notation we include all of -
Zy, ..., Z, in expressions stated here; it can be shownzhat  f (v, | 2") =9(z")v}~ 2|_| (Z V2 4 (n- r)z"ZJ ,
Z..1, can be determined as functionszf ..., Z,, only.) i

Theorem 5. (Joint pdf of the pivotal quantmatl V, from
the two-parameter Weibull distribution) Lef,(< ... < X,) be Vv, O (0,0), (41)
the firstr ordered observations from a sample of siZeom
the two-parameter Weibull distribution (31). Then the joint

0 -r 1
pdf of the pivotal quantities ﬁ(z(r)) - IVE_Z |—| Ziv{zr: 2’2 +(n- r)Zsz dv, | (42)
~\& 5 0 = -
V= £ , Vo ==, (34)
B 5 , :
{Z 22 +(n—r)2¥2}
conditional on fixed f vy vy, 2" = L2 =0 vt
r
2=(z, ..., z), (35)
r
where xex;{—vl{z z2 +(n-r)z? D v;((0, ).  (43)
5 i=1
Z, :(LJJ =1, (36)
B Proof. The joint density oK, < ... < X, is given by
are ancillary statistics, amy-2 of which form a functionally
independent sef and dare the maximum likelihood f & n o
estimates for8 and § based on the first ordered B.2) KL (n— il I_l

observationsX;< ... £X;) from a sample of size from the
two-parameter Weibull distribution (31), which can be found K{

5 s
from solution of - %J ] ex{—(n—r)(%) J (44)

13
- 5 5
ﬁ_ﬂ;& e }/r} ’ (37) Using the invariant embedding technique [9-12], we
and transform (44) to
3:“ r xi5|nx,- +(n—r)xr5|ner f('”) & ,...,xr)d,Bd3= nl |L|Xi_15r|L|(ﬁj5
= ’ (n_r)! 1=1 1=1 ﬁ
roo. N1 r - r( % 5 J o
x(zxfjﬂ‘(n-r)xf] —EZInx,-] , (38) xex;{—Z(—'j —(n—r)(ﬁ] ]dﬂdd‘
i=1 Hizt 2\ p B
is given by
(3
: S .—1(2)"2 : (ﬁ}"@ B
fFave |27) =" @)W 2] 22 (n—r)! I_l" > rll B B
1=1
r “N\O| ﬁg 5 0
xem(—vl{ézi"z +(n—r)z;’2D xex —(g] iz:l:(%]b((jjﬂn—r)(%f[g
= f @ 127)f (1 1v2,27), w00, ®), v;0(0, %), (39) (o5 Mdﬁ ( ; )
B 52
where

-1

z9‘(z‘”):ljr(r)v5‘2ﬁa”{ia“z+(n—r)z¥2J de] , =- pé I_lxijvr 2|—| e
0 1=1 i=1

(n—r)|

i=1

(40) :
x ex;{— V{Z 2’2 +(n-r)z? deldvz. (45)

is the normalizing constant,

(Advance online publication: 29 November 2013)
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Normalizing (45), we obtain (39). This ends the proof. ~ 5( Jj 5
Theorem 6. (Joint probability density function of the xex _(ﬁj o Z’:[xiJ

pivotal quantitiesV,, V3, from the two-parameter Weibull

distribution) Let X; < ... < X, be the firstr ordered

observations from a sample of sizérom the two-parameter

Weibull distribution (31). Then the joint probability density (5

function of the pivotal quantities 5(

X

~\O0
VZ:%, vsz[g), (46)

.- . r-2 v Vo (r-1)
cond|t|0na1 on fixed 2=z, ..., z), where r)"B |_| XV |_| 2v5?
=K B § ,i=1...r,are ancillary statistics, amy2 of

which form a functionally independent sgt,and J are the W v y y
2 2 - 2 2
maximum likelihood estimators gfandod based on the first *exp - IZ;Z' *(n=r)z® | [dvs*)av,
r ordered observationX{< ... <X;) from a sample of size
from the two-parameter Weibull distribution (31), which can
. : . r
be found from solution of (37) and (38), is given by - Bo" I—l lvr -2 I—l v2Vv2(r -1)
(n - r)' =1
r
fvs127) =8 @) 2] 2%
_ r
= x exr{— vy {Z 22 +(n-r)z"? Dv2v§2 “dv,dvs.  (49)
i=1

r
xvg2(™ exp(— V2 {Z z% +(n-1)z? szvzz N
=1 Normalizing (49), we obtain (47). This ends the proof.

Theorem 7. (Lower (upper) unbiased prediction lirit
=@ |2)f (v3]V,,2"), V00, ), vs0(0, ), (47) for thelth order statisticy; in a new (future) sample oh
observations from the two-parameter Weibull distribution,
where the parametesand J are unknown, on the basis of
the preliminary data sample) L& < ... < X, be the firstr

ordered observations from the preliminary sample of size

where

r
Zr: vy oV from the two-parameter Weibull distributi¢B1), where the
Z +(n I‘)Z, .
My L= parametersB and J are unknown Then a lower unbiased
Fglvz,27) = r(r) (1-a) prediction limitH on thelth order statisticy; from a

set of m future ordered observationg < ... < Y, also from
the distribution (31) is given by

r
xyy2 (0 ex;{— vy2 {Z 2’2 +(n-r)z?2 DVZV},’2 -

= =274°p, (50)

v5(0, o). (48) Wwherez, satisfies the equation

Proof. Using the invariant embedding technique [9-12],E 45 Rdsn ¥ > =ER Z >z v vi =RZ >z7,| z(')}
we transform the joint density (44) ¥f<...< X, to

=T

(m-k+ )27

o
- —1 r d X -2 V2 k i r
i b %) Apd0 =0 ).I_l H(ﬁj IVZ rJZ Z{ ]Z( j(]) DRRUES

gyl e

=1-a, (51)
LA o 5 imrrs 5 a5 .
) [,B’J Z, = ¥ /,Bf ,i=1..,r; B and J are the maximum

likelihood estimates foff andd based on the firstordered
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observations ;< ... £X;) from a sample of size from the Corollary 7.1. If 1=1, then

two-parameter Weibull distribution (31). _

(Observe that an upper unbiasggrediction limitH on - . 512 ]
the Ith o.rder statisticy; from a set ofm future ordered J V5—2|—|Zin (':') +ZZIV2+(” NZ2 | dv,
observationsy; < ... £ Y,, may be obtained from a lower 0 =1 B
unbiased (%a) prediction limit by replacing 4a by a.) H=arg -

Proof. If there is a random sample ah ordered 22 ,
observationsy; < ... <Y, from the two-parameter Weibull .[ |_| (Zz‘ +(n-1)z? ] dv,
distribution (31) with the pdfz4(y) and cdfFg4(y), then “1-g 0 = =
for thelth order statisticy; we have L™ |

(56)

Ppof Y >H} = IZIZ[TJ[ F(ﬁ’J)(H)]k[l— F(ﬁﬁ)(H)]m-k Corollary 7.2 (Lowgr .(upper) one-sided prediction linkit

k= on thelth order statisticY; in a new (future) sample ah

observations from the two-parameter Weibull distribution,
K mek where the parametef is unknown, on the basis of the
1'm H ° H ° previous data sampld)et X; < ... < X; be the firstr ordered
=> 1-exg -| — exg —| — . 52)  op ions f - le of sid h ]
K B B observations from a previous sample of siZeom the two
parameter Weibull distribution (31), where the paraméter
is known. Thus, we deal with the exponential distribution.

Writing (52) as Then a lower one-sided conditiona-@) prediction limitH
on thelth order statisticy; from a set ofm future ordered

I1/m ny k Y observations; < ... < Yy also from the above distribution is
RealY >H}= ] 1—&{—(—] ] ex;E—(m—k)(—J ] given by
| k ] A

k=0 H = (z, )1/6[3’ (57)
o 5[ éj s k wherez, satisfies the equation
= m 1-exp — i ° E
koL K B B E; V>0 =EPZ>z] |} =RZ >z}

-Z( ]Zm(-l)’{lﬂm—m J‘)ZTHIr =1-a, (58)

j=0

r 1/0
B{[Zm" +(n—r)x:’} /rj (59)
i=1

1/m .
- (k) H-exp(ziive )] expE(m-k)zfv,) is the maximum likelihood estimate fg¢ based on the first
r ordered observationX{< ... <X;) from a sample of size
K _ from the two-parameter Weibull distribution (31).
(.](—]) lexpl- m-k+) 27 =RZ >z, | v, v}, Proof. Since the paramete¥is known, it can be shown by

k=0\"/j=0 using (44) and the invariant embedding technique [9-12] that
(53)
r
where ] ) f(vy) :_rr( il exd-rv,), wi0(0,@).  (60)
5 5 r
7 =| 0] 4 =[H], (54) _
Yij Yej In this case,
3
we have from (53) and (47) that P{Y >H}= Z( 1—ex;E— — ] ex;{—(m K) ,3] ]
Edoy Rk Y > =B R Z >2z4| vy v}
-1
" SR
= [[P(Z) > 24 vy, v} (v, [27)dvidv,. (55) k=0
00
~\O
Now v; can be integrated out of (55) in a straightforward xex -(m-k)[iJ [EJ
way to give (51). This completes the proaf. B)\B
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-1 m size n from the two-parameter Weibull distribution (31)
(kj [1-exp(=2 vy ) expE(m=k)z,vy) Proof. Since the parametgis known, it can be shown by

using (44) and the invariant embedding technique [9-12] that

1-1 m k r .
:kzzol[k]z( J( ])J exppPvy(m=-k+j)z,4] f (v, | Z(f)) - 79(2(0)\,5—1'_' Zin eXD(—{z Zin +(n-r)z2 :D'
1=1 i=1

k=0

j=o\J

=P(Z, >z, | v}, (61) v, 0 (0,), (67)
where where
AN HY
Z =(—1] . Zy =(T) . (62) . r -1
p b 5z =[J vo ]2 epoZ 2% +(n-r)z? D dv2] ,
Thus, we have from (61) and (60) that ° = = 68)
Bs R Y >H =ERZ >z v} Z= & BY . i=1..r. (69)

r In this case,
= [AZ >z | v} f (w)ohv, (63)
0

k
-1 S 5
Now v; can be integrated out of (63) in a straightforwardP;{y, >H }= z (mil—ex{—(%j H ex{—(m—k)(%j ]

way to give

EPZ >z W) =R Z >z} RN

- l-exp - H Jw
‘Z( JZ(kj(-l)'{H(m—mj)ZTHT_ (64) _k=o(k] (ﬂ]

j=0

This completes the proofl] H 5(%)
Corollary 7.3 (Lower (upper) one-sided prediction linkit xex —(m—k)(—]

on thelth order statisticy; in a new (future) sample oh

observations from the two-parameter Weibull distribution,

where the parameted is unknown, on the basis of the

previous data samplelet X; < ... < X, be the firstr ordered :Z(m] [+ eXpGZ )] exp(m- k)z )

observations from a previous sample of sizieom the two- koL K

parameter Weibull distribution (31), where the paramgter

is known. Then a lower one-sided conditional-d}l l( ]

prediction limitH on thelth order statisti¢y; from a set ofn Z
k=0

Z( j( 1) expHm-k+ j)z7]
future ordered observatiolys< ... <Y, also from the above o\
distribution is given by
) =HKZ >z, va}, (70)
H =(z4)"’ B, (65)

where

wherez, satisfies the equation d d
i ] a [ij - [ﬂj | (1)
B B
Es B Y >B =EPZ >z }} =RZ >z,(2")}
Thus, we have from (70) and (67) that
@l

IZ[ j,:@[lj( 1 expHm—k+ )z 1f (| 27)dv, E B Y > =EPZ >z W} =HZ >z,2"}

ok=0

= 1-q, (66) = T P(Z, >z |V} (v |27, (72)
0

0 is the maximum likelihood estimates fdr based on the
first r ordered observations({< ... <X;) from a sample of This completes the proofl
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I1l. NUMERICAL EXAMPLES 1 i)

n-1

A. Examplel H =) X} _% (an+km) -1

An industrial firm has the policy to replace a certain
device, used at several locations in its plant, at the end of 24-
month intervals. It doesn’'t want too many of these items to 1
fail before being replaced. Shipments of a lot of devices are =| g1-1708 [ 15 JM -1
made to each of three firms. Each firm selects a random 15 00%15+19
sample of 5 items and accepts his shipment if no failures

occur before a specified lifetime has accumulated. Thﬁwus, the manufacturer has 95% assurance that no failures

manufacturer wishes t9 _take_ a random sample and_\m” occur in each shipment before+H5 month intervals.
calculate the lower prediction limit so that all shipments will

be accepted with a probability of 0.95. The resulting B. Example 2

lifetimes (rounded off to the nearest month) of an initial A system consists ofn(=5) identical capacitors whose
sample of size 15 from a population of such devices atines to failure follow the two-parameter exponential
given in Table 1. distribution (22). Initially one capacitor is operating and the
remaining m—1 capacitors are in a standby mode; a new
capacitor goes into operation as soon as the preceding
capacitor has failed. The system is said to fail whemall
capacitors have failed. Thus, the system time to failure is the

1/087

=5 (77)

TABLE |
THE RESULTING LIFETIMES (IN NUMBER OF MONTH INTERVALS)

Observations
Xi X1 X2 X3 X4 X5 Xs X7

Lifetime 8 9 10 12 14 17 20 total of the failure times for them capacitors. A
X8 X9 X10 X11 X12 X13 X14 X15 simultaneous lower prediction limit to be exceeded with
25 29 30 35 40 47 54 62

probability -a = 0.99 by the system time to failuie

desired. This limit is to be calculated from the times to

failure of n(=5) previously tested capacitors. It is assumed

that the firstr(=3) times to failure ofh previously tested

Xi ~f00 (x)=%x"‘1exp[—(x"— Wl o, capacitprs were observed. Taking into account (25) and
supposing that

Goodness-of-fit testing. It is assumed that

X=u,0 9> 0),i=1115 (73) '
S=> Ki=X; ¥ tt-r )X, = X; ¥ 570ours, (78)
where the parametegsand o are unknown; ¢=0.87). Thus, i=
for this exampler = n =15k =3, m=5, I-a = 0.95,

X2 =61, and S= 170.8. It can be shown that the where
X, = 30Gours, (79)
i+l j
Z (=i +1)(Xi6 _ Xile) we have from (27) and (28) that
— i=2 P
U] =1- Ij+2 5 5 )= 1(1)”“2, (74) m 1U(r-1)
Z(n_l +1)(Xi _Xi—l) H = Xl+§ 1—[1( m ] = 106hours,
i=2 n a\m+n
are i.i.d. U(0,1) rv's (Nechvalet al. [13]). We assess the (80)
statistical significance of departures from the left-truncated
Weibull model by performing the Kolmogorov-Smirnovwhere
goodness-of-fit test. We use thé statistic (Mulleret al. m \™
[14]). The rejection region for the level of significance is a= 0'01<(m+n] = 003125 (81)

{K =K.4}- The percentage points fd€,, were given by

Muller et al. [14]. For this example, Thus, the manufacturer has 99% assurance that no failures
will occur in the system befottd = 1062 hours.

K=0.220 < Kn:ls;g:()‘OS: 0.361. (75
C. Example3
Thus, there is not evidence to rule out the left-truncated A manufacturer has the data on the mileages at which
Weibull model. It follows from (6) and (21), for nineteen military carriers failed [16]. These were 162, 200,
271, 302, 393, 508, 539, 629, 706, 777, 884, 1008, 1101,
a = 005< km _ 05, (76) 1182, 1463, 1603, 1984, 2355, 2880, and thus constitute a
n+km complete sample of observatioks < ... < X, with n = 19
from the two-parameter exponential distribution (22). It
that follows from (25) that
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directions to handle various problems that arise in practice.

19
S=) & - X, )= 15869

(82)  we have illustrated the proposed methodology for the two-

=1 parameter exponential and  Weibull  distributions.

where Furthermore, the techniques used in this paper can be
X1 =162 (83) applied to obtain explicit formulae for computing

A buyer tells the carrier manufacturer that he wants gpnditional quantiles relating to unbiased simultaneous

place two orders for the same type of military carriers to gyediction limits  for —any other log-location-scale
shipped to two different destinations. The buyer wants stributions.
select a random sample wE5 military carriers from each
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prediction limit should the manufacturer guarantee to assure
acceptance of both shipments with a probability of 0.9? To
answer this question, we take into account (6) and considenp
lower (1-a) prediction limitH on the minimuny; of a set of
km future ordered observatiolYs< ... <Y, wherek=2.

It follows from (26), for

(2]
(3]
km

a=001< = 0345 (84)
n+km
that [4]
%
-y _S km |t _

H=Xy (a(n+ kmi] 1 5]
162 1869 (10 | oo

- 19 01(9+10) - - (89

(71

Thus, the manufacturer has 90% assurance that no failures
will occur in each shipment befoké= 102.54 mileages. (8]

V. CONCLUSION ANDFUTURE WORK [9]

In this paper, explicit formulae, based on previous
independent observations, have been developed for
computing conditional quantiles of some useful pivotdho]
statistics. The quantiles are used to construct unbiased
simultaneous prediction limits on the order statistics of all of
k future samples using the results of a previous sample from
the same underlying distribution belonging to invariant
family. The results can be used to predict the total duratiéh!
time in a Type Il censoring life testing experiments, and to
predict the lifetime of &-out-ofn: F systems. Such results
are required, for example, when a manufacturer wishes to
assure with a high probability the acceptance ok &liture  [1]
shipments of a product. The computation procedures can be
easily programmed and implemented for practical use.
Although the quantiles of the pivotal statistics considered '[513
this paper can be obtained through simulation, but it will be
noted that simulation results are unstable; they vary from oHé!
to another. From theoretical as well as practical points of
view, analytical solutions should be used if they are
available. The results of this paper provide such analyticidp]
solutions. The exact prediction limits are found an
illustrated with the numerical examples. The methodology
described here can be extended in several different

(Advance online publication:
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