
 

  
Abstract — Statistical prediction is the earliest and most 

prevalent form of statistical inference. It is the provision of an 
estimate, usually in the one-sided or two-sided interval form, 
for future observations based on the results obtained from past 
observations. In particular, the minimum, maximum, mean, 
median of a future sample or ranges of given number of 
samples could also be aims of prediction. Prediction has its uses 
in a variety of disciplines such as medicine, engineering and 
business. In this paper, we consider the problems of 
constructing unbiased simultaneous prediction limits on the 
order statistics of all of k future samples using the results of a 
previous sample from the same underlying distribution 
belonging to invariant family. The prediction limits obtained in 
the paper are generalizations of the usual prediction limits on 
observations or functions of observations of only one future 
sample. Attention is restricted to invariant families of 
distributions. The technique used here emphasizes pivotal 
quantities relevant for obtaining ancillary statistics and is 
applicable whenever the statistical problem is invariant under a 
group of transformations that acts transitively on the 
parameter space. It does not require the construction of any 
tables and is applicable whether the data are complete or Type 
II censored. Applications of the proposed procedures are given 
for the two-parameter exponential and Weibull distributions. 
The proposed technique is conceptually simple and easy to use. 
The exact prediction limits are found and illustrated using some 
practical examples. 
 

Index Terms — Future samples of observations, order 
statistics, simultaneous prediction limits 

I. INTRODUCTION 

ANY  statistical applications involve the prediction of 
future values of some random variables, based on 

previously observed data. We consider here a general 
parametric framework in which prediction is based on a 
family of models specified up to unknown parameter θ (in 
general, vector). Statistical intervals used by engineers and 
others include confidence intervals on a population 
parameter, such as the mean, and tolerance intervals. 
Confidence intervals give information about parameter of 
the population or a function of population parameters such 
as a percentile; tolerance intervals give information about a 
region which contains a specified proportion of a population.  
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Often one desires to construct from the results of a 
previous sample an interval which will have a high 
probability of containing the values of all of k future 
observations. For example, such an interval would be 
required in establishing limits on the values of some 
performance variable for a small shipment of equipment 
when the satisfactory performance of all units is to be 
guaranteed, or in setting acceptance limits on a specific lot 
of material, when acceptance requires the values of all items 
in a future sample to fall within the limits. An interval which 
contains the values of a specified number of future 
observations with a specified probability is known as a 
prediction interval. Such an interval need be distinguished 
both from a confidence interval on an unknown distribution 
parameter, and from a tolerance interval to contain the 
values of a specified proportion of the population. Research 
works on prediction intervals related to a single future 
statistic are abundant (see Hahn and Meeker [1], Patel [2], 
and references therein).  

In many situations of interest, it is desirable to construct 
lower simultaneous prediction limits that are exceeded with 
probability γ  by observations or functions of observations of 
all of k future samples, each consisting of m units. The 
prediction limits depend upon a previously available 
complete or type II censored sample from the same 
distribution. For instance, two situations where such limits 
are required are: 

1. A customer has placed an order for a product which has 
an underlying time-to-failure distribution. The terms of his 
purchase call for k monthly shipments. From each shipment 
the customer will select a random sample of m units and 
accept the shipment only if the smallest time to failure for 
this sample exceeds a specified lower limit. The 
manufacturer wishes to use the results of a previous sample 
of n units to calculate this limit so that the probability is γ  
that all k shipments will be accepted. It is assumed that the n 
past units and the km future units are random samples from 
the same population. This situation is considered in [3].  

2. A system consists of n identical components whose 
times to failure follow an underlying distribution. Initially 
one component is operating and the remaining n−1 
components are in a standby mode; a new component goes 
into operation as soon as the preceding component has 
failed. The system is said to fail when all n components have 
failed. Thus, the system time to failure is the total of the 
failure times for the n components. A simultaneous lower 
prediction limit to be exceeded with probability γ  by the 
system time to failure of all of k future systems is desired. 
This limit is to be calculated from the times to failure of n 
previously tested components. Similar problems also arise in 
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various product maintenance and servicing problems. 
Prediction limits can be of several forms. Hahn [4] dealt 

with simultaneous prediction limits on the standard 
deviations of all of the k future samples from a normal 
population. Hahn [5] considered the problem of obtaining 
simultaneous prediction limits on the means of all of k future 
samples from an exponential distribution. In addition, Hahn 
and Nelson [6] discussed such limits and their applications. 
Mann, Schafer, and Singpurwalla [7] gave an interval that 
contains, with probability γ, all m observations of a single 
future sample from the same population. Fertig and Mann 
[8] constructed prediction intervals to contain at least m − k 
+ 1 out of m future observations from a normal distribution 
with probability 1−β. They considered life-test data, and the 
performance variate of interest is the failure time of an item. 
Their lower prediction limit constitutes a “warranty period”. 

In this paper we give an expression for obtaining unbiased 
simultaneous prediction limits on order statistics of all of k 
future samples. In order to obtain the unbiased simultaneous 
prediction limits, attention is restricted to invariant families 
of distributions. In particular, the case is considered where a 
previously available complete or type II censored sample is 
from a continuous distribution with cumulative distribution 
function (cdf) F((x−µ)/σ) and probability density function 
(pdf) 1/σf((x−µ)/σ), where F(⋅ ) is known but both the 
location (µ) and scale (σ) parameters are unknown. For such 
family of distributions the decision problem remains 
invariant under a group of transformations (a subgroup of 
the full affine group) which takes µ  (the location parameter) 
and σ  (the scale) into cµ + b and cσ, respectively, where b 
lies in the range of µ,  c > 0. This group acts transitively on 
the parameter space and, consequently, the risk of any 
equivariant estimator is a constant. Among the class of such 
estimators there is therefore a “best” one. The effect of 
imposing the principle of invariance, in this case, is to 
reduce the class of all possible estimators to one. In the 
present paper we investigate this question for the problem of 
constructing the unbiased simultaneous prediction limits on 
order statistics in future samples. 

The results have direct application in reliability theory, 
where the time until the first failure in a group of several 
items in service provides a measure of assurance regarding 
the operation of the items. The simultaneous prediction 
limits are required as specifications on future life for 
components, as warranty limits for the future performance of 
a specified number of systems with standby units, and in 
various other applications. Prediction limit is an important 
statistical tool in the area of quality control. The lower 
simultaneous prediction limits are often used as warranty 
criteria by manufacturers. The initial sample and k future 
samples are available, and the manufacturer wants to have a 
high assurance that all of the k future orders will be 
accepted. It is assumed throughout that k + 1 samples are 
obtained by taking random samples from the same 
population. In other words, the manufacturing process 
remains constant. The results in this paper are 
generalizations of the usual prediction limits on observations 
or functions of observations of only one future sample. In 
the paper, attention is restricted to invariant families of 

distributions.   
The technique used here emphasizes pivotal quantities 

relevant for obtaining ancillary statistics. It is a special case 
of the method of invariant embedding of sample statistics 
into a performance index [9-12] applicable whenever the 
statistical problem is invariant under a group of 
transformations which acts transitively on the parameter 
space (i.e., in problems where there is a unique best 
invariant procedure). The exact unbiased simultaneous 
prediction limits on order statistics of all of k future samples 
are obtained via the technique of invariant embedding and 
illustrated with some numerical examples. 

II.  MATHEMATICAL PRELIMINARIES 

The main theorem, which shows how to construct lower 
(upper) simultaneous prediction limit for the order statistics 
in all of k future samples when prediction limit for a single 
future sample is available, is given below. 

Theorem 1 (Lower (upper) simultaneous prediction limit 
under complete information).  Let  mj  “future”  observations 

) ..., ,( 1 jj mYY  represent the jth random sample from the cdf 

Fθ (.), where θ  is the parameter (in general, vector), j∈{1, 
..., k}, and let ),( jj mrY  denote the rjth order statistic in the jth 

sample of size mj.. Assume that all of k samples from the 
same cdf are independent. Then a lower simultaneous (1−α) 
prediction limit h on the rjth order statistics ),,( jj mrY  j=1, …, 

k, of all of k future samples may be obtained from 
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(Observe that an upper simultaneous α prediction limit h 
may be obtained from a lower simultaneous prediction limit 
by replacing 1−α by α.) 

Proof. 
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the joint probability can be written as 
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This ends the proof.   � 
Corollary 1.1. If rj= 1, ∀j=1(1)k, then a lower 

simultaneous (1−α) prediction limit h on the smallest order 
statistics ),,1( jmY  j=1, …, k, of all of k future samples may be 

obtained from 
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This ends the proof.   � 
Corollary 1.2. If rj=mj, ∀j=1(1)k, then an upper 

simultaneous (1−α) prediction limit h on the largest order 
statistics ),,( jj mmY  j=1, …, k, of all of k future samples may 

be obtained from 
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This ends the proof.   � 
 

Theorem 2 (Lower (upper) unbiased simultaneous 
prediction limit under parametric uncertainty). Let (X1 ≤ ... ≤ 
Xr) be the r smallest observations in a random sample of size 
n from the cdf Fθ (.), where the θ  is the parameter (in 
general, vector), and let ) ..., ,( 1 jj mYY  be the jth random 

sample of mj “future” observations from the same cdf, j∈{ 1, 
..., k}. Assume that (k+1) samples are independent and the 
parameter θ  is unknown.  Let H=H(X1, ..., Xr) be any 
statistic based on the preliminary sample and let ),( jj mrY  

denote the rjth order statistic in the jth sample of size mj. 
Then an unbiased lower simultaneous (1−α) prediction limit 
H on the rjth order statistics ),,( jj mrY  j=1, …, k, of all of k 

future samples may be obtained from 
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Proof. For the proof we refer to Theorem 1.   � 
Corollary 2.1. If rj= 1, ∀j=1(1)k, then an unbiased lower 

simultaneous (1−α) prediction limit H on the first order 
statistics ),,1( jmY  j=1, …, k, of all of k future samples may be 

obtained from  
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Corollary 2.2. If rj= mj, ∀j=1(1)k, then an unbiased upper 
simultaneous (1−α) prediction limit H on the last order 
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statistics ),,( jj mmY  j=1, …, k, of all of k future samples may 

be obtained from  
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Remark 1. In this paper, in order to find the unbiased 
lower simultaneous (1−α) prediction limit H on the rjth 
order statistics ),,( jj mrY  j=1, …, k, of all of k future samples, 

the technique of invariant embedding [9-12] is used. 

A. Left-Truncated Weibull Distribution 

Theorem 3 ((Lower (upper) unbiased prediction limit H 
for the lth order statistic Yl in a new (future) sample of m 
observations from the left-truncated Weibull distribution on 
the basis of the preliminary data sample) Let X1 ≤ ... ≤ Xr be 
the first r ordered observations from the preliminary sample 
of size n from the left-truncated Weibull distribution with 
the pdf 
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where δ is the shape parameter, σ is the scale parameter, and 
µ is the truncation parameter. It is assumed that the 

parameter δ is known. Then a lower unbiased (1−α) 
prediction limit H on the lth order statistic Yl from a set of m 
future ordered observations Y1 ≤ … ≤ Ym also from the 
distribution (13) is given by 
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(Observe that an upper unbiased α prediction limit H on 
the lth order statistic Yl may be obtained from a lower 
unbiased (1−α) prediction limit by replacing 1−α by α.)  

Proof. It can be justified by using the factorization 

theorem that ),( 1 SX δ  is a sufficient statistic for (µ,σ). We 

wish, on the basis of the sufficient statistic ),( 1 SX δ  for 

(µ,σ), to construct the predictive density function of the lth 
order statistic Yl from a set of m future ordered observations 
Y1 ≤ … ≤ Ym. By using the technique of invariant embedding 

[9-12] of ),( 1 SX δ , if X1≤Yl,  or ),( SYl
δ , if X1>Yl, into a 

pivotal quantity σµδ /)( −lY  or σµδ /)( 1 −X , respectively, 

we obtain an ancillary statistic  
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It can be shown that the pdf of Wl is given by 
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It follows from (18) that 
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where 

    ( ) . = 1 SXHw δ

H −δ  (20) 
 

This ends the proof.   � 
Corollary 3.1. If l = 1, then a lower (1−α) prediction limit 

H on the minimum Y1 of a set of m future ordered 
observations Y1 ≤ … ≤ Ym is given by 
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B. Two-parameter Exponential Distribution 

Theorem 4 (Lower (upper) unbiased prediction limit H for 
the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter exponential 
distribution on the basis of the preliminary data sample) Let 
X1 ≤ ... ≤ Xr be the first r ordered observations from the 
preliminary sample of size n from the two-parameter 
exponential distribution with the pdf 
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where σ is the scale parameter, and µ is the shift parameter. 
It is assumed that these parameters are unknown. Then a 
lower unbiased (1−α) prediction limit H on the lth order 
statistic Yl from a set of m future ordered observations Y1 ≤ 
… ≤ Ym also from the distribution (22) is given by 
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(Observe that an upper unbiased α prediction limit H on 
the lth order statistic Yl may be obtained from a lower 
unbiased (1−α) prediction limit by replacing 1−α by α.)  

Proof. For the proof we refer to Theorem 3.   � 
Corollary 4.1. If l = 1, then a lower (1−α) prediction limit 

H on the minimum Y1 of a set of m future ordered 
observations Y1 ≤ … ≤ Ym is given by 
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Corollary 4.2. (Prediction a total lifetime in a future 
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Remark 2.  Let us assume that the parent distributions are 
the two-parameter exponential 
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where ),,( 21 θθθ =  and the Pareto distribution 
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Let X be a random variable with the Pareto distribution (30), 
and define Y = lnX. Then Y becomes a random variable with 
the exponential distribution (29), where θ2 is replaced by 
lnθ2. Therefore it is enough to consider only the exponential 
distribution, because the results for the Pareto distribution 
are easily obtained from those for the exponential 
distribution. 

C. Two-parameter Weibull Distribution 

In this paper, the two-parameter Weibull distribution with 
the pdf 
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indexed by scale and shape parameters β and δ  is used as 
the underlying distribution of a random variable X in a 
sample of the lifetime data.  

The Weibull distribution is widely used in reliability and 
survival analysis due to its flexible shape and ability to 
model a wide range of failure rates. It can be derived 
theoretically as a form of extreme value distribution, 
governing the time to occurrence of the “weakest link” of 
many competing failure processes. Its special case with 
shape parameter δ=2 is the Rayleigh distribution which is 
commonly used for modeling the magnitude of radial error 
when x and y coordinate errors are independent normal 
variables with zero mean and the same standard deviation 
while the case δ=1 corresponds to the widely used 
exponential distribution. Let X follow a Weibull distribution 
with scale parameter β and shape parameter δ.  

We consider both parameters β, δ to be unknown. Let (X1, 
…, Xn) be a random sample from the two-parameter Weibull 

distribution (31), and let ,β
)

δ
)

be maximum likelihood 

estimates of β, δ computed on the basis of (X1, …, Xn). In 
terms of the Weibull variates, we have that 
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are pivotal quantities. Furthermore, let 
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It is readily verified that any n−2 of the Zi’s, say Z1, …, Zn-2 
form a set of n−2 functionally independent ancillary 
statistics. The appropriate conditional approach, first 
suggested by Fisher [13], is to consider the distributions of 
V1, V2, V3 conditional on the observed value of Z(n) = (Z1, …, 
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Zn). (For purposes of symmetry of notation we include all of 
Z1, …, Zn in expressions stated here; it can be shown that Zn, 
Zn-1, can be determined as functions of Z1, …, Zn-2 only.) 

Theorem 5. (Joint pdf of the pivotal quantities V1,V2 from 
the two-parameter Weibull distribution) Let (X1 ≤ ... ≤ Xr) be 
the first r ordered observations from a sample of size n from 
the two-parameter Weibull distribution (31). Then the joint 
pdf of the pivotal quantities  
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are the maximum likelihood 

estimates for β and δ  based on the first r ordered 
observations (X1≤ ... ≤Xr) from a sample of size n from the 
two-parameter Weibull distribution (31), which can be found 
from solution of  
 

        ,)(

/1

1

δ
δδβ

)

)))


























−+= ∑

=
rxrnx

r

i
ri  (37) 

and 




















−+= ∑

=
rr

r

i
ii xxrnxx ln)(ln

1

δδδ
)))

 

 

  ,ln
1

)(

1

1

1

1

−

=

−

= 





−













−+× ∑∑

r

i
i

r

i
ri x

r
xrnx δδ
))

 (38) 

is given by 
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is the normalizing constant,  
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Proof. The joint density of X1 ≤ ... ≤ Xr is given by 
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Using the invariant embedding technique [9-12], we 
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Normalizing (45), we obtain (39). This ends the proof.   � 
Theorem 6. (Joint probability density function of the 

pivotal quantities V2,V3, from the two-parameter Weibull 
distribution) Let X1 ≤ ... ≤ Xr be the first r ordered 
observations from a sample of size n from the two-parameter 
Weibull distribution (31). Then the joint probability density 
function of the pivotal quantities 
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Proof. Using the invariant embedding technique [9-12], 

we transform the joint density (44) of X1 ≤ ... ≤ Xr to 
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Normalizing (49), we obtain (47). This ends the proof.   �  

Theorem 7. (Lower (upper) unbiased prediction limit H 
for the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter Weibull distribution, 
where the parameters β and δ are unknown, on the basis of 
the preliminary data sample) Let X1 ≤ ... ≤ Xr be the first r 
ordered observations from the preliminary sample of size n 
from the two-parameter Weibull distribution (31), where the 
parameters β and δ are unknown Then a lower unbiased 
(1−α) prediction limit H on the lth order statistic Yl from a 
set of m future ordered observations Y1 ≤ … ≤ Ym also from 
the distribution (31) is given by 
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observations (X1≤ ... ≤Xr) from a sample of size n from the 
two-parameter Weibull distribution (31). 

(Observe that an upper unbiased α prediction limit H on 
the lth order statistic Yl from a set of m future ordered 
observations Y1 ≤ … ≤ Ym may be obtained from a lower 
unbiased (1−α) prediction limit by replacing 1−α by α.) 

Proof. If there is a random sample of m ordered 
observations Y1 ≤ … ≤ Ym from the two-parameter Weibull 
distribution (31) with the pdf f(β,δ)(y) and cdf F(β,δ)(y), then 
for the lth order statistic Yl we have 
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we have from (53) and (47) that 
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Now v1 can be integrated out of (55) in a straightforward 
way to give (51). This completes the proof.   �  

Corollary 7.1. If l=1, then 
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Corollary 7.2 (Lower (upper) one-sided prediction limit H 
on the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter Weibull distribution, 
where the parameter β is unknown, on the basis of the 
previous data sample). Let X1 ≤ ... ≤ Xr be the first r ordered 
observations from a previous sample of size n from the two-
parameter Weibull distribution (31), where the parameter δ 
is known. Thus, we deal with the exponential distribution. 
Then a lower one-sided conditional (1−α) prediction limit H 
on the lth order statistic Yl from a set of m future ordered 
observations Y1 ≤ … ≤ Ym also from the above distribution is 
given by 
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is the maximum likelihood estimate for β   based on the first 
r ordered observations (X1≤ ... ≤Xr) from a sample of size n 
from the two-parameter Weibull distribution (31). 

Proof. Since the parameter δ is known, it can be shown by 
using (44) and the invariant embedding technique [9-12] that 
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This completes the proof.   �  
Corollary 7.3 (Lower (upper) one-sided prediction limit H 

on the lth order statistic Yl in a new (future) sample of m 
observations from the two-parameter Weibull distribution, 
where the parameter δ is unknown, on the basis of the 
previous data sample). Let X1 ≤ ... ≤ Xr be the first r ordered 
observations from a previous sample of size n from the two-
parameter Weibull distribution (31), where the parameter β 
is known. Then a lower one-sided conditional (1−α) 
prediction limit H on the lth order statistic Yl from a set of m 
future ordered observations Y1 ≤ … ≤ Ym also from the above 
distribution is given by 
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 is the maximum likelihood estimates for δ  based on the 
first r ordered observations (X1≤ ... ≤Xr) from a sample of 

size n from the two-parameter Weibull distribution (31) 
Proof. Since the parameter β is known, it can be shown by 
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In this case, 
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Thus, we have from (70) and (67) that 
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This completes the proof.   �  
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III.  NUMERICAL EXAMPLES 

A. Example 1 

An industrial firm has the policy to replace a certain 
device, used at several locations in its plant, at the end of 24-
month intervals. It doesn’t want too many of these items to 
fail before being replaced. Shipments of a lot of devices are 
made to each of three firms. Each firm selects a random 
sample of 5 items and accepts his shipment if no failures 
occur before a specified lifetime has accumulated. The 
manufacturer wishes to take a random sample and to 
calculate the lower prediction limit so that all shipments will 
be accepted with a probability of 0.95. The resulting 
lifetimes (rounded off to the nearest month) of an initial 
sample of size 15 from a population of such devices are 
given in Table 1. 
  

TABLE I 
THE RESULTING LIFETIMES (IN NUMBER OF MONTH INTERVALS) 

Observations 

Xi x1 x2 x3 x4 x5 x6 x7 

Lifetime 8 9 10 12 14 17 20 
x8 x9 x10 x11 x12 x13 x14 x15 

25 29 30 35 40 47 54 62 

 
Goodness-of-fit testing. It is assumed that 
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where the parameters µ and σ are unknown; (δ=0.87). Thus, 
for this example, r = n = 15, k = 3, m = 5, 1−α = 0.95, 

1.61 =δX , and  S = 170.8. It can be shown that the 

 

   ,2)1(1   ,

))(1(

))(1(

1
2

2
1

1

2
1

−=





















−+−

−+−
−=

∑

∑
+

=
−

+

=
−

nj

XXin

XXin

U

j

j

i
ii

j

i
ii

j
δδ

δδ

  (74) 

 
are i.i.d. U(0,1) rv’s (Nechval et al. [13]). We assess the 
statistical significance of departures from the left-truncated 
Weibull model by performing the Kolmogorov-Smirnov 
goodness-of-fit test. We use the K statistic (Muller et al. 
[14]). The rejection region for the α level of significance is 

{ K ≥ Kn;α}. The percentage points for Kn;α were given by 
Muller et al. [14]. For this example,  
 

 K = 0.220 <  Kn=13;α=0.05 = 0.361. (75) 
 
Thus, there is not evidence to rule out the left-truncated 
Weibull model. It follows from (6) and (21), for  
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Thus, the manufacturer has 95% assurance that no failures 
will occur in each shipment before H = 5 month intervals. 

B. Example 2 

A system consists of m(=5) identical capacitors whose 
times to failure follow the two-parameter exponential 
distribution (22). Initially one capacitor is operating and the 
remaining m−1 capacitors are in a standby mode; a new 
capacitor goes into operation as soon as the preceding 
capacitor has failed. The system is said to fail when all m 
capacitors have failed. Thus, the system time to failure is the 
total of the failure times for the m capacitors. A 
simultaneous lower prediction limit to be exceeded with 
probability 1−α = 0.99 by the system time to failure is 
desired. This limit is to be calculated from the times to 
failure of n(=5) previously tested capacitors. It is assumed 
that the first r(=3) times to failure of n previously tested 
capacitors were observed. Taking into account (25) and 
supposing that 
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where 

hours, 3001 =X  (79) 

 
we have from (27) and (28) that 
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where 
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Thus, the manufacturer has 99% assurance that no failures 
will occur in the system before H = 1062 hours. 

C. Example 3 

A manufacturer has the data on the mileages at which 
nineteen military carriers failed [16]. These were 162, 200, 
271, 302, 393, 508, 539, 629, 706, 777, 884, 1008, 1101, 
1182, 1463, 1603, 1984, 2355, 2880, and thus constitute a 
complete sample of observations X1 ≤ ... ≤ Xn with n = 19 
from the two-parameter exponential distribution (22). It 
follows from (25) that 
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where 
.1621 =X  (83) 

 

A buyer tells the carrier manufacturer that he wants to 
place two orders for the same type of military carriers to be 
shipped to two different destinations. The buyer wants to 
select a random sample of m=5 military carriers from each 
shipment to be tested. An order is accepted only if all of 5 
military carriers in the sample meet the warranty period. 
What warranty should the manufacturer offer so that all of 5 
military carriers in both samples meet the warranty with 
probability of 0.9? That is, what lower simultaneous 
prediction limit should the manufacturer guarantee to assure 
acceptance of both shipments with a probability of 0.9? To 
answer this question, we take into account (6) and consider a 
lower (1−α) prediction limit H on the minimum Y1 of a set of 
km future ordered observations Y1 ≤ … ≤ Ym, where k=2.  

It follows from (26), for  
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Thus, the manufacturer has 90% assurance that no failures 
will occur in each shipment before H = 102.54 mileages. 

IV.  CONCLUSION AND FUTURE WORK 

In this paper, explicit formulae, based on previous 
independent observations, have been developed for 
computing conditional quantiles of some useful pivotal 
statistics. The quantiles are used to construct unbiased 
simultaneous prediction limits on the order statistics of all of 
k future samples using the results of a previous sample from 
the same underlying distribution belonging to invariant 
family. The results can be used to predict the total duration 
time in a Type II censoring life testing experiments, and to 
predict the lifetime of a k-out-of-n: F systems. Such results 
are required, for example, when a manufacturer wishes to 
assure with a high probability the acceptance of all k future 
shipments of a product. The computation procedures can be 
easily programmed and implemented for practical use. 
Although the quantiles of the pivotal statistics considered in 
this paper can be obtained through simulation, but it will be 
noted that simulation results are unstable; they vary from one 
to another. From theoretical as well as practical points of 
view, analytical solutions should be used if they are 
available. The results of this paper provide such analytical 
solutions. The exact prediction limits are found and 
illustrated with the numerical examples. The methodology 
described here can be extended in several different 

directions to handle various problems that arise in practice. 
We have illustrated the proposed methodology for the two-
parameter exponential and Weibull distributions. 
Furthermore, the techniques used in this paper can be 
applied to obtain explicit formulae for computing 
conditional quantiles relating to unbiased simultaneous 
prediction limits for any other log-location-scale 
distributions. 
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