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Abstract—We consider an application of the best L1 piecewise
monotonic data approximation method to univariate signal
restoration. We extend numerical examples concerned with the
L2 analogous method to the L1 case and we show the efficacy
of a relevant software package that implements the method in
data fitting and in denoising data from a medical image. The
piecewise monotonic approximation method makes the smallest
change to the data such that the first differences of the smoothed
data change sign a prescribed number of times. Our results
exhibit some strengths and certain advantages of the method.
Therefore, they may be helpful to the development of new
algorithms that are suitable to signal restoration calculations.

Index Terms—absolute value, data smoothing, divided dif-
ferences, L1-norm, piecewise monotonic approximation, signal
restoration

I. INTRODUCTION

L et {φ(xi) : i = 1, 2, . . . , n} be a sequence of values
of a signal φ(x) measured at the abscissae x1 < x2 <

· · · < xn, but these measurements include errors and the
data are to be used to provide a restoration to φ(x). Most
methods of data approximation assume that measurements
of function values can be approximated by a form that
depends on relatively few parameters. Spline functions, for
instance, are candidates for approximation, but sometimes it
is difficult to choose a suitable one. Therefore, Demetriou
and Powell [10] take the view that some useful smoothing
should be possible if the data fail to possess a property
that is usually obtained by the underlying function. They
assume that if the signal has turning points, then the number
of measurements is substantially greater than the number
of turning points. Therefore they propose algorithms that
modify the measurements if their first differences {yi+1−yi :
i = 1, . . . , n − 1} include more than k − 1 sign changes, a
condition which allows k monotonic sections to the smoothed
data, where k is a prescribed positive integer. In [10] (best
L2 approximation), the k− 1 optimal turning points and the
least sum of squares change to the data are computed in
O(n2 + kn log n) computer operations. The important result
in this work is the substantial reduction of the number of data
that need be considered in finding the optimal turning points,
among O(nk) combinations of possible combinations of
turning points. The special cases k = 1, 2 are solved in only
O(n) operations. Applications of the method in spectroscopy,
signal restoration and image processing are presented by [4],
[16], [26]) and references therein. For general references in
signal and image processing see [21] and [13].

In [7], piecewise monotonic data approximation is studied
in the sense of the least sum of the moduli of the errors (best
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L1 approximation). In general, a best L1 approximation has
the remarkable property, which makes it particularly suitable
to data smoothing when there are few gross errors in the
data, that the magnitudes of the errors make no difference to
the best fit (see, for example, [20]). The main result of [7] is
that a best L1 calculation, as the corresponding L2 one, can
be decomposed into optimal monotonic calculations between
adjacent turning points. L1PMA is the Fortran software
package that the author has developed [8] to implement the
method of [7] with certain extensions that improve efficiency.
L1PMA calculates a best L1 fit with at most k monotonic
sections of the data in O(n3 + kn2) computer operations.
This complexity reduces to O(n2) when k = 1 or k = 2.
The software package has been tested on a variety of data sets
showing in practice quadratic performance with respect to n.
The package employs techniques for calculating the median
and the best L1 monotonic approximation (k = 1), which
is an integral part of the package. The monotonic problem
during the last 60 years has received considerable attention in
various fields, including engineering, economics, operations
research and statistics.

Some advantages that are gained by employing the piece-
wise monotonic constraints to data approximation are as
follows. We avoid the assumption that φ(x) has a form that
depends of a few parameters, which occurs in many other
approximation techniques, as for example, in splines [3] and
wavelets [14]; the smoothing process is a projection because,
if it is applied to the smoothed data, then no changes are
made to; piecewise monotonicity is a property that occurs
in a wide range of underlying functions; any degree of
undulation of the data can be accommodated. Moreover, the
piecewise monotonic approximation method is particularly
suitable when the data errors are large and uncorrelated.

This paper is concerned with an application of the best
L1 piecewise monotonic data approximation method [8] to
univariate signal restoration. It presents a survey of the
method and extends some numerical examples from least
squares piecewise monotonic data approximation [9] to the
L1 case. There are many similarities as well as considerable
differences between these methods.

The paper is organized as follows. In Section II we outline
the method for best L1 piecewise monotonic data approxi-
mation. In Section III we consider numerical examples that
illustrate the method on data from a periodic function with
simulated errors and data from a noisy signal. The results
are analyzed, the smoothing capability of the method is
demonstrated and a direct comparison is made between the
results of our method and those of the analogous least squares
method. In Section IV we present some concluding remarks
and discuss on the possibility of future directions of this
research.
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II. BEST L1 PIECEWISE MONOTONIC DATA
APPROXIMATION

We regard the measurements as components {φi = φ(xi) :
i = 1, 2, . . . , n} of a n−vector φ. The user provides k and
specifies whether the first monotonic section is increasing or
decreasing. Then the method of [7] automatically derives the
optimal turning points and the best L1 fit. Specifically, the
method calculates a vector y that minimizes the sum of the
moduli of the errors

Φ(y) =
n∑

i=1

|yi − φi| (1)

subject to the piecewise monotonicity constraints

ytj−1 ≤ ytj−1+1 ≤ · · · ≤ ytj
, if j is odd

ytj−1 ≥ ytj−1+1 ≥ · · · ≥ ytj
, if j is even

}
, (2)

where the integers {tj : j = 0, 1, . . . , k}, namely the
positions of the turning points or extrema of the fit, satisfy
the conditions

1 = t0 ≤ t1 ≤ · · · ≤ tk = n. (3)

Since the integers {tj : j = 1, 2, . . . , k − 1} are variables
in the optimization calculation that gives a best L1 fit, the
number of combinations of integer variables is raised to the
order O(nk), which makes non practicable to investigate all
these combinations individually for optimality. Fortunately
the piecewise monotonic approximation problem has a rich
structure that allows an efficient calculation of an optimal fit.

To begin with, the constraints prevent the equation y =
φ, because if φ does not satisfy the piecewise monotonicity
constraints, then {tj : j = 1, 2, . . . , k − 1} are all different.
Moreover, the optimal value of ytj

is independent of the
components {yi : i 6= tj}, which gives the interpolation
conditions

ytj = φtj , j = 1, 2, . . . , k − 1. (4)

The most important property, however, is that each mono-
tonic section in a best L1 piecewise monotonic fit is an
optimal fit itself to the corresponding data, so it can be
obtained by a separate calculation. Indeed, the components
{yi : i = tj−1, tj−1 +1, . . . , tj} on [xtj−1 , xtj ] minimize the
sum of the moduli

tj∑
i=tj−1

|yi − φi| (5)

subject to the constraints

yi ≤ yi+1, i = tj−1, . . . , tj − 1, if j is odd (6)

or subject to the constraints

yi ≥ yi+1, i = tj−1, . . . , tj − 1, if j is even. (7)

In the former case the sequence {yi : i = tj−1, tj−1 +
1, . . . , tj} is a best L1 monotonic increasing fit to {φi :
i = tj−1, tj−1 + 1, . . . , tj} and on the latter case a best
L1 monotonic decreasing one. Therefore, provided that {ti :
i = 1, 2, . . . , k − 1} are known, the components of y can
be generated by solving a separate monotonic problem on
each section [xtj−1 , xtj

]. The problem with the decreasing
monotonicity constraints may be treated computationally as

the problem with the increasing monotonicity constraints
after reversing the order of the data. We introduce the
notation α(tj−1, tj) and β(tj−1, tj) for the least value of
(5) subject to the constraints (6) and (7) respectively. We
denote by δ(k, n) the least value of (1) at the required
minimum and, if k is odd, we obtain the expression δ(k, n) =
α(t0, t1) + β(t1, t2) + α(t2, t3) + · · · + α(tk−1, tk) and
analogously if k is even, where we replace the last term
in this sum by β(tk−1, tk).

The problem of minimizing (5) subject to (6) is a linear
programming problem that need not have a unique solution
(see [11], [12], [18] for general references and methods
on L1 approximation and linear programming). Although
it is usual to calculate the solution of a L1 approximation
problem by applying linear programming techniques (see,
[1], [2]), we have developed a method that is faster than
a general linear programming calculation. Specifically, the
calculation of a best monotonically increasing approximation
to φ seeks intervals where its components have different
constant values. In the L1 case these values are equal to
the median of the corresponding data points, while in the
L2 case they are equal to their mean value. The intervals are
formed by using the remarkable property that any constraints
which are satisfied as equalities by a best L1 approximation
subject to a subset of the monotonicity constraints are also
satisfied as equalities by a best L1 approximation subject to
all monotonicity constraints (6). The consideration of [5] that
the specific value of the median should be chosen carefully in
order that the final y satisfy the constraints (6) has been taken
into account in the development of Algorithm 2 of [8] that
performs the calculation of a best L1 monotonic increasing
fit on [xtj−1 , xtj

] together with all the numbers

α(tj−1, t) =
t∑

i=tj−1

|yi − φi|, t = tj−1, . . . , tj (8)

in O((tj − tj−1)2) computer operations. General algorithms
for the best L1 monotonic increasing approximation problem
are given by [17], [22] and [24].

Further, it is proved that an optimal fit y associated with
the integer variables {tj : j = 1, 2, . . . , k − 1} can split at
tk−1 into two optimal sections. One section that provides an
optimal fit on [x1, xtk−1 ], which in fact is similar to y with
one monotonic section less, and one section on [xtk−1 , xn]
that is a single best L1 monotonic fit to the remaining data.
Therefore with the initial values

δ(1, t) = α(t0, t), for t = 1, 2, . . . , n, (9)

the optimization problem can be expressed in terms of the
dynamic programming formula

δ(r, t) = min
1≤s≤t

[δ(r − 1, s) + α(s, t)], if r is odd (10)

or

δ(r, t) = min
1≤s≤t

[δ(r − 1, s) + α(s, t)], if r is even, (11)

where 1 ≤ t ≤ n. The implementation of these formulae
includes several options that are considered by [10] and
[7]. Demetriou [8], especially, has implemented this method
in Fortran and provided a software package that derives a
solution in O(n2m + km2) computer operations, where m
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is the number of local extrema of the data. For example, an
integer p is the index of a local maximum of the sequence
φi, i = 2, . . . , n − 1 if φp−1 ≤ φp and φp > φp+1, and
similarly for a local minimum. Since m is a fraction of n,
the complexity of the formulae (10) and (11) is reduced
at least be a factor of 4. Further, it is stated in [8] that
as more data are inserted into the calculation, that is as
n increases for a fixed k, or as the number of monotonic
sections increases by 2 for a fixed n, the rightmost extremum
of the associated optimal approximation increases as well.
The reported numerical results [8] show that increasing k
beyond 3 either has a small effect in the computation times
or no effect at all. Indeed, as k increases, the ranges where
the monotonic algorithm is applied are decreased due to the
increasing property of the rightmost extremum. We see that
the complexity of the piecewise monotonic approximation
method is dominated by the term n2m, but in practice the
mentioned properties restrict considerably the range of s
in the minimization formulae (10) and (11) and make the
calculation very efficient.

The method that gives a piecewise monotonic approxima-
tion may also be applied to the problem where inequalities
(2) are replaced by the reversed ones, in which case the first
section of the fit is decreasing. The latter problem may be
treated computationally as the former one after an overall
change of sign of φ.

III. NUMERICAL EXAMPLES IN SIGNAL RESTORATION
WITH PIECEWISE MONOTONICITY CONSTRAINTS AND L1

OPTIMALITY

To illustrate the efficacy of the method in signal restoration
we present calculations from two numerical examples that are
taken from [9]. In addition, the reader will be able to compare
the results of the least squares case of [9] with those of this
paper. We shall see that the results are very similar.

The first example is a best fit with k = 6 monotonic
sections to n = 100 measurements of the function

φ(x) = sin(5x)− x (12)

at equally spaced abscissae in the interval [−2.5, 2]. The mea-
surements were generated by adding uniformly distributed
random numbers from the interval (−0.5, 0.5) to the function
values φ(xi), i = 1, 2, . . . , n. The data are presented in
the second and the third column of Table I, although the
abscissae are irrelevant to this calculation. Without any
preliminary analysis, the data were fed to L1PMA, six mono-
tonic sections were required and the solution was reached
immediately in a common pc. The best L1 fit is presented
in the fourth column of Table I and the analogous best L2

fit is presented in the fifth column (the L2 fit is obtained
as described in [9]); the horizontal lines indicate the turning
point positions in either case. Fig. 1 shows the data and the
best L1 fit; the data are denoted by (+), the best fit by (o)
and the piecewise linear interpolant to the smoothed values
illustrates the fit.

The first attempt at fitting the data, on the purpose of
demonstrating some features of the piecewise monotonic
fit, was not entirely satisfactory. Indeed, the turning points
of the fit are at the abscissae x8, x50, x64, x78 and x89,
satisfying the interpolation conditions (4). The components
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Fig. 1. Graphical representation of the data given in Table I. The data of
column 2 annotate the x-axis. The data of column 3 are denoted by (+) and
the best L1 fit of column 4 by (o). The solid line illustrates the fit.
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Fig. 2. Best L1 fit (solid line) with k = 8 monotonic sections to n = 200
measurements (+) of function (12) produced as described in Section III.

of a best fit consist of ranges of constant values, each
such value being the median of the corresponding data
within a range. Of course, the monotonic algorithm finds
the median of any data values that are needed to achieve
monotonicity. For example, we see in the fourth column of
Table I that the components of an optimal fit that is obtained
by minimizing the function

∑7
i=3 |yi − φi| subject to the

constraints y3 ≤ y4 ≤ y5 ≤ y6 ≤ y7 have the values y3 =
y4 = y5 = y6 = y7 = 3.042, where 3.042 is the (unique)
median of the data {3.339, 2.852, 3.333, 2.765, 3.042}. The
analogous L2 values (fifth column) are y3 = y4 = y5 =
y6 = y7 = (

∑7
i=3 φi)/5 = 3.066 and are obtained by

minimizing the function
∑7

i=3(yi − φi)2 subject to the
constraints y3 ≤ y4 ≤ y5 ≤ y6 ≤ y7. Further, the median
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TABLE I
BEST FITS WITH k = 6 AND k = 8 MONOTONIC SECTIONS TO MEASUREMENTS OF FUNCTION (12)

   
Best Fit k=6 Best Fit k=8 

   
Best Fit k=6 Best Fit k=8 

 
xi φi yi (L1) yi (L2) yi (L1) yi (L2)  xi φi yi (L1) yi (L2) yi (L1) yi (L2) 

              
1 –2.50 2.066 2.066 2.066 2.066 2.066 51 –0.23 –0.710 –0.999 –0.855 –0.999 –0.855 
2 –2.45 2.839 2.839 2.839 2.839 2.839 52 –0.18 –0.999 –0.999 –0.855 –0.999 –0.855 
3 –2.41 3.339 3.042 3.066 3.042 3.066 53 –0.14 –0.678 –0.678 –0.678 –0.678 –0.678 
4 –2.36 2.852 3.042 3.066 3.042 3.066 54 –0.09 –0.186 –0.494 –0.340 –0.494 –0.340 
5 –2.32 3.333 3.042 3.066 3.042 3.066 55 –0.05 –0.494 –0.494 –0.340 –0.494 –0.340 
6 –2.27 2.765 3.042 3.066 3.042 3.066 56 0.00 –0.146 –0.146 –0.146 –0.146 –0.146 
7 –2.23 3.042 3.042 3.066 3.042 3.066 57 0.05 0.086 0.086 0.086 0.086 0.086 
8 –2.18 3.673 3.673 3.673 3.673 3.673 58 0.09 0.756 0.583 0.659 0.583 0.659 
9 –2.14 2.884 2.884 2.899 2.884 2.899 59 0.14 0.561 0.583 0.659 0.583 0.659 

10 –2.09 2.914 2.884 2.899 2.884 2.899 60 0.18 0.735 0.583 0.659 0.583 0.659 
11 –2.05 2.584 2.584 2.584 2.584 2.584 61 0.23 0.583 0.583 0.659 0.583 0.659 
12 –2.00 2.442 2.442 2.442 2.442 2.442 62 0.27 0.974 0.843 0.908 0.843 0.908 
13 –1.95 2.046 2.203 2.157 2.203 2.157 63 0.32 0.843 0.843 0.908 0.843 0.908 
14 –1.91 2.203 2.203 2.157 2.203 2.157 64 0.36 1.020 1.020 1.020 1.020 1.020 
15 –1.86 2.221 2.203 2.157 2.203 2.157 65 0.41 0.960 0.960 0.960 0.960 0.960 
16 –1.82 1.491 1.491 1.491 1.491 1.491 66 0.45 0.161 0.161 0.261 0.161 0.261 
17 –1.77 0.962 1.311 1.198 0.962 1.136 67 0.50 0.362 0.161 0.261 0.161 0.261 
18 –1.73 1.311 1.311 1.198 0.962 1.136 68 0.55 –0.195 –0.195 –0.195 –0.195 –0.195 
19 –1.68 0.886 1.311 1.198 0.886 0.886 69 0.59 –0.848 –0.848 –0.848 –0.848 –0.848 
20 –1.64 0.728 1.311 1.198 0.728 0.728 70 0.64 –1.157 –1.025 –1.057 –1.025 –1.057 
21 –1.59 0.227 1.311 1.198 0.227 0.227 71 0.68 –1.025 –1.025 –1.057 –1.025 –1.057 
22 –1.55 0.236 1.311 1.198 0.236 0.236 72 0.73 –0.989 –1.025 –1.057 –1.025 –1.057 
23 –1.50 0.700 1.311 1.198 0.700 0.700 73 0.77 –1.127 –1.127 –1.127 –1.127 –1.127 
24 –1.45 1.114 1.311 1.198 0.700 0.704 74 0.82 –1.753 –1.753 –1.753 –1.753 –1.753 
25 –1.41 0.369 1.311 1.198 0.700 0.704 75 0.86 –1.855 –1.855 –1.855 –1.855 –1.855 
26 –1.36 0.805 1.311 1.198 0.700 0.704 76 0.91 –1.951 –1.855 –1.876 –1.855 –1.876 
27 –1.32 0.527 1.311 1.198 0.700 0.704 77 0.95 –1.801 –1.855 –1.876 –1.855 –1.876 
28 –1.27 1.297 1.311 1.198 1.297 1.297 78 1.00 –2.169 –2.169 –2.169 –2.169 –2.169 
29 –1.23 1.576 1.311 1.198 1.507 1.542 79 1.05 –1.574 –1.703 –1.739 –1.703 –1.739 
30 –1.18 1.507 1.311 1.198 1.507 1.542 80 1.09 –1.703 –1.703 –1.739 –1.703 –1.739 
31 –1.14 1.924 1.311 1.198 1.924 1.924 81 1.14 –1.939 –1.703 –1.739 –1.703 –1.739 
32 –1.09 1.680 1.311 1.198 1.777 1.777 82 1.18 –1.185 –1.185 –1.185 –1.185 –1.185 
33 –1.05 1.874 1.311 1.198 1.777 1.777 83 1.23 –0.926 –1.185 –1.064 –1.185 –1.064 
34 –1.00 1.777 1.311 1.198 1.777 1.777 84 1.27 –1.202 –1.185 –1.064 –1.185 –1.064 
35 –0.95 1.519 1.311 1.198 1.627 1.693 85 1.32 –0.952 –0.952 –0.952 –0.952 –0.952 
36 –0.91 1.867 1.311 1.198 1.627 1.693 86 1.36 –0.899 –0.922 –0.911 –0.922 –0.911 
37 –0.86 1.627 1.311 1.198 1.627 1.627 87 1.41 –0.922 –0.922 –0.911 –0.922 –0.911 
38 –0.82 1.514 1.311 1.198 1.514 1.520 88 1.45 –0.594 –0.594 –0.594 –0.594 –0.594 
39 –0.77 1.525 1.311 1.198 1.514 1.520 89 1.50 –0.338 –0.338 –0.338 –0.338 –0.338 
40 –0.73 1.150 1.150 1.150 1.150 1.150 90 1.55 –0.376 –0.376 –0.376 –0.376 –0.376 
41 –0.68 0.967 0.967 0.967 0.967 0.967 91 1.59 –0.410 –0.410 –0.410 –0.410 –0.410 
42 –0.64 0.442 0.442 0.442 0.442 0.442 92 1.64 –0.727 –0.727 –0.727 –0.727 –0.727 
43 –0.59 –0.001 –0.001 –0.001 –0.001 –0.001 93 1.68 –1.166 –1.166 –1.147 –1.166 –1.147 
44 –0.55 –0.343 –0.178 –0.168 –0.178 –0.168 94 1.73 –1.129 –1.166 –1.147 –1.166 –1.147 
45 –0.50 –0.178 –0.178 –0.168 –0.178 –0.168 95 1.77 –1.578 –1.578 –1.578 –1.578 –1.578 
46 –0.45 0.016 –0.178 –0.168 –0.178 –0.168 96 1.82 –1.702 –1.702 –1.698 –1.702 –1.698 
47 –0.41 –0.359 –0.359 –0.359 –0.359 –0.359 97 1.86 –1.694 –1.702 –1.698 –1.702 –1.698 
48 –0.36 –0.949 –0.949 –0.710 –0.949 –0.710 98 1.91 –1.830 –1.830 –1.830 –1.830 –1.830 
49 –0.32 –0.470 –0.949 –0.710 –0.949 –0.710 99 1.95 –2.773 –2.773 –2.773 –2.773 –2.773 
50 –0.27 –1.035 –1.035 –1.035 –1.035 –1.035 100 2.00 –2.808 –2.808 –2.808 –2.808 –2.808 

              

     continued        

of an even number of data need not be unique. Indeed, the
components {y58, y59, y60, y61} of a best L1 monotonic fit
to the data {φ58, φ59, φ60, φ61} are all set by the monotonic
algorithm to 0.583, while the median of these data is in the
closed interval [0.583, 0.735].

In view of the preceding discussion, the first decreasing
section of the fit suggests that a better approximation is pos-
sible by increasing k. Therefore, a second attempt at fitting
these data with k = 8 resulted in the approximation values
that are presented in the sixth column of Table I, having two
extra turning points at x21 and x31 by enhancing the fit on the
interval [x17, x39], where the constant components provide a
poor fit; all the other turning points remained unchanged. The
corresponding values of the L2 fit with k = 8 are presented in
the seventh column. Besides that the L1 fit and the L2 fit have
the same turning points, we see that the L1 and L2 piecewise

monotonic approximation algorithms produce closely similar
results. The piecewise monotonic fits with k = 6 and k = 8
show substantial changes to the data when the errors are
large, but the monotonic constraints made no change to those
data in section [x89, x100] that satisfy the constraints, thus
giving yi = φi, for i = 89, 90, 91, 92, 93, 95, 96, 98, 99 and
100. Further, the particular fit with k = 6 (see Fig. 1) shows
that L1PMA achieves the piecewise monotonicity property it
sets out to achieve and, generally, any degree of undulation
in the data can be accommodated by choosing a suitable
k. Hence, we repeated the experiment with n = 200 data
points. Now the input to the program are both the data φ
and the number k = 8; the output is a best L1 fit with eight
monotonic sections, which is displayed in see Fig. 2.

The second example is a fit to 640 data points obtained by
the 239th vertical scan line through a 640 × 640 gray-scale
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Fig. 3. Scan line of a magnetic resonance imaging axial slice from [9].
Pixel intensities are denoted by (+).

noisy image from [9]. The pixel intensities are displayed
in Fig. 3. The data vary considerably and although they
exhibit some turning points, reader’s eye is not especially
attracted. We seek turning points that might reveal major
monotonic trends. We begin by noticing that the total number
of local extrema of the data is 126. Next, we make use of
the least squares method of [25] which is a variant of [10]
that includes the trend test of [19]. The input to this method
is only the data φ and the output is an optimal fit where the
number of monotonic sections is calculated automatically
by the method. We fed the data to the computer program of
[25] and the resultant fit gave automatically k = 70, thus
providing too many turning points.
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Fig. 4. Best L1 fit with k = 6 (solid line) to the signal of Fig. 3.
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Fig. 5. Best L1 fit with k = 8 (solid line) to the signal of Fig. 3.

Hence we carried out some runs with smaller numbers
of turning points, which gives more emphasis to major
monotonic trends. The data were fed to L1PMA and a best
L1 fit subject to the piecewise monotonicity constraints with
k = 6 was calculated immediately. The value of (1) equals
7175. Fig. 4 displays the data and the fit. The turning points
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Fig. 6. Best L1 fit with k = 10 (solid line) to the signal of Fig. 3.
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Fig. 7. Best L1 fit with k = 12 (solid line) to the signal of Fig. 3.

TABLE II
THE TURNING POINT INDICES OF THE BEST L1 AND THE BEST L2 FIT

WHEN k = 6

No L1 L2

0 1 1
1 223 223
2 319 322
3 356 356
4 387 389
5 445 445
6 640 640

indices of the fit are presented in the second column of Table
II and they are at the abscissae x223, x319, x356, x387 and
x445. Further, the turning points of the corresponding L2 fit
are at x223, x322, x356, x389 and x445, as it is displayed in
the third column of Table II, two of them being at slightly
different positions than those in the L1 fit. We see that the
L1 fit to the data is much smoother than are the data values
themselves, but we should not forget that the method has
revealed the k major monotonic sections. Thus, in case that
the L1 fit might be considered unsatisfactory, we carried out
a second run with k = 8, which gave automatically two
extra turning points at x361 and x369 by enhancing the fit of
Fig. 4 in the interval of adjacent turning points [x356, x387],
where the fit seems rather poor. The turning point indices
are presented in Table III, the L1 fit is presented in Fig.
5 and the sum of moduli of residuals is 5919. One more
run with k = 10, gave two extra turning points at x407

and x427 by enhancing the fit of Fig. 5 in the interval of
adjacent turning points [x387, x445]. The turning point indices
are presented in Table IV, the fit is presented in Fig. 6 and
the sum of moduli of residuals is 5047. We see in Fig. 6
that few noticeable peaks within the range are ignored. The
choices k = 8 or k = 10 may be considered satisfactory, in
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that the associated fit may be an adequate approximation in
revealing turning points and in-between trends that seem to
have real significance. Still, there is room for improvement.
Therefore we proceeded to the calculation of a best L1 fit
with k = 12, which gave two extra turning points at x280

and x296 that are inside the interval of adjacent turning points
[x223, x319] of the fit of Fig. 6. The k = 12 fit is presented
in Fig. 7, while the sum of moduli of residuals is 4566.

TABLE III
THE TURNING POINT INDICES OF THE BEST L1 AND THE BEST L2 FIT

WHEN k = 8

No L1 L2

0 1 1
1 223 223
2 319 322
3 356 356
4 361 361
5 369 369
6 387 389
7 445 445
8 640 640

In the attempt to provide structure in data when there
is no underlying mathematical function, the option of the
automatic calculation of turning points seems to be quite
important. Furthermore, it is not inefficient to use the trend
test algorithm of [25] for an initial estimation of the turning
points and then apply L1PMA with specific values of k. Of
course, the development of a test similar to [25] for the L1

case would be valuable.

TABLE IV
THE TURNING POINT INDICES OF THE BEST L1 AND THE BEST L2 FIT

WHEN k = 10

No L1 L2

0 1 1
1 223 223
2 319 322
3 356 356
4 361 361
5 369 369
6 387 389
7 407 407
7 427 427
7 445 445
8 640 640

In order not to be misled by the results in usual practices
with piecewise monotonic approximation, we mention some
ideas that failed to provide optimality. We saw in our exam-
ples that all turning points of a best L1 approximation with
k−2 sections were turning points of a best L1 approximation
with k sections. Also, the extra 2 turning points of the best
L1 fit with k sections were found in a range of constant
components of the best L1 fit with k − 2 sections. Hence
a best L1 approximation with k = 3 might be obtained
by improving the best L1 monotonic approximation after
reducing the search for the turning points to ranges of
constant components. Nonetheless, the conjecture has been
proved not to be true [6]. Moreover, the extra 2 turning points
in our example were located between adjacent turning points
of the best approximation with k− 2 sections. However, the
turning points of the best approximation with k− 2 sections

need not be turning points of a best approximation with k
sections, as it is shown by [7].

In the absence of any structure, this method requires
at least O(m3) operations when k ≥ 3, because it is
necessary to take account of all possible values of (8),
for ` = tj−1, . . . , tj , in order to find the integer variables
{tj : j = 1, . . . , k − 1}. Still, the remarks of the previous
paragraph suggest that for at least as many data as in Fig.
3, local improvements of a best fit with a prescribed k may
produce an adequate fit without undue computational cost.

Piecewise monotonic approximation reveals the most im-
portant turning points (peaks), while interpolating the data
at these points. By increasing k, piecewise monotonic ap-
proximation has the freedom to make the sum of moduli
of residuals smaller, while in practice it maintains the most
important turning points. This feature of piecewise mono-
tonic approximation is not shared with wavelet or spline
approximation, where it is difficult to represent the data at
a peak, because the presence of a peak introduces substan-
tial perturbations into the tail of the approximation. Hence
piecewise monotonic approximation provides a considerable
advantage over low-pass filtering, which usually results in
ringing and blurring artifacts (see, [15], [16], [26]). Weaver
[26], with respect to the use of least squares monotonic-
ity algorithms in fMRI, summarizes the primary advantage
of the monotonic increasing approximation as follows. It
smooths the data as little as possible without blurring the
edges; it leaves increases unchanged; both sharp and smooth
increases remain unchanged, so no smoothing occurs at all; it
avoids Gibb’s ringing. Best L1 approximation shows similar
behavior. In addition, since the arithmetic operations involved
in the calculation of a L1 piecewise monotonic approxima-
tion are comparisons mainly spent in finding the medians
of subranges of data during the monotonic calculations, the
L1 approximation process induces no round-off error in the
modified data. The exact arithmetic in the L1 calculation is
an unprecedented advantage to fitting integer data values, as
in the case of the data of Fig. 3.

IV. CONCLUDING REMARKS

Piecewise monotonic approximation method is relevant to
a wide range of applications. In this paper we have presented
an application that shows the effectiveness of the best L1

piecewise monotonic approximation to signal restoration.
Despite the large number of local minima that can occur in
this optimization calculation, the software package we have
developed gives a global solution in cubic complexity with
respect to the number of data, but in practice the complexity
is about quadratic. This software is suitable for calculations
that involve several thousand data points and it would be
most useful for real time processing applications.

A similar application of the analogous L2 problem shows
that the L1 and L2 algorithms produce closely similar results.
Both these algorithms are efficient for the problem they
solve, although the L2 algorithm, in general, is faster by
an order of magnitude. However, L1 norm in data smooth-
ing provides certain advantages and, occasionally, the L1

piecewise monotonic approximation method can provide a
suitable alternative to the use of the L2 piecewise monotonic
approximation method.
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In order to apply the piecewise monotonic approximation
method effectively, it would be very helpful to try to solve
particular signal processing problems, so as to receive guid-
ance from numerical results and from processing practices.
Moreover, it is an important practical question to decide
how large to make k. Signals in practice are piecewise
monotonic, but usually the number of monotonic sections
they contain is not known in advance. Prior knowledge
about the geometry of the signal may provide good estimates
of k. In certain applications in MR spectroscopy [16] we
often have good estimates of k that can be utilized by our
piecewise monotonic approximation methods. Furthermore,
there are some features of our examples that can guide
the development of new piecewise monotonic approximation
algorithms for signal restoration calculations.
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