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Abstract—Different regularities can be used to identify the
sequence among other sequences. Regularities allow us to infer
an information about the evolution of the sequence. Tandem
repeats are the most frequent in the genomes of eukaryotes.
Extraction of regularities is a widely studied problem. However,
searching for exact tandem repeats can be too restrictive. So,
a natural extension of the repetition is to allow errors. In
this paper, we consider the approximate period problem. In
particular, we consider an explicit reduction from the approx-
imate period problem to the satisfiability problem and present
experimental results for different satisfiability algorithms. Also,
we consider the approximate period problem for sequences of
motor primitives of robots. In particular, we use the approx-
imate period problem to obtain some meta-parameters that
adapt the global motion behavior. We try to use such meta-
parameters for learning to generalize motor primitives to a
different behavior by trial and error without re-learning the
task.

Index Terms—approximate period, penalty matrix, satisfia-
bility problem, genetic algorithm, robot motor primitives.

I. INTRODUCTION

INVESTIGATION of regularities plays an important role
for the detection of different knowledge (see e.g. [1]–[3]).

Various methods of extraction of regularities in a biological
sequence can be used to identify the sequence among other
sequences. Comparison of revealed regularities allows us to
infer an information about the evolution of the sequence. The
genomes of eukaryotes contain many regularities. Tandem
repeats are the most frequent. It should be noted that finding
occurrences of repeated substrings in biological sequences
is a widely studied problem. In particular, searching for
tandem repeats is used to reveal structural and functional
information. However, there are a relatively large number of
different errors in biological sequences. Therefore, searching
for exact tandem repeats can be too restrictive. A natural
extension of the repetition is to allow errors.

In this paper, we consider the notion of approximate
periods of strings which is an approximate version of periods.
This notion is first discussed in [4]. In particular, the approx-
imate period problem was proposed in [4]. In this paper, we
consider an approach to solve the problem. In particular, we
consider an explicit reduction from the approximate period
problem to the satisfiability problem.

II. PRELIMINARIES AND THE PROBLEM DEFINITION

The length of a string S is the number of letters in it and
is denoted as |S|. We use S[i] to denote the ith letter in the
string S, and S[i, j] to denote the substring of S consisting
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of the ith letter through the jth letter. For any alphabet Π,
we assume that Π∗ is the set of all strings over Π.

Let

Σ = {a1, a2, . . . , am}

be a fixed alphabet. Throughout the paper, we assume that
Γ is augmented alphabet

Γ = Σ ∪ {a0}

where a0 is a special symbol. Symbol a0 is called an indel
and represents the insertion or deletion of a particular symbol
in one string relative to another.

Traditionally the alignment notation has been used to
illustrate a comparison between strings. Let

X = {X1, X2, . . . , Xk}

is a set of strings over Σ. A multiple alignment of X is a
set

A = {A1, A2, . . . , Ak}

of strings over Γ such that |Ai| = n, Ai is a copy of Xi

into which n− |Xi| copies of a0 have been inserted, for all
1 ≤ i ≤ k.

A conventional way to measure the similarity between two
strings S and T is to calculate costs of local transformations.
Let δ be a distance function. We assume that δ is specified
by a penalty matrix. A penalty matrix M specifies the
substitution cost for each pair of letters and the insertion
and deletion cost for each letter. The weighted edit distance
between S and T is the minimum cost to convert S to T
using a penalty matrix.

Given two strings X , P and distance function δ, we define
approximate periods as follows. If there exists a partition of
X into disjoint blocks of substrings, i.e.,

X = P1 . . . Pr,

Pi 6= ε, r > 2, such that δ(P, Pi) < K for 1 ≤ i < r, and
δ(P ′, Pr) < K where P ′ is some prefix of P , we say that
P is a K-approximate period of X (see [4]).

We consider the following problem:
THE APPROXIMATE PERIOD PROBLEM (AP)
INSTANCE: A finite alphabet Γ, a string X from Γ∗, a

penalty matrix M , and a positive integer K.
QUESTION: Is there a string U ∈ Γ∗ such that U is a

K-approximate period of X?
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III. AN EXPLICIT REDUCTION FROM AP TO THE
SATISFIABILITY PROBLEM

The problem AP is NP-complete [4]. In particular, if |Γ| ≥
9, then there exists δ such that δ(a, a) = 0, δ(a, b) = δ(b, a),
for all a, b ∈ Γ, and AP is NP-complete [4]. It is shown in [5]
that AP problem is NP-complete for some penalty matrix M
and |Γ| ≥ 5. It is shown in [6] that if |Γ| ≥ 7 then there exists
δ such that δ(a, a) = 0, δ(a, b) = δ(b, a) for all a, b ∈ Γ,
and AP is NP-complete.

The 3-satisfiability problem (3SAT) is the problem of
determining if the variables of a given boolean function in
conjunctive normal form with 3 variables per clause (3-CNF)
can be assigned in such a way as to make the formula
evaluate to true (see e.g. [7]). The problem 3SAT is NP-
complete. However, it should be noted that solving various
hard problems with efficient satisfiability algorithms has
caused considerable interest (see e.g. [8]–[11]). Since AP is
NP-complete, it is natural to consider an explicit reduction
from AP to the satisfiability problem and try to solve AP
with some satisfiability algorithms.

In this paper, we assume that

δ(a, a) = 0,

δ(a, b) = δ(b, a),

δ(a, b) + δ(b, c) ≥ δ(a, c),

for all a, b, c ∈ Γ. Also, we assume that δ(a, b) is a
nonnegative integer, for all a, b ∈ Γ.

Let d denotes

max{dlog2Ke, max
0≤i≤m,0≤j≤m

dlog2 δ(ai, aj)e}.

We assume that

w[p] ∈ {0, 1},

w[i, j, p] ∈ {0, 1},

for all

0 ≤ i ≤ m,

0 ≤ j ≤ m,

0 ≤ p ≤ d.

Also, it is assumed that

δ(ai, aj) =
d∑

p=0

w[i, j, p]2p,

K =
d∑

p=0

w[p]2p.

It is clear that if r is a number of disjoint blocks of
substrings in a partition of X , then 2 < r ≤ |X|.

Let

∧
1≤i≤3

x[1, i], (1)

¬x[1, |X|+ 1], (2)

∧
1≤i≤|X|

(x[1, i] ∨ ¬x[1, i+ 1]). (3)

We use the functions (1) – (3) to select a number r of disjoint
blocks of substrings in a partition of X . In particular, we
assume that

r = i

if and only if

x[1, i] = 1

and

x[1, i+ 1] = 0.

Let

∧
1≤i≤|X|,

1≤j≤2|X|

∨
0≤k≤m

x[2, i, j, k], (4)

∧
1≤i≤|X|,

1≤j≤2|X|,

0≤k[1]<k[2]≤m

(¬x[2, i, j, k[1]] ∨

¬x[2, i, j, k[2]]), (5)

∧
1≤i≤|X|

∨
1≤j≤|X|,

1≤k≤2|X|

x[3, i, j, k], (6)

∧
1≤i≤|X|,

1≤j[1]≤j[2]≤|X|,

1≤k[1]<k[2]≤2|X|

(¬x[3, i, j[1], k[1]] ∨

¬x[3, i, j[2], k[2]]), (7)

∧
1≤i≤|X|,

1≤j[1]<j[2]≤|X|,

1≤k[1]≤k[2]≤2|X|

(¬x[3, i, j[1], k[1]] ∨

¬x[3, i, j[2], k[2]]), (8)

∧
1≤i[1]<i[2]≤|X|,

1≤j[2]<j[1]≤|X|,

1≤k[1]≤2|X|,

1≤k[2]≤2|X|

(¬x[3, i[1], j[1], k[1]] ∨

¬x[3, i[2], j[2], k[2]]), (9)
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∧
1≤i[1]<i[2]≤|X|,

1≤j≤|X|,

1≤k[2]<k[1]≤2|X|

(¬x[3, i[1], j, k[1]] ∨

¬x[3, i[2], j, k[2]]), (10)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k≤2|X|

(x[1, j] ∨ ¬x[3, i, j, k]), (11)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k≤2|X|,
0≤s≤m,

X[i] 6=as

(¬x[2, j, k, s] ∨ ¬x[3, i, j, k]), (12)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k≤2|X|,
0<s≤m

(¬x[2, j, k, s] ∨ x[3, i, j, k]). (13)

The functions (4) – (13) allow us to select substrings in a
partition of X . It is assumed that

Pi[j] = ak

if and only if

x[2, i, j, k] = 1.

It is easy to see that |P | ≤ |X|. Let

y[1, 1], (14)

¬y[1, |X|+ 1], (15)

∧
1≤i≤|X|

(y[1, i] ∨ ¬y[1, i+ 1]). (16)

We use the functions (14) – (16) to select |P |. In particular,
we assume that

|P | = i

if and only if

y[1, i] = 1

and

y[1, i+ 1] = 0.

Let

∧
1≤i≤|X|

∨
1≤j≤m

y[2, i, j], (17)

∧
1≤i≤|X|,

1≤j[1]<j[2]≤m

(¬y[2, i, j[1]] ∨ ¬y[2, i, j[2]]). (18)

We use the functions (17) and (18) to select P . It is assumed
that

P [i] = aj

if and only if

y[2, i, j] = 1.

Let

∧
1≤i≤|X|,

1≤j≤|X|

(¬x[1, i+ 1] ∨ ¬y[1, j] ∨

(
∨

1≤k≤2|X|

y[3, i, j, k])), (19)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k≤2|X|

(y[1, j] ∨ ¬y[3, i, j, k]), (20)

∧
1≤i≤|X|

(y[4, i] ∨ ¬y[4, i+ 1]), (21)

∧
1≤i≤|X|

(y[1, i] ∨ ¬y[4, i]), (22)

∧
1≤i≤|X|,

1≤j≤|X|

(¬x[1, i] ∨ x[1, i+ 1] ∨ ¬y[4, j] ∨

(
∨

1≤k≤2|X|

y[3, i, j, k])), (23)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k≤2|X|

(¬x[1, i] ∨ x[1, i+ 1] ∨

y[4, j] ∨ ¬y[3, i, j, k]), (24)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤k[1]<k[2]≤2|X|

(¬y[3, i, j, k[1]] ∨

¬y[3, i, j, k[2]]), (25)
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∧
1≤i≤|X|,

1≤j[1]<j[2]≤|X|,

1≤k[2]≤k[1]≤2|X|

(¬y[3, i, j[1], k[1]] ∨

¬y[3, i, j[2], k[2]]). (26)

The functions (19) – (26) allow us to select an alignment for
P . Let

∧
1≤i≤|X|,

1≤j≤|X|,

1≤s≤2|X|,

0≤t[1]≤m,

0≤t[2]≤m,

0≤p≤d

(¬x[1, i+ 1] ∨

¬y[1, j] ∨
¬x[2, i, s, t[1]] ∨
¬y[3, i, j, s] ∨
¬y[2, j, t[2]] ∨
z[1, i, s, p] = w[t[1], t[2], p]), (27)

∧
1≤i≤|X|,

1≤s≤2|X|,
0≤t≤m,

0≤p≤d

∨
1≤j≤|X|

(y[3, i, j, s] ∨

¬x[1, i+ 1] ∨
¬x[2, i, s, t] ∨
z[1, i, s, p] = w[t, 0, p]), (28)

∧
1≤i≤|X|,

1≤j≤|X|,

1≤s≤2|X|,

0≤t[1]≤m,

0≤t[2]≤m,

0≤p≤d

(¬x[1, i] ∨

x[1, i+ 1] ∨
¬y[4, j] ∨
¬x[2, i, s, t[1]] ∨
¬y[3, i, j, s] ∨
¬y[2, j, t[2]] ∨
z[1, i, s, p] = w[t[1], t[2], p]), (29)

∧
1≤i≤|X|,

1≤s≤2|X|,
0≤t≤m,

0≤p≤d

∨
1≤j≤|X|

(y[3, i, j, s] ∨

¬x[1, i] ∨
x[1, i+ 1] ∨
¬x[2, i, s, t] ∨
z[1, i, s, p] = w[t, 0, p]). (30)

We use the functions (27) – (30) to check distances
between letters in the alignment. Let

∧
1≤i≤|X|,
0≤p≤d

(¬x[1, i] ∨

z[1, i, 1, p] = z[2, i, 1, p]), (31)

∧
1≤i≤|X|,

1≤s≤2|X|

(¬x[1, i] ∨

¬u[i, s, 0]), (32)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
u[i, s, p])→ z[2, i, s, p])), (33)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
u[i, s, p])→ u[i, s, p+ 1])), (34)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
u[i, s, p])→ ¬z[2, i, s, p])), (35)
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∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
u[i, s, p])→ u[i, s, p+ 1])), (36)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
u[i, s, p])→ ¬z[2, i, s, p])), (37)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
u[i, s, p])→ u[i, s, p+ 1])), (38)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
¬u[i, s, p])→ ¬z[2, i, s, p])), (39)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
¬u[i, s, p])→ u[i, s, p+ 1])), (40)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
u[i, s, p])→ z[2, i, s, p])), (41)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
u[i, s, p])→ ¬u[i, s, p+ 1])), (42)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
¬u[i, s, p])→ z[2, i, s, p])), (43)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
z[2, i, s− 1, p] ∧
¬u[i, s, p])→ ¬u[i, s, p+ 1])), (44)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
¬u[i, s, p])→ z[2, i, s, p])), (45)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
¬u[i, s, p])→ ¬u[i, s, p+ 1])), (46)

∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
¬u[i, s, p])→ ¬z[2, i, s, p])), (47)
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∧
1≤i≤|X|,

1<s≤2|X|,
0≤p≤d

(¬x[1, i] ∨

((¬z[1, i, s, p] ∧
¬z[2, i, s− 1, p] ∧
¬u[i, s, p])→ ¬u[i, s, p+ 1])). (48)

The functions (31) – (48) allow us to check values of δ(P, Pi)
and δ(P ′, Pr), for all 1 ≤ i < r. Let

∧
1≤i≤|X|

(¬x[1, i] ∨ ¬z[3, i, d+ 1]), (49)

∧
1≤i≤|X|

(¬x[1, i] ∨ z[4, i]), (50)

∧
1≤i≤|X|,
0≤p≤d

(¬x[1, i] ∨ ((¬z[3, i, p+ 1] ∧

z[2, i, 2|X|, p] > w[p])→ ¬z[4, i]), (51)

∧
1≤i≤|X|,
0≤p≤d

(¬x[1, i] ∨ ((¬z[3, i, p+ 1] ∧

z[2, i, 2|X|, p] > w[p])→ z[3, i, p]), (52)

∧
1≤i≤|X|,
0≤p≤d

(¬x[1, i] ∨ ((¬z[3, i, p+ 1] ∧

z[2, i, 2|X|, p] < w[p])→ z[3, i, p]), (53)

∧
1≤i≤|X|,
0≤p≤d

(¬x[1, i] ∨ ((¬z[3, i, p+ 1] ∧

z[2, i, 2|X|, p] = w[p])→ ¬z[3, i, p]). (54)

To check the satisfiability of inequalities δ(P, Pi) < K and
δ(P ′, Pr) < K, for all 1 ≤ i < r, we use the functions
(49) – (54).

Let ξ be a conjunction of functions (1) – (54). It is not
hard to verify that there is a string U ∈ Γ∗ such that U is a
K-approximate period of X if and only if ξ is satisfiable.

Note that

α ⇔ (α ∨ β1 ∨ β2) ∧
(α ∨ ¬β1 ∨ β2) ∧
(α ∨ β1 ∨ ¬β2) ∧
(α ∨ ¬β1 ∨ ¬β2), (55)

α1 ∨ α2 ⇔ (α1 ∨ α2 ∨ β) ∧
(α1 ∨ α2 ∨ ¬β), (56)

4∨
j=1

αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(¬β1 ∨ α3 ∨ α4), (57)

l∨
j=1

αj ⇔ (α1 ∨ α2 ∨ β1) ∧

(
l−4∧
i=1

(¬βi ∨ αi+2 ∨ βi+1)) ∧

(¬βl−3 ∨ αl−1 ∨ αl), (58)

α = 1 ⇔ α, (59)

α = 0 ⇔ ¬α, (60)

β ∨ α1 = α2 ⇔ (α1 ∨ ¬α2 ∨ β) ∧
(¬α1 ∨ α2 ∨ β), (61)

l∧
j=1

αj → β ⇔ β ∨ (
l∨

j=1

¬αj), (62)

α < 1 ⇔ ¬α, (63)

α > 0 ⇔ α. (64)

Using relations (55) – (64) one can easily obtain an explicit
transformation of ξ into τ such that ξ ⇔ τ and τ is a 3-CNF.
Clearly, τ gives an explicit reduction from AP to 3SAT.

IV. EXPERIMENTAL SETUP

In our experiments, we have used heterogeneous cluster
(500 calculation nodes, Intel Core i7). Each test was runned
on a cluster of at least 100 nodes. Due to restrictions on
computation time (20 hours) we have used savepoints.

To obtain optimal solutions of AP we have used genetic
algorithms OA[1] (see [12]), OA[2] (see [13]), OA[3] (see
[14]), and OA[4] (see [15]) for the satisfiability problem.
Also, we have considered fgrasp (see [16]), posit (see [16]),
and GSAT with adaptive score function (see [17]) to solve
the satisfiability problem.

V. EXPERIMENTAL RESULTS FOR DNA DATA

We use real world data from EMBL – EBI database [18].
We consider eukaryotic DNA sequences. In particular, we
have created three test sets,
• Test[1]: substrings of 106 – 2 · 106 base pairs of DNA

sequences of 2 ·107 – 21 ·107 base pairs (e.g. Anopheles
gambiae, Callithrix jacchus);

• Test[2]: substrings of 105 – 2 · 105 base pairs of
DNA sequences of 106 – 107 base pairs (e.g. Candida
dubliniensis, Dictyostelium discoideum);

• Test[3]: substrings of 104 base pairs of DNA sequences.
Selected experimental results are given in Tables I – III.
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TABLE I
EXPERIMENTAL RESULTS FOR Test[1] DNA DATA

solver average time max time best time
fgrasp 19.44 hr 85.72 hr 4.12 min
posit 17.61 hr 90.53 hr 7.54 min
GSAT 14.5 hr 74.33 hr 3.22 min
OA[1] 12.26 hr 61.06 hr 14.7 min
OA[2] 3.57 hr 71.25 hr 11.96 min
OA[3] 1.23 hr 21.47 hr 8.27 min
OA[4] 56.2 min 19.48 hr 6.19 min

TABLE II
EXPERIMENTAL RESULTS FOR Test[2] DNA DATA

solver average time max time best time
fgrasp 7.21 hr 36.2 hr 3.2 min
posit 6.43 hr 41.8 hr 4.6 min
GSAT 3.11 hr 74.33 hr 1.1 min
OA[1] 2.88 hr 19.37 hr 4.88 min
OA[2] 41.32 min 22.18 hr 6.59 min
OA[3] 19.7 min 6.3 hr 3.08 min
OA[4] 12.54 min 2.19 hr 2.4 min

VI. SEQUENCES OF MOTOR PRIMITIVES

Control systems of robots can allow quick use of motor
primitives. The problem of learning of motor primitives is
well studied. It is possible to rapidly learn motor primitives
for many different complex behaviors, tennis-like swings
[19], T-ball batting [20], drumming [21], biped locomotion
[22], ball-in-a-cup [23], industrial applications [24]. How-
ever, ability to quickly and reliably use of different motor
primitives is insufficient for fast adaptation to variations
of the situation. Robots need an ability to select proper
sequences of motor primitives. In particular, robots need to
generalize motor primitives to a different behavior by trial
and error without re-learning the task. In some cases, motor
primitives can be adapted both spatially and temporally
without changing the overall shape of the motion [19]. In
particular, we can define meta-parameters as some small
set of parameters that adapt the global motion behavior.
A generalization of behaviors can be achieved by adapting
these meta-parameters. For instance, the end position can
be considered as a meta-parameter. Such approach was con-
sidered in the context of supervised learning for tennis-like
swings with static ball targets [19], object manipulation [25],
minigolf [26], drumming [27]. Also, supervised learning used
to generalize meta-parameters in real-time [28]. Also, such
approach was used in the context of reinforcement learning
[29]. A prediction of a trajectory gives us another example
of an adaptation of movement to situations. In particular, a
prediction of a trajectory from a previously demonstrated
set and refinement of this trajectory by motion planning
is used for an adaptation of movement [30]. It should be
noted that meta-parameters can be used to adapt to changes
in the behavior of the robot itself. For instance, quadrotor
vehicles are inherently unstable nonlinear systems. They
exhibit exceedingly complex behavior at high speeds. An
algorithm that exploits data from previous repetitions in
order to learn to precisely follow a predefined trajectory was
presented for quadrotor vehicles [31].

It is clear that sequences of motor primitives we can
consider as strings in the finite alphabet of motor primitives.
Let X be a sequence of motor primitives. If there is a string

TABLE III
EXPERIMENTAL RESULTS FOR Test[3] DNA DATA

solver average time max time best time
fgrasp 1.49 hr 8.88 hr 1.78 min
posit 52.82 min 9.03 hr 2.24 min
GSAT 24.9 min 2.62 hr 4.5 sec
OA[1] 21.3 min 1.88 hr 53 sec
OA[2] 3.02 min 43.6 min 35.2 sec
OA[3] 1.69 min 5.5 min 9.87 sec
OA[4] 48 sec 52.4 sec 36.1 sec

Fig. 1. Robot Neato XV-11 with an onboard computer and a camera.

U in the alphabet of motor primitives such that U is a K-
approximate period of X for some relatively small integer K,
then we can consider U as a meta-parameter. It is easy to see
that such meta-parameters can be useful for the formulation
of learning tasks for mobile robots. In particular, robots can
use such meta-parameters for learning to generalize motor
primitives to a different behavior by trial and error without re-
learning the task and to predict a trajectory from a previously
demonstrated sets.

In our experiments, we consider Neato XV-11 [32] with
an onboard computer and a camera (see Figure 1). We have
created two test sets,
• Test[4]: strings of 106 – 2 · 106 motor primitives;
• Test[5]: strings of 104 motor primitives.

Selected experimental results for SAT-solvers for sequences
of motor primitives are given in Tables IV, V.

TABLE IV
SAT-SOLVERS FOR Test[4] SEQUENCES OF MOTOR PRIMITIVES

solver average time max time best time
OA[1] 3.11 hr 5.83 hr 56 sec
OA[2] 44.2 min 6.38 hr 48.01 sec
OA[3] 16.3 min 28.9 min 11.8 sec
OA[4] 8.02 min 12.94 min 16.7 sec

TABLE V
SAT-SOLVERS FOR Test[5] SEQUENCES OF MOTOR PRIMITIVES

solver average time max time best time
OA[1] 37.6 sec 59.26 sec 9.09 sec
OA[2] 24.2 sec 2.17 min 13.4 sec
OA[3] 7.03 sec 29.39 sec 0.26 sec
OA[4] 1.69 sec 3.55 sec 0.31 sec

It is natural to consider some recurrent neural network for
learning to generalize motor primitives to a different behavior
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by trial and error without re-learning the task. In particular,
we can train some recurrent neural network N such that if X
is a sequence of motor primitives, then N(X) is a correction
sequence of motor primitives. In general, N(X) tries to
choose the proper sequence from the set of all sequences.
In this case, there are no preferences for the choice of the
sequence.

We can use a genetic algorithm for training a recurrent
neural network. In particular, we can consider a set of known
pairs (A,B), where A is a learned task and B is a correction
sequence of motor primitives for A. We can assume that
if the distance between X and A is relatively small, then
the distance between B and a correction sequence of motor
primitives for X is relatively small. Let f(Y ) be the value
of fitness function for Y . We assume that if the distance be-
tween X and A is relatively small and δ(Y1, B) > δ(Y2, B),
then f(Y1) < f(Y2). Also, we consider Hamming distance.
Let NGE be a recurrent neural network that uses a genetic
algorithm with δ. Let NGH be a recurrent neural network
that uses a genetic algorithm with Hamming distance.

Let U be a K-approximate period of a sequence of motor
primitives X . In this case, we can represent X as P1 . . . Pr,
where Pi 6= ε, r > 2, δ(U,Pi) < K for 1 ≤ i < r, and
δ(U ′, Pr) < K where U ′ is some prefix of U . Let C(U,Pi)
be a correction sequence of motor primitives, where U is the
learned task and Pi is a new task. Let

C(U) = {C(U,Pi) | 1 ≤ i < r}.

We can consider C(U) as the set of preferred correction
sequences for U . We can use a genetic algorithm for training
a recurrent neural network NGP such that if Y ∈ C(X) and
Z /∈ C(X), then f(Y ) > f(Z).

Let Trial(S(X)) be the number of trials that needed for
recurrent neural network S to correct X . Let Trial(S)[t]
be the average value of Trial(S(X)) for strings of t motor
primitives. Let

T (S, t) =
Trial(S)[t]

Trial(N)[t]
.

It is clear that we can consider values of T (S, t) as a mea-
sure of the quality of recurrent neural network S. Selected
experimental results are given in the Table VI.

TABLE VI
EXPERIMENTAL RESULTS FOR DIFFERENT RECURRENT NEURAL

NETWORKS

t 103 104 105 106

T (NGH , t) 0.56 0.43 0.28 0.27

T (NGE , t) 0.42 0.35 0.23 0.22

T (NGP , t) 0.14 0.05 0.012 0.003

It is clear that NGP gives us the best results. However,
X can be essentially aperiodic. In this case, we can find a
K-approximate period of X only for relatively large values
of K or for relatively small values of r. It is natural that for
larger value of K we need larger number of trials. Also, it is
clear that for relatively small values of r we need to consider
very large U . So, it is natural to consider experimental results
for NGP for different values of K and |U | (see Table VII).

TABLE VII
EXPERIMENTAL RESULTS FOR NGP WITH DIFFERENT K AND |U |

t 103 104 105 106

K < 3, |U | < 20 0.02 0.001 0.0008 0.0002

K < 5, |U | < 30 0.03 0.006 0.0013 0.0004

K < 9, |U | < 50 0.07 0.03 0.005 0.001

K ≥ 9, |U | < 50 0.36 0.24 0.09 0.03

|U | ≥ 50 0.39 0.31 0.18 0.15

VII. CONCLUSION

In this paper, we have considered the approximate period
problem. In particular, we have proposed an explicit reduc-
tion from the problem to the satisfiability problem. Also, we
have presented experimental results for different satisfiability
algorithms. Our experiments show that our explicit reduction
to the satisfiability problem can be used for solution of
the approximate period problem. It is clear that genetic
algorithms demonstrate better performance than local search
algorithms.

We have considered the approximate period problem for
sequences of motor primitives of robots. In particular, we
have used the approximate period problem to obtain some
meta-parameters that adapt the global motion behavior. We
have used such meta-parameters for learning to generalize
motor primitives to a different behavior by trial and error
without re-learning the task.
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