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Abstract—Existing theories of stiffened composite laminated 

plates usually cannot take the bonding imperfections which 

may exist on the interfaces between the plates and stiffeners 

into account. This paper developed a three-dimensional semi- 

analytical model for the free vibration analysis of stiffened 

composite laminates with interfacial imperfections based on 

the state space method and the linear spring layer model. This 

model considered the compatibility of out-of-plane stresses and 

the discontinuity of displacements on the interfaces between 

the plate and stiffeners, the transverse shear deformation and 

the rotary inertia of the plate and stiffeners. Meanwhile, there 

was no restriction to the thickness of the plate or the height of 

stiffeners. Several numerical examples carried out in the 

present work demonstrated an excellent predictive capability of 

this model in assessing the natural frequencies and vibration 

modes. Good agreement had been achieved between the results 

of this model and the results of the finite element code MSC. 

Nastran. Besides, the effects of the interfacial stiffness on the 

lowest four natural frequencies were investigated through the 

analysis of these numerical results. 

Index Terms—Stiffened composite plates, Interfacial 

imperfection, Free vibration analysis, Meshless method, 

Hamilton system, Linear spring-layer 

 

I. INTRODUCTION 

HE stiffened composite laminated plates/shells are widely 

used as structural components of aircrafts, missiles, and 

underwater vehicles, etc. Stiffening the plate/shell increases 

its load carrying capacity and prevents buckling especially in 

the case of in-plane loading. The primary advantage of 

stiffened constructions lies in the structural efficiency of the 

system, because great savings or conservation of weight can 

be attained with no sacrifice in strength or serviceability. The 

efficient use of these advanced structures requires  a good 

understanding of their system response characteristics to 

external causes, such as static response and free vibration. 

Dynamic analysis is an important issue for the structural 
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investigation and design. Determining the free vibration 

characteristics of a structural system often appears to be the 

fundamental task. Many researchers have investigated the 

free vibration of the stiffened composite laminated plates in 

the past [1-14]. The free vibration analysis for determining 

their natural frequencies has been performed in a number of 

ways [1]: 1) equivalent orthotropic plate model [2, 3], 2) 

composite beam-plate method [4, 5], 3) various matrix methods 

[6-8], 4) Rayleigh-Ritz method [9], 5) Lagrange multiplier 

methods [10, 11], 6) modal constraint method [12], 7) the finite 

difference method [13], and 8) the finite element method 

[14-16]. 

Due to the complexity and the large number of the 

parameters involved, extensive research efforts have been 

devoted to the free vibration analysis problems over the pas t 

years by many researchers and from a variety of aspects. 

Reinforcing the plate/shell with stiffeners complicates the 

analysis, and several assumptions must be made in order to 

facilitate a solution especially when the stiffeners are not 

identical or equally spaced. And the complication would 

further increase for composite laminated plate/shell structures. 

Unlike their homogeneous isotropic counterparts, the 

heterogeneous anisotropic constitution of composite 

laminated structures often leads to many unique phenomena 

that can occur on vastly different geometric scales. In early 

investigations, the classical laminate theory is implemented for 

the composite laminated plates. However, the laminates made 

of typical filamentary composite materials, like graphite-epoxy, 

are susceptible to the thickness effect because their shear 

modules are significantly smaller than their Young’s modules 

in the fiber direction. The high ratio of Young’s modulus to 

shear modulus renders the classical laminate theory 

inadequate for analysis of composite plates. The first-order 

shear deformable plate theory (FSDT) [17-20] assumes that the 

transverse shear deformation should vary linearly along the 

thickness direction (constant transverse shear strains). 

Similarly, a laminate is treated as an equivalent single-layer 

plate when the FSDT is applied to the analysis of laminated 

plates/shells. In such a way, the shear correction factor must 

be properly evaluated in order to represent the actual parabolic 

distribution of transverse shear deformation along the 

thickness direction in terms of a linear one. By the nature of the 

FSDT, the traction free condition at the plate surfaces cannot 

be satisfied. To overcome the drawbacks of the FSDT, the 

refined shear deformable plate models, including higher order 

deformable models [21-23], layered (zigzag) models, 3-D 

elasticity models [24-26] and other methods [27-29], have been 

developed. 
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These theories above are established on the hypothesis 

that there is no transverse shear deformation or rotator inertia, 

so they can neither take all elastic constants into account nor 

satisfy all fundamental equations. Therefore, the errors will 

increase as the thickness of plate increases and the stress at 

interface cannot be exactly calculated. However, by using the 

state-vector equation method [30-44], the thick plate/shell or 

laminated plate/shell problems can be treated without any 

assumptions regarding displacements and stresses. The 

solution provides the exact continuous field of transverse 

stresses and displacements across the thickness of laminated 

structure due to the transfer matrix technique employed. 

Furthermore, this theory considers the compatibility of 

out-of-plane stresses and displacements on the interface, the 

transverse shear deformation, and naturally the rotary inertia 

of the plate and stiffeners. According to this, Qing and Qiu [45] 

have developed a novel mathematical model for free vibration 

analysis of stiffened laminated plates based on the 

semi-analytical solution of the state space method. 

All of the above researches are conducted under a 

precondition that the stiffeners are assumed to be rigidly 

connected to the plate, so the bonding imperfections which 

may be introduced into the interface between the plate and 

stiffeners are not taken into account in those theories. But in 

fact, multifarious interlaminar debondings , like microcrack, 

inhomogeneity and cavity, are very likely to be introduced into 

the bond in the process of manufacture or service. During the 

service lifetime, these tiny flaws can get significant. Therefore, 

to avoid the local failure of bond or even the whole collapse of 

structure, the effect of imperfect interfaces on the structural 

behavior should be accurately evaluated. In recently years, 

Chen and Cai [46, 47], Chen and Lee [48], Chen and Jung [49] 

have used analytical methods and numerical methods in 

Hamilton system to research the problem of interfacial 

imperfection for composite laminated plates. 

This work investigated the problem of free vibration 

analysis of stiffened composite laminated plates with 

interfacial imperfections by using spring-layer model, 

meshfree method and state-vector equation theory. A 

three-dimensional semi-analytical model was developed and 

then used to gain the natural frequencies and vibration modes  

in numerical examples. The main advantage of this 

semi-analytical model is that the discontinuity of 

displacements and the compatibility of stresses on the 

interface between the laminated plate and stiffeners are taken 

into account. Besides, the present three-dimensional 

semi-analytical model accounts for the transverse shear 

deformation and rotary in governing equations of the 

structure without any initial assumptions regarding 

displacement and stress. 

II. MATHEMATICAL FORMULATIONS 

A. Meshless Semi-Analytical Model of the Composite 

Laminates with Bonding Imperfection 

Recently, mesh reduction techniques (meshless or meshfree 

methods), which are independent of geometric elements, have 

emerged as effective numerical techniques for solving science 

and engineering problems. Over the past decade, there have 

appeared many kinds of meshless methods in the literatures 

[50-58], such as the element-free Galerkin (EFG) method, the 

reproducing kernal particle method (RKPM), hp-clouds, the 

partition of unity method (PUM), the meshless local 

Petrov-Galerkin (MLPG) method, the smoothed particle 

hydrodynamics (SPH), the corrected smoothed particle 

hydrodynamics (CSPH) and the modified smoothed particle 

hydrodynamics (MSPH). For the Hamilton canonical equation 

of composite laminates, Li [59-62] has established a class of 

meshless methods based on the modified Hellinger-Reissner 

variational principle and radial basis functions. 

The shape function of the radial point interpolation method 

(RPIM) is given in Appendix A. By using RPIM shape 

function, the displacement vector Q  and the out-of-plane 

stress vector P at any point can be written as follows  

e

e

,
    

    
     

PP N 0

QQ 0 N
        

 (1) 

where, T[ ]u v wQ , u v w are the total displacement 

components along (x, y, z) coordinates, respectively; 
T[ ]

xz yz zz
  P , σxz, σyz and σzz are the out-of-plane (i.e. 

transverse) stresses; 
3 3[ ]diag N Φ , and Φ  is the shape 

function of RPIM; e e e T

e [ ( ) ( ) ( )]xz yz zzz z zP σ σ σ ; 

e e e T[ ( ) ( ) ( )]e z z zQ u v w . The superscript and subscript e 

denotes the values of all field nodes. The superscript T 

signifies matrix transposition. 

For the composite laminates with interfacial imperfections, 

an interfacial spring-layer model, which is similar with the 

model of an analytical method in references [46-49], is 

employed to describe the behavior between the upper and 

lower sub-laminates 
, 1 , , 1 ,

, 1 , , 1 ,
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[ ] ,

[ ]

tl bu tl bu
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    

    

    

 

 

 

 

 

 

  

  

       

(2) 

where, , 1tl

xz

  ,
, 1tl

yz

 
and , 1tl

zz

   denote the out-of-plane 

stresses of the top surface of lower sub-laminate; ,bu

xz

 , 
,bu

yz


 
and ,bu

zz


 
denote the out-of-plane stresses of the 

bottom surface of upper sub-laminate; 
, 1tlu 

,
, 1tlv 

and
, 1tlw 

 denote the displacements of the top 

surface of lower sub-laminate; 
,buu 

, 
,buv 

 and 
,buw 

 denote 

the displacements of the bottom surface of upper sub-laminate; 

xR , yR
and 

zR are stiffness parameters in the x, y, and z 

directions, respectively. Obviously, 0 ( , , )iR i x y z    
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corresponds to a perfect bonding, while ( , , )iR i x y z     

implies a completely delaminated case. 

Assuming that the spring-layer with n nodes has the same 

mesh as each layer of sub-laminates, the matrix form of (2) 

related to node set m1 in undelaminated region and node set m2 

in completely delaminated region can be straightly expressed 

as 
, 1 , ,

11 12

, 1 , ,

21 22

,

tl bu bu

e e e

tl bu bu

e e e

   



   





      
       
      

P P PT T
T

Q Q QT T
    

 (3) 

where,

1







    
     
    

I 0N 0 N 0
T

R I0 N 0 N
,

1

1 1 1
Diag( )

x xn y yn z zn
R R R R R R       R , 

0 ( , , , )
1

R i x y z j m
ij

   . 

Substituting P and Q into the modified H-R variation 

principle in three dimensional Cartesian coordinate system 

with (1), and applying the tools of variation and integration, 

the meshless formulation of the Hamilton canonical equation 

can be obtained from the first term of modified H-R variation 

principle, and the boundary term can be obtained from the 

second term. And then, adding the boundary term to the right 

side of the meshless formulation of Hamilton canonical 

equation, the governing equations of each single-layer of the 

composite laminate can be deduced. Considering the stress 

equilibrium equations and the displacement compatibility 

relations at layer interfaces (See (3) for the composite 

laminates with interfacial imperfections), the meshless 

semi-analytical model of the composite laminates with 

bonding imperfection can be obtained by using the transfer 

matrix technique. 

   
11 12

21 22

( ) (0)
,

( ) (0)

P

Q

h

h

     
       

      

ΓT TP P

ΓT TQ Q
   

 (4) 

where, T is the equivalent stiffness matrix. T[ ]
P Q

Γ Γ  is known 

as the equivalent external load vector. ( )hP  and ( )hQ  are the 

stress and displacement vectors relative to the bottom 

surface. (0)P  and (0)Q  are the stress and displacement 

vectors relative to the top surface. In addition, the detailed 

process of obtaining (4) can be found in Ref. [56-58]. 

B. Governing Equation of Stiffened Laminated Plate with 

Bonding Imperfection 

Geometry model and meshfree semi-analytical model of a 

concentrically stiffened laminated plate with four stiffeners are 

shown in Fig. 1. In present work, the plate and the stiffeners of 

a stiffened laminated plate are considered as two 

three-dimensional laminated structures with bonding 

imperfection. The semi-analytical three-dimensional models of 

the plate and the stiffeners are firstly developed by Hamilton 

canonical equation separately, and then these two models are 

united together by using the spring-layer model, ensuring the 

compatibility of stresses and the discontinuity of 

displacements on the interface between plate and stiffeners 

(See Fig. 1(b)). 

Field nodes in the problem domain are divided into two 

groups, one group that belongs to the interface between the 

plate and stiffeners, and the other group that does not belong 

to the interface (See Fig. 1(b)). Therefore, the semi-analytical 

three-dimensional model (5) of the plate can be expressed as 

(Body force is neglected) 
L U

11 12 13 14p 1 2 p 1

L U

21 22 23 24p 1 2 p 1

L U

31 32 33 34s 1 2 s 1

L U

41 42 43 44s 1 2 s 1

( ) ( )

( ) ( )
,

( ) ( )

( ) ( )

h h h

h h h

h h h

h h h

    
    

       
    
         

M M M MP P

M M M MQ Q

M M M MP P

M M M MQ Q
 

(5) 

where h1 is the thickness of laminated stiffeners; h2 is the 

thickness of the laminated plate; subscript s denotes the field 

nodes that belong to the interface between plate and stiffeners; 

subscript p  denotes the field nodes that do not belong to the 

interface between plate and stiffeners; subscripts L and U 

denote the bottom surface and top surface, respectively. 

In the semi-analytical three-dimensional models of the plate, 

the behavior equation (3) between the upper and lower 

sub-laminates can be recast as follows 
U L

p p

U L

p p

U L

s s

U L

s s

.

    
    
       

    
        

I 0 0 0P P

R I 0 0Q Q

0 0 I 0P P

0 0 R IQ Q
      

(6) 

Each laminated stiffener is also considered as an l-layered 

plate, and the assumed field node scheme in every layer is the 

same as the interface between the plate and stiffeners. For the 

laminated stiffeners of l layers, the semi-analytical 

z 

x 

y 

Field nodes 

Interfacial imperfections 

Background cells 

Interface between the stiffeners and plate 

h1 

h2 

Stiffeners 

(a)                                                               (b) 

Fig. 1. Geometry model and meshfree semi-analytical model of a concentrically stiffened laminated plate with four stiffeners 

(a) Geometry model; (b) meshfree semi-analytical model. 
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three-dimensional model can be expressed as 
L U

11 12s 1 s

L U

21 22s 1 s

( ) (0)
.

( ) (0)

h

h

    
    
    

S SP P

S SQ Q
     

(7) 

Assuming L U

p 1 p
( ) (0)h P P , L U

p 1 p
( ) (0)h Q Q  at the field 

nodes not belonging to the interfaces between plate and 

stiffeners, the semi-analytical three-dimensional model of the 

stiffeners can be recast as 
L U

p 1 p

L U

p 1 p

L U

11 12s 1 s

L U

21 22s 1 s

( ) (0)

( ) (0)
.

( ) (0)

( ) (0)

h

h

h

h

    
    
       

    
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I 0 0 0P P

0 I 0 0Q Q

0 0 S SP P

0 0 S SQ Q
    

 (8) 

In the semi-analytical three-dimensional models of the 

stiffeners, the behavior equation between the upper and lower 

sub-laminates can be recast as 
U L

p p

U L

p p

U L

s s

U L

s s

.

    
    
       

    
        

I 0 0 0P P

0 I 0 0Q Q

0 0 I 0P P

0 0 R IQ Q
     

(9) 

Uniting (5), (8) and (9), the overall semi-analytical model of 

the stiffened laminated plate is  
L

11 12 13 14p 1 2

L

21 22 23 24p 1 2

L

31 32 33 34s 1 2

L

41 42 43 44s 1 2

U

p

U

p

U

11 12 s

21 22 s

( )

( )

( )

( )

(0)

(0)

(0)

h h

h h

h h

h h
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      
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(0)

 
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(10) 

Namely, 
L U

11 121 2

L U

21 221 2

( ) (0)
,

( ) (0)

h h

h h

    
    

     

D Dp p

D Dq q
    

(11) 

where, 
L L L T

p s
[ , ]p P P , 

L L L T

p s
[ , ]q Q Q , 

U U U T

p s
[ , ]p P P , 

U U U T

p s
[ , ]q Q Q . 

For natural frequency problem, the top surface and the 

bottom surface are stress-free (the stress vector 
L U

1 2
( ) (0) 0h h  p p ). The following equation can be 

deduced from (11) 

   U

12
(0) 0.D q

         
 (12) 

The determinant of the characteristic matrix in (12) must be 

zero, namely 

12
( ) 0. D

          
(13) 

(13) is an implicit polynomial equation which includes the 

natural frequency . And the natural frequency   can be 

obtained from the characteristic polynomial of (13) by the 

bisection method. 

III. NUMERICAL EXAMPLES 

Regarding the interfacial imperfections, we always take 

0zR   to avoid the possibility of material penetration 

phenomenon which is physically impossible. In this case the 

continuity of transverse displacement w is ensured between 

any two adjacent layers contacting with each other, but a 

shear sliding in the plate plane is allowed. We also assume that 

the two compliance constants in the plate surface be the same, 

and 

22 22

x y

E E
R .

R h R h



 
 

         

 (14) 

In present work, the numerical computations have been 

performed by using MATLAB 7.5.0 (R2007b) in DELL 

PRECISION T3500. The natural frequencies and the vibration 

modes are obtained for an eccentrically stiffened plate with 

double stiffeners. 

A square angle-ply laminated plate applied with uniform 

pressure on the bottom surface (See Fig. 2) is employed to 

illustrate the versatility of the presented method. The 

laminated plate is eccentrically stiffened by double stiffeners 

along the y-direction, and the material strong direction is 

perpendicular to the longitudinal axis of the stiffeners. The 

boundary case is  the complete clamp support (CCCC). The 

laminated plate and the laminated stiffeners have the same 

stacking sequence and all the layers of the plate and the 

stiffeners have the same material properties. And the material 

properties of each single layer of the laminated plate and the 

a 

a 

l 

l 

l 

b 

h 

t 

Geometry parameters: 

a = 1.2  

l = 0.4 

t = 0.04 

b = 0.04 

h = 0.02 

Fig. 2. An eccentrically stiffened plate with double stiffeners 

 

IAENG International Journal of Applied Mathematics, 44:1, IJAM_44_1_04

(Advance online publication: 13 February 2014)

 
______________________________________________________________________________________ 



 

stiffeners are as follows: 

E1 = 0.9973×10
11

, E2 = 0.5422×10
11

, E3 = 0.5287×10
11

, G12 = 

0.26293×10
11

, G23 = 0.26681×10
11

, G31 = 0.15991×10
11

, v12 = 

0.231243, v31 = 0.0321923, v23 = 0.195952. 

The schematic diagram of background cells, field nodes and 

influence domains of this stiffened composite laminated plate 

with interfacial imperfections are shown in Fig. 3 (483(23×21) 

field nodes and 81(9×9) square background cells for laminated 

plate, 63(3×21) field nodes and 18(2×9) rectangular 

background cells for each stiffener). Critical and complex areas 

such as the stiffeners are discretized with high density field 

nodes and small-sized background grids for proper results. 

The distribution schemes of field nodes, background grids 

and Gauss points are refined to achieve 1% convergence of 

the fundamental frequency. For Gauss integral, an 8×8 

quadrature scheme (i.e., 64 Gauss points in each background 

grid) is employed to evaluate domain integrals. The problem 

domains of the plate and the stiffeners are represented by 

1296(36×36) and 108 (3×36) field nodes, 225 (15×15) and 45 

(3×15) rectangular background cells respectively in this 

numerical example. 

The accuracy performance of the three-dimensional 

semi-analytical model is demonstrated through these 

numerical examples. For the purpose of comparison, a finite 

element analysis model of this rectangular composite 

laminated plate stiffened by double stiffeners is developed 

using the finite element analysis code MSC.Nastran/Patran, as 

shown in Fig. 4. This three-dimension finite element model can 

be subdivided into the laminated plate group and the stiffeners 

group. The results of finite element code MSC.Nastran are 

obtained by the 8-node Hex Solid64. And the stiffeners  are 

assumed to be rigidly connected to the plate. 

     
Fig. 4. The finite element analysis model developed in MSC.Patran 

for stiffened laminated plate with double stiffeners 

 

The results of the lowest 6 natural frequencies obtained 

from the present method and from the MSC.Nastran are listed 

in Table 1. For comparison purpose, the interfacial 

imperfections between plate and stiffeners are not taken into 

account (that is 0R R   ), the stacking sequences of the 

plate and the stiffeners are [0/0/0] and [0/90/0] respectively, 

and the plate thickness t = 0.04, the stiffeners thickness h = 

0.02. The lowest 3 vibration modes of the present method 

coincide with those of the MSC.Nastran, as presented in Table 

3. It is obvious that the lowest 6 natural frequencies and the 

lowest 3 vibration modes obtained by present method are in 

good agreement with the results of MSC.Nastran. In addition, 

it can be seen from Table 1 and 3 that the thickness of the 

stiffeners has a significant influence on the natural 

frequencies and the vibration modes of the structure. 

Influence of the stiffness of the imperfect interface between 

the laminated plate and stiffeners on the lowest 4 natural 

frequencies is listed in Table 2. It can be seen from Table 2 that 

the natural frequencies decrease with the increasing of value R 
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Fig. 3 Schemes diagram of field nodes and background grids of the laminated plate and the stiffeners. 
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since the total stiffness of the stiffened laminated plate 

decreases as the value R increases. With the value R 

increasing, the greater the thickness ratio of plate and 

stiffeners is, the more pronounced the decrease of the natural 

frequencies will be. 

IV. CONCLUDING REMARKS 

The spring-layer model and the state-vector equation 

theory have been applied to free vibration analysis of stiffened 

composite laminated plates with interfacial imperfections 

based on meshfree method. A three-dimensional 

semi-analytical model is developed and used to gain the 

natural frequencies and the vibration modes in numerical 

examples. Extensive numerical results are presented for 

stiffened composite laminated plates with interfacial 

imperfections, showing an excellent predictive capability of 

this three-dimensional semi-analytical model. These numerical 

results also reveal the effects of the thickness of laminated 

stiffeners and the stiffness of interfacial imperfections on the 

natural frequencies. The natural frequencies decrease with the 

decreasing of the interfacial imperfection stiffness, since it 

reduces the overall stiffness of the stiffened laminated plate. 

And the greater the thickness ratio of plate and stiffeners is, 

the more pronouncedly the natural frequencies will decrease 

when the interfacial imperfection stiffness between the plate 

and the stiffeners is increased.

TABLE 1 COMPARISON BETWEEN THE NATURAL FREQUENCIES (HZ) OF PRESENTED METHOD AND T HOSE OF MSC.NASTRAN 

Stacking 

sequence 
h  

Mode number 

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

[0/0/0] 

0.02 

Present 248.7656 482.5879 516.0473 725.9607 840.2212 945.4030 

MSC 247.06 474.6 521.88 712.17 835.71 961.34 

Error (%) 0.6904 1.6831 -1.1176 1.9364 0.5398 -1.6578 

0.04 

Present 271.6865 510.2297 565.4324 775.97 929.6519 981.8807 

MSC 264.8 521.57 539.98 756.39 948.51 960.59 

Error (%) 2.6306 -2.1743 4.7136 2.5886 -1.9882 2.2164 

[0/90/0] 

0.02 

Present 252.7400 493.3325 520.8590 737.3743 859.8646 989.0988 

MSC 249.88 485.07 524.34 721.32 853.25 967.48 

Error (%) 1.1445 1.7034 -0.6639 2.2257 0.7752 2.2345 

0.04 

Present 279.5699 516.7317 582.1727 793.7975 930.8429 997.1359 

MSC 271.26 526.35 558.18 772.64 960.65 979.23 

Error (%) 3.0634 -1.8274 4.2984 2.7383 -3.1328 1.8286 

 

TABLE 2 INFLUENCE OF THE STIFFNESS OF INTERFACIAL IMPERFECTIONS BETWEEN THE LAMINATED PLATE AND STIFFENERS ON THE 

LOWEST 4 NATURAL FREQUENCIES (HZ) 

Stacking 

sequence 
h 

Mode 

number 
R = 0 R = 0.1 R = 0.2 R = 0.3 R = 0.4 R = 0.5 

[0/0/0] 

0.02 

Mode 1 248.7656 248.5847 248.4155 248.2565 248.1061 247.9656 

Mode 2 482.5879 482.1018 481.6631 481.2686 480.9102 480.5811 

Mode 3 516.0473 515.5038 514.9965 514.5223 514.0790 513.6623 

Mode 4 725.9607 725.2811 724.6497 724.0304 723.4521 722.9009 

0.04 

Mode 1 271.6865 271.3124 271.0601 270.7795 270.4979 270.2239 

Mode 2 510.2297 509.1285 508.1433 507.2345 506.2991 505.2389 

Mode 3 565.4324 564.1807 562.9259 561.6267 560.1913 558.3397 

Mode 4 775.9706 774.2385 772.6305 771.1207 769.6925 768.3280 

0.06 

Mode 1 306.0946 305.3240 304.5966 303.9100 303.2465 302.6029 

Mode 2 515.8279 514.1575 512.7189 511.4517 510.3197 509.2869 

Mode 3 664.2018 661.4015 658.6880 656.0379 653.4273 650.8337 

Mode 4 857.0686 853.5778 850.4189 847.5020 844.7703 842.1919 

[0/90/0] 

0.02 

Mode 1 252.7400 252.4764 252.2152 251.9470 251.6235 251.5498 

Mode 2 493.3325 492.4999 491.6704 490.8235 489.9456 489.0196 

Mode 3 520.8590 519.7417 519.0612 518.4909 517.9774 517.5070 

Mode 4 737.3743 736.3535 735.6210 734.5617 733.7050 732.8957 

0.04 

Mode 1 279.5699 278.6707 277.5483 275.8785 272.4204 270.0456 

Mode 2 516.7317 515.5818 514.5581 513.6375 512.9140 512.0398 

Mode 3 582.1727 580.1945 578.2228 576.2480 574.2516 572.2489 

Mode 4 793.7975 791.5412 789.3953 787.3367 785.3464 765.5850 

0.06 

Mode 1 319.1994 318.0396 316.5860 304.1609 301.9586 298.2023 

Mode 2 525.7963 524.0049 522.4461 521.0640 519.8192 518.6862 

Mode 3 687.8515 683.9910 680.1788 676.3583 672.4580 668.3700 

Mode 4 871.6583 867.7548 864.0889 860.5820 857.1975 853.8217 
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TABLE 3 LOWEST 3 VIBRATION MODES OF PRESENTED METHOD COINCIDE WITH T HAT OF MSC.NASTRAN 

h Mode number MSC.Nastran Present 
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APPENDIX A 

Consider a continuous function u(x) defined on a 2D 

domain Ω with a set of suitably located nodes in it. An 

interpolation of u(x) in the neighborhood of a point XQ using 

RBFs and polynomial basis is written as  

( ) ( ) ( ) ( ) ( )
Q Q

1 1

T T( ) ( ) ,

n m
u a p b

i j i
i j

  
 

 

x R x x x x
i

R x a p x b

   (A.1) 

with the constraint 

T

1

( ) ( ) , 1,2, , ,
m

j i m

j

j m


   p x b p x a 0

    

(A.2) 

and the vectors a, b, T ( )R x and T ( )p x in (A.1) are defined as 

T

1 2[ ] ,na a aa
      

(A.3a) 

T

1 2[ ] ,mb b bb
      

 (A.3b) 

T

1 2 3( ) [ ( ), ( ), ( ), , ( )],nR x R x R x R x R x
   

(A.3c) 

T

1 2 3( ) [ ( ), ( ), ( ), , ( )].mp x p x p x p x p x
   

 (A.3d) 

Here, ( )iR x is a radial basis function associated with node i 

(i.e., for the modified multiquadrics (MQ) used in this present 

work, 2 2( ) [ ( ) ]q

i c cR r d x  , where 
c  and q are shape 

parameters, and 
cd  is a characteristic length that relates to the 

nodal spacing in the local support domain of the point of 

interest x, and it is usually the average nodal spacing for all the 

nodes in the local support domain); n is the number of nodes in 

the neighborhood of XQ, ( )jp x is a monomial in the space 

coordinates T [ , ]x yx ; m is the number of monomial basis 

functions (usually m<n); 
Q( )ia x and

Q( )jb x , which vary with 

the point XQ, are coefficients of ( )iR x and ( )jp x , 

respectively. 

  When utilizing radial basis functions, several shape 

parameters need to be determined for good performance. In 

general, these parameters can be determined by numerical 

examinations for given types of problems. For example, Wang 

and Liu left the parameter q open to any real variable, and 

found that q = 0.98 or 1.03 led to good results in the analysis of 

two-dimensional solid and fluid mechanics problems in the 

Lagrangian system [61, 62]. In the present work, the optimum 

values of the shape parameters are obtained by repetitious 

numerical experimentation for the present three-dimensional 

model. Here the optimum values of shape parameters for the 

MQ are determined as 
c

 = 0.03 and q = 1.03. 

  Requiring that the function u(x) given by (A.1) equals its 

value at n nodes in the vicinity of the point XQ, we get the 

following set of simultaneous linear algebraic equations for 

the coefficients Q( )ia x and Q( )jb x  

  0 ,s m U R a P b          (A.4) 

where, T

1 2[ ]s nu u uU , 
2 2( ) ( ) ,k k i k ir x x x x     

1 1 2 1 1

1 2 2 2 2

0

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n n n

R r R r R r

R r R r R r

R r R r R r

 
 
 
 
 
 

R , 

1 1 1

2 2 2

1 ( )

1 ( )

1 ( )

m

m

m

n n m n

x y p

x y p

x y p

 
 
 
 
 
 

x

x
P

x

. 

(A.4) and (A.2) can be expressed in matrix form as  

0

0T
.

ms

s

m

    
      
    

R PU a
U Ga

P 00 b
    

(A.5) 

  The solution of (A.5) is  
1

0 ,s

a G u            (A.6) 

where,
0

T

m

m

 
  
 

R P
G

P 0
. And conditions (A.2) ensure that the 

matrix G is non-singular and hence invertible. Thus (A.1) 

becomes 

 T T 1 T

1

( ) ( ) ( ) ( ) ,
n

s s i i

i

u u



   x R x p x G U Φ x U

   

(A.7) 

where 

 
 

T T T 1

1 2 1

( ) ( ) ( )

( ), ( ), , ( ), ( ), , ( ) .n n n m    



 

 



Φ x R x p x G

x x x x x  
(A.8) 

  The derivatives of ( )n x can be obtained as follows 

( ) ( ) ( )
( ( )) .

( )

     
    

     

R x R x p x
GΦ x

p xx x x x
   

(A.9) 
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