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Free Vibration Analysis of Stiffened Composite
Laminated Plates with Interfacial Imperfections

Liu Yanhong, Li Dinghe, Wang Yanli

Abstract—Existing theories of stiffened composite laminated
plates usually cannot take the bonding imperfections which
may exist on the interfaces between the plates and stiffeners
into account. This paper developed a three-dimensional semi-
analytical model for the free vibration analysis of stiffened
composite laminates with interfacial imperfections based on
the state space method and the linear spring layer model. This
model consideredthe compatibility of out-of-plane stresses and
the discontinuity of displacements on the interfaces between
the plate and stiffeners, the transverse shear deformation and
the rotary inertia of the plate and stiffeners. Meanwhile, there
was no restriction to the thickness of the plate or the height of
stiffeners. Sewveral numerical examples carried out in the
presentwork demonstratedan excellent predictive capability of
this model in assessing the natural frequencies and vibration
modes. Goodagreement had been achieved between the results
of this model and the results of the finite element code MSC.
Nastran. Besides, the effects of the interfacial stiffness on the
lowest four natural frequencies were investigated through the
analysis of these numerical results.

Index Terms—Stiffened composite plates, Interfacial
imperfection, Free vibration analysis, Meshless method,
Hamilton system, Linear spring-layer

I. INTRODUCTION

HE tiffened composite laminated plates/shells are widely
used as structural components of aircrafts, missiles, and
underwater vehicles, etc. Stiffening the plate/shell increases
its load carrying capacity and prevents buckling especially in
the case of in-plane loading. The primary advantage of
stiffened constructions lies in the structural efficiency of the
system, because great savings or conservation of weight can
be attained with no sacrifice in strength or serviceability. The
efficient use of these advanced structures requires a good
understanding of their system response characteristics to
external causes, such as static response and free vibration.
Dynamic analysis is an important issue for the structural
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investigation and design. Determining the free vibration
characteristics of a structural system often appears to be the
fundamental task. Many researchers have investigated the
free vibration of the stiffened composite laminated plates in
the past [1-14]. The free vibration analysis for determining
their natural frequencies has been performed in a number of
ways [1]: 1) equivalent orthotropic plate model [2, 3], 2)
composite beam-plate method [4, 5], 3) various matrix methods
[6-8], 4) Rayleigh-Ritz method [9], 5) Lagrange multiplier
methods [10, 11], 6) modal constraint method [12], 7) the finite
difference method [13], and 8) the finite element method
[14-16].

Due to the complexity and the large number of the
parameters involved, extensive research efforts have been
devoted to the free vibration analysis problems over the past
years by many researchers and from a variety of aspects.
Reinforcing the plate/shell with stiffeners complicates the
analysis, and several assumptions must be made in order to
facilitate a solution especially when the stiffeners are not
identical or equally spaced. And the complication would
furtherincrease forcomposite laminated plate/shell structures.
Unlike their homogeneous isotropic counterparts, the
heterogeneous anisotropic constitution of composite
laminated structures often leads to many unique phenomena
that can occur on vastly different geometric scales. In early
investigations, the classical laminate theory is implemented for
the composite laminated plates. However, the laminates made
oftypical filamentary composite materials, like graphite-epoxy,
are susceptible to the thickness effect because their shear
modules are significantly smaller than their Young’s modules
in the fiber direction. The high ratio of Young’s modulus to
shear modulus renders the classical laminate theory
inadequate for analysis of composite plates. The first-order
sheardeformable plate theory (FSDT) [17-20] assumes that the
transverse shear deformation should vary linearly along the
thickness direction (constant transverse shear strains).
Similarly, a laminate is treated as an equivalent single-layer
plate when the FSDT is applied to the analysis of laminated
plates/shells. In such a way, the shear correction factor must
be properly evaluated in order to represent the actual parabolic
distribution of transverse shear deformation along the
thickness direction in terms of a linear one. By the nature of the
FSDT, the traction free condition at the plate surfaces cannot
be satisfied. To overcome the drawbacks of the FSDT, the
refined shear deformable plate models, including higher order
deformable models [21-23], layered (zigzag) models, 3-D
elasticity models [24-26] and other methods [27-29], have been
developed.
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These theories above are established on the hypothesis
that there is no transverse shear deformation or rotator inertia,
so they can neither take all elastic constants into account nor
satisfy all fundamental equations. Therefore, the errors will
increase as the thickness of plate increases and the stress at
interface cannot be exactly calculated. However, by using the
state-vector equation method [30-44], the thick plate/shell or
laminated plate/shell problems can be treated without any
assumptions regarding displacements and stresses. The
solution provides the exact continuous field of transverse
stresses and displacements across the thickness of laminated
structure due to the transfer matrix technique employed.
Furthermore, this theory considers the compatibility of
out-of-plane stresses and displacements on the interface, the
transverse shear deformation, and naturally the rotary inertia
ofthe plate and stiffeners. According to this, Qing and Qiu [45]
have developed a novel mathematical model for free vibration
analysis of stiffened laminated plates based on the
semi-analytical solution of the state space method.

All of the above researches are conducted under a
precondition that the stiffeners are assumed to be rigidly
connected to the plate, so the bonding imperfections which
may be introduced into the interface between the plate and
stiffeners are not taken into account in those theories. But in
fact, multifarious interlaminar debondings, like microcrack,
inhomogeneity and cavity, are very likely to be introduced into
the bond in the process of manufacture or service. During the
service lifetime, these tiny flaws can get significant. Therefore,
to avoid the local failure ofbond or even the whole collapse of
structure, the effect of imperfect interfaces on the structural
behavior should be accurately evaluated. In recently years,
Chen and Cai [46, 47], Chen and Lee [48], Chen and Jung [49]
have used analytical methods and numerical methods in
Hamilton system to research the problem of interfacial
imperfection for composite laminated plates.

This work investigated the problem of free vibration
analysis of stiffened composite laminated plates with
interfacial imperfections by using spring-layer model,
meshfree method and state-vector equation theory. A
three-dimensional semi-analytical model was developed and
then used to gain the natural frequencies and vibration modes
in numerical examples. The main advantage of this
semi-analytical model is that the discontinuity of
displacements and the compatibility of stresses on the
interface between the laminated plate and stiffeners are taken
into account. Besides, the present three-dimensional
semi-analytical model accounts for the transverse shear
deformation and rotary in governing equations of the
structure without any initial assumptions regarding
displacement and stress.

Il. MATHEMATICAL FORMULATIONS

A. Meshless Semi-Analytical Model of the Composite

Laminates with Bonding Imperfection

Recently, mesh reduction techniques (meshless or meshfree
methods), which are independent of geometric elements, have
emerged as effective numerical techniques for solving science
and engineering problems. Over the past decade, there have
appeared many kinds of meshless methods in the literatures
[50-58], such as the element-free Galerkin (EFG) method, the
reproducing kernal particle method (RKPM), hp-clouds, the
partition of unity method (PUM), the meshless local
Petrov-Galerkin (MLPG) method, the smoothed particle
hydrodynamics (SPH), the corrected smoothed particle
hydrodynamics (CSPH) and the modified smoothed particle
hydrodynamics (MSPH). For the Hamilton canonical equation
of composite laminates, Li [59-62] has established a class of
meshless methods based on the modified Hellinger-Reissner
variational principle and radial basis functions.

The shape function of the radial point interpolation method
(RPIM) is given in Appendix A. By using RPIM shape
function, the displacement vector Q and the out-of-plane
stress vector P at any point can be written as follows

Pl [N 0[P

ol Lo nllot @
where, Q=[u v w]", uv w are the total displacement
components along (x, y, z) coordinates, respectively;
P:[O'XZ o, GU]T, oy 0y, and o, are the out-of-plane (i.e.
transverse) stresses; N =diag[®],,, and @ is the shape
RPIM;  P=[%(2) o5(2) 21"
Q. =[w(z) v¢(z) we@)T. The superscript and subscript e

function of

denotes the values of all field nodes. The superscript T
signifies matrixtransposition.

For the composite laminates with interfacial imperfections,
an interfacial spring-layer model, which is similar with the
model of an analytical method in references [46-49], is
employed to describe the behavior between the upper and

lower sub-laminates

t,u+1
O-XZ

thutl ___bu,u _ o thu+l bu,
O-yz” _O-yz#_[v v y]R;l ! (2)

thu+tl _ _bu,u t g+l bu, 1 H"
Oy =0, = [W -W ]Rz
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where, o+, ot

stresses of the top surface of lower sub-laminate; o,

and '#** denote the out-of-plane

bu, z
O'yZ

bottom surface of upper sub-laminate;
u Vv

and o denote the out-of-plane stresses of the

tlp+l i+l

ot and W

denote the displacements of the top
surface of lower sub-laminate; u™*, v™* and W™* denote
the displacements of the bottomsurface of upper sub-laminate;
Ry, Ry and Ry are stiffness parameters in the x, y, and z
directions, respectively. Obviously, R¥ =0 (i =x,y,z)
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Fig. 1. Geometry model and meshfree semi-analytical model of a concentrically stiffened laminated plate with four stiffeners
(a) Geometry model; (b) meshfree semi-analytical model.

corresponds to a perfect bonding, while R* =oo (i = x,y,2)

implies a completely delaminated case.

Assuming that the spring-layer with n nodes has the same
mesh as each layer of sub-laminates, the matrix form of (2)
related to node set m; in undelaminated region and node set m,
in completely delaminated region can be straightly expressed

as
Ptl,y+l T " T " Pbu,y Pbu,y
oS o o
Qev TZl T22 Qe ' Qe '
N oT[I O]N O
where, T = )
0O N R“ 110 N

R = Diag(R;;-++R;, Ry R}, RE-++R0) ™
Ri'jl =0(=x,Y,2,] eml) .

Substituting P and Q into the modified H-R variation
principle in three dimensional Cartesian coordinate system
with (1), and applying the tools of variation and integration,
the meshless formulation of the Hamilton canonical equation
can be obtained fromthe first term of modified H-R variation
principle, and the boundary term can be obtained from the
second term. And then, adding the boundary termto the right
side of the meshless formulation of Hamilton canonical
equation, the governing equations of each single-layer of the
composite laminate can be deduced. Considering the stress
equilibrium equations and the displacement compatibility
relations at layer interfaces (See (3) for the composite
laminates with interfacial imperfections), the meshless
semi-analytical model of the composite laminates with
bonding imperfection can be obtained by using the transfer
matrixtechnique.

P(h) T11 T12 P(O) FP
= + : )
{Q(h)} |:T21 TZZHQ(O)} {F Q}

where, T is the equivalent stiffness matrix [, r,]" is known
as the equivalentexternal load vector. P(h) and Q(h) arethe

stress and displacement vectors relative to the bottom
surface. P(0) and Q(0) are the stress and displacement

vectors relative to the top surface. In addition, the detailed
process of obtaining (4) can be found in Ref. [56-58].

B. Governing Equation of Stiffened Laminated Plate with

Bonding Imperfection

Geometry model and meshfree semi-analytical model of a
concentrically stiffened laminated plate with four stiffeners are
shown in Fig. 1. In present work, the plate and the stiffeners of
a stiffened laminated plate are considered as two
three-dimensional laminated structures with bonding
imperfection. The semi-analytical three-dimensional models of
the plate and the stiffeners are firstly developed by Hamilton
canonicalequation separately, and then these two models are
united togetherby using the spring-layer model, ensuring the
compatibility of stresses and the discontinuity of
displacements on the interface between plate and stiffeners
(See Fig. 1(b)).

Field nodes in the problem domain are divided into two
groups, one group that belongs to the interface between the
plate and stiffeners, and the other group that does not belong
to the interface (See Fig. 1(b)). Therefore, the semi-analytical
three-dimensional model (5) of the plate can be expressed as
(Body force is neglected)

PpL (hl + hz) Mu M12 M13 M14 PpU (h1)
Q: (h1 + hz) _ M21 Mzz Mz3 M24 Q: (h1) (5)
Pr(h+h)| |My M, My My ||P°(h)]

QSL (hl + hz) M41 M42 M43 M44 QsU (hl)
where h; is the thickness of laminated stiffeners; h, is the
thickness of the laminated plate; subscript s denotes the field
nodes that belong to the interface between plate and stiffeners;
subscriptp denotes the field nodes that do not belong to the
interface between plate and stiffeners; subscripts L and U
denote the bottomsurface and top surface, respectively.

In the semi-analytical three-dimensional models ofthe plate,
the behavior equation (3) between the upper and lower
sub-laminates can be recast as follows

P'] [1 0 0 0O][P
Q| |[R 1 0 0flQ ©
P[]0 0 1 of|P[

QY 0 0 R I]|QF

Each laminated stiffener is also considered as an I-layered
plate, and the assumed field node scheme in every layer is the
same as the interface between the plate and stiffeners. For the
laminated stiffeners of | layers, the semi-analytical
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Geometry parameters:
..b a=12
1=04
t=0.04
b=0.04
h=0.02

h

Fig. 2. An eccentrically stiffened plate with double stiffeners

three-dimensional model can be expressed as
FREH .,

Q)] [S, S,](Q(0)
Assuming P (h)=P’(0), Q;(h)=Q,(0) at the field
nodes not belonging to the interfaces between plate and

stiffeners, the semi-analytical three-dimensional model of the
stiffeners can be recast as

P-th)] [1 0 0 0 [P0
Q(h)[_|0 1 0 0 1/Q)0) ©
Pr()[ |0 0 S, S, ||R'O)
Q(h)] [0 0 S, S, Q70

In the semi-analytical three-dimensional models of the
stiffeners, the behavior equation between the upper and lower
sub-laminates can be recast as

PY) [1 0 0 O]fP:
v 01 0 O -
%L %t ©
P[Tlo o 1 ollP

Q' [0 0 R I1][Q

Uniting (5), (8) and (9), the overall semi-analytical model of
the stiffened laminated plate is

PpL(hl +h2) _Mll M12 M13 MlA I O 0 O
Q;I)_(hl-l—hz) _ le MZZ M23 MZA 0 I O O
PsL(hl +h2) M31 M32 M33 M34 0 O I O
QSL(hl-I—hZ) _M41 M42 M43 MAA 0 O R I
(100 0 P"(0)
. 01 0 0 [|Q(0 .
O O Sll S12 PsU (O)
_0 0 821 Szz QSU (0)
(10)
Namely,
{pwwHou Du} {pwo)} W
qL(hl +h2) D21 Dzz qU(O)

where, p-=[P",P'T, g =[Q;,Q'T, p” =[P, P’T ,
qU =[Q;J, QSU]T-

For natural frequency problem, the top surface and the

bottom surface are stress-free (the stress vector
p-(h,+h,)=p“(0)=0). The following equation can be

deduced from (11)
D,q"(0) =0. (12)
The determinant of the characteristic matrixin (12) must be
zero, namely
|D,, (@) =0. (13)
(13) is an implicit polynomial equation which includes the
natural frequency @ . And the natural frequency @ can be
obtained from the characteristic polynomial of (13) by the
bisection method.

I1l. NUMERICAL EXAMPLES

Regarding the interfacial imperfections, we always take
R, =0 to avoid the possibility of material penetration

phenomenon which is physically impossible. In this case the
continuity of transverse displacement w is ensured between
any two adjacent layers contacting with each other, but a
shearsliding in the plate plane is allowed. We also assume that
the two compliance constants in the plate surface be the same,
and

Eo_Ex g )

RYh  Ryh

In present work, the numerical computations have been
performed by using MATLAB 7.5.0 (R2007b) in DELL
PRECISION T3500. The natural frequencies and the vibration
modes are obtained for an eccentrically stiffened plate with
double stiffeners.

A square angle-ply laminated plate applied with uniform
pressure on the bottom surface (See Fig. 2) is employed to
illustrate the versatility of the presented method. The
laminated plate is eccentrically stiffened by double stiffeners
along the y-direction, and the material strong direction is
perpendicular to the longitudinal axis of the stiffeners. The
boundary case is the complete clamp support (CCCC). The
laminated plate and the laminated stiffeners have the same
stacking sequence and all the layers of the plate and the
stiffeners have the same material properties. And the material
properties of each single layer of the laminated plate and the
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stiffeners are as follows:
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Fig. 3 Schemes diagram of field nodes and background grids of the laminated plate and the stiffeners.
(a) Laminated plate and (b) Stiffeners

E, = 0.9973x10", E, = 0.542210", E; = 0.5287>10", Gy, =
0.26293<10", Gy = 0.26681x10™, G = 0.15991x10", vy, =
0.231243, v3; = 0.0321923, v,3 = 0.195952.

The schematic diagramofbackground cells, field nodes and
influence domains of this stiffened composite laminated plate
with interfacial imperfections are shown in Fig. 3 (483(23>21)
field nodes and 81(9>9) square background cells for laminated
plate, 63(3>21) field nodes and 18(2>9) rectangular
background cells for each stiffener). Criticaland complexareas
such as the stiffeners are discretized with high density field
nodes and small-sized background grids for proper results.
The distribution schemes of field nodes, background grids
and Gauss points are refined to achieve 1% convergence of
the fundamental frequency. For Gauss integral, an 8>3
quadrature scheme (i.e., 64 Gauss points in each background
grid) is employed to evaluate domain integrals. The problem
domains of the plate and the stiffeners are represented by
1296(36>86) and 108 (3>36) field nodes, 225 (15%15) and 45
(3x15) rectangular background cells respectively in this
numerical example.

The accuracy performance of the three-dimensional
semi-analytical model is demonstrated through these
numerical examples. For the purpose of comparison, a finite
element analysis model of this rectangular composite
laminated plate stiffened by double stiffeners is developed
using the finite element analysis code MSC.Nastran/Patran, as
shown in Fig. 4. This three-dimension finite element model can
be subdivided into the laminated plate group and the stiffeners
group. The results of finite element code MSC.Nastran are
obtained by the 8-node Hex Solid64. And the stiffeners are
assumed to be rigidly connected to the plate.

Fig. 4. The finite element analysis model developed in MSC.Patran
for stiffened laminated plate with double stiffeners

The results of the lowest 6 natural frequencies obtained
fromthe present method and fromthe MSC.Nastran are listed
in Table 1. For comparison purpose, the interfacial
imperfections between plate and stiffeners are not taken into
account (that is R* =R =0), the stacking sequences of the
plate and the stiffeners are [0/0/0] and [0/90/0] respectively,
and the plate thickness t = 0.04, the stiffeners thickness h =
0.02. The lowest 3 vibration modes of the present method
coincide with those ofthe MSC.Nastran, as presented in Table
3. It is obvious that the lowest 6 natural frequencies and the
lowest 3 vibration modes obtained by present method are in
good agreement with the results of MSC.Nastran. In addition,
it can be seen from Table 1 and 3 that the thickness of the
stiffeners has a significant influence on the natural
frequencies and the vibration modes of the structure.

Influence of the stiffness ofthe imperfect interface between
the laminated plate and stiffeners on the lowest 4 natural
frequencies is listed in Table 2. It can be seen from Table 2 that
the natural frequencies decrease with the increasing of value R

(Advance online publication: 13 February 2014)
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TABLE 1 COMPARISON BETWEEN THE NATURAL FREQUENCIES (HZ) OF PRESENTED METHOD AND T HOSE OF MSC.NASTRAN

Stacking Mode number

sequence Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6
Present 248.7656 482.5879 516.0473 725.9607 840.2212 945.4030

0.02 MSC 247.06 474.6 521.88 712.17 835.71 961.34

[0/0/0] Error (%) 0.6904 1.6831 -1.1176 1.9364 0.5398 -1.6578
Present 271.6865 510.2297 565.4324 775.97 929.6519 981.8807

0.04 MSC 264.8 521.57 539.98 756.39 948,51 960.59

Error (%) 2.6306 -2.1743 4.7136 2.5886 -1.9882 2.2164
Present 252.7400 493.3325 520.8590 737.3743 859.8646 989.0988

0.02 MSC 249.88 485.07 524.34 721.32 853.25 967.48

[0/90/0] Error (%) 1.1445 1.7034 -0.6639 2.2257 0.7752 2.2345
Present 279.5699 516.7317 582.1727 793.7975 930.8429 997.1359

0.04 MSC 271.26 526.35 558.18 772.64 960.65 979.23

Error (%) 3.0634 -1.8274 4.2984 2.7383 -3.1328 1.8286

TABLE 2 INFLUENCE OF THE STIFFNESS OF INTERFACIAL IMPERFECTIONS BETWEEN THE LAMINATED PLATE AND STIFFENERS ON THE

LOWEST4 NATURAL FREQUENCIES (H2)

Stacking Mode R=0 R=0.1 R=02 R=03 R=04 R=05
sequence number
Mode 1 2487656 2485847 2484155 2482565  248.1061  247.9656
ogp Mode2 4825879 4821018 4816631 4812686 4809102 4805811
' Mode3 5160473 5155038 5149965 5145223 5140790  513.6623
Mode 4 7259607 7252811 7246497 7240304 7234521  722.9009
Model 2716865 2713124 2710601 2707795 2704979  270.2239
000 oos Mode2 5102207 5001285 5081433 5072345 5062991 5052389
Mode3 5654324 5641807 5629259  561.6267 5601913  558.3397
Mode4 7759706 7742385 7726305 7711207  769.6925  768.3280
Model 3060046 3053240 3045966 3039100 3032465  302.6029
oog Mode2 5158279 5141575 5127189 5114517 5103197  509.2869
' Mode3 6642018 6614015 6586880  656.0379 6534273  650.8337
Mode4 8570686 8535778 8504180  847.5020 8447703  842.1919
Mode 1 2527400 2524764 2522152 2519470 2516235 2515498
oop Mode2 493335 4924999 4916704 4908235  480.456 4890196
Mode3 5208590 519.7417 5190612 5184909 517.9774  517.5070
Mode4 7373743 7363535 7356210 7345617 7337050  732.8957
Model 2795699 2786707 2775483 2758785 2724204  270.0456
0o0/] 004 Mode2 5167317 5155813 5145581 5136375 5129140 5120398
Mode3 5821727 580.1945 5782228 5762480 5742516  572.2489
Mode4 7937975 7915412 7893953  787.3367 7853464  765.5850
Model 3191994 3180396 3165860 3041609 3019586  298.2023
oog Mode2 5257963 5240049 5224461 5210640 5198192 5186862
' Mode3  687.8515 6839910  680.1788 6763583 6724580  668.3700
Mode4 8716583  867.7548 8640889 8605820 857.1975  853.8217

since the total stiffness of the stiffened laminated plate
decreases as the value R increases. With the value R
increasing, the greater the thickness ratio of plate and
stiffeners is, the more pronounced the decrease of the natural
frequencies will be.

IV. CONCLUDING REMARKS

The spring-layer model and the state-vector equation
theory have been applied to free vibration analysis of stiffened
composite laminated plates with interfacial imperfections
based on meshfree method. A three-dimensional
semi-analytical model is developed and used to gain the
natural frequencies and the vibration modes in numerical

examples. Extensive numerical results are presented for
stiffened composite laminated plates with interfacial
imperfections, showing an excellent predictive capability of
this three-dimensional semi-analytical model. These numerical
results also reveal the effects of the thickness of laminated
stiffeners and the stiffness of interfacial imperfections on the
natural frequencies. The natural frequencies decrease with the
decreasing of the interfacial imperfection stiffness, since it
reduces the overall stiffness of the stiffened laminated plate.
And the greater the thickness ratio of plate and stiffeners is,
the more pronouncedly the natural frequencies will decrease
when the interfacial imperfection stiffness between the plate
and the stiffeners is increased.
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APPENDIX A

Consider a continuous function u(x) defined on a 2D
domain Q with a set of suitably located nodes in it. An
interpolation of u(x) in the neighborhood of a point Xq using
RBFs and polynomial basis is written as

n m
u(x) = | ElRi (3 (xg)+ jélpj (b, (xg)

(A1)
~RT(x)a+p' (x)b,
with the constraint
D> p; ()b =pr(x)a=0, j=12,-m, (A.2)
-1

andthevectorsa,b, RT(x)and p"(x) in (A.1)are defined as

a=[aa,-a], (A.33)
b=[bb, b, T, (A.3b)
RT(X) =[R(X), R, (X), Ry(x), -+, R, (X)], (A.3c)
PT(X) =[P.(X), P,(X), P3(X), -+, P (X)]- (A.3d)

Here, R;(x)is aradial basis function associated with node i
(i.e., for the modified multiquadrics (MQ) used in this present
work, R(x)=[r?+(e,d.)’]*, where ¢, and q are shape
parameters,and d, is acharacteristic length that relates to the
nodal spacing in the local support domain of the point of
interest x, and it is usually the average nodal spacing forall the
nodes in the local support domain); n is the numberofnodes in
the neighborhood of Xq, p;(x) is @ monomial in the space
coordinates x" =[x, y]; mis the number of monomial basis
functions (usually m<n); a(x,)andb;(x,) , which vary with
the point Xq, are coefficients of R;(x)and p;(x),
respectively.

When utilizing radial basis functions, several shape
parameters need to be determined for good performance. In
general, these parameters can be determined by numerical
examinations forgiven types of problems. For example, Wang
and Liu left the parameter g open to any real variable, and
found that g =0.98 or 1.03 led to good results in the analysis of
two-dimensional solid and fluid mechanics problems in the
Lagrangian system [61, 62]. In the present work, the optimum
values of the shape parameters are obtained by repetitious
numerical experimentation for the present three-dimensional
model. Here the optimum values of shape parameters for the
MQ are determined as o, =0.03and q = 1.03.

Requiring that the function u(x) given by (A.1) equals its
value at n nodes in the vicinity of the point Xq, we get the
following set of simultaneous linear algebraic equations for
the coefficients a, (x,)and b;(x,)

U =R,a+Pb, (A.4)

where, U, =[u,u, ---u, 1", I =\/(Xk =%)*+ (% = %)%,

Rl(rl) RZ(rl) Rn (r1) 1 X Y pm(xl)
Ro — R1(r2 RZFrZ Rn (rz) ' Pm _ 1 X.Z y'2 pm('xz) )
Ri(r) Ry(r) R, (1) 1x P (X,)
(A.4) and (A.2) can be expressed in matrix form as
U ={US}=[R° P'“H”‘}:Ga. (A5)
* 10 PT 0 ||b 0 '
The solution of (A.5) is
a, =G0, (A.6)
RO Pm P
where, G :{ T } . And conditions (A.2) ensure that the

matrix G is non-singular and hence invertible. Thus (A.1)
becomes

W) = {RT(0+pT(0}G U, =" ()0, = Y gu, (A)

where )
®"(x) ={RT(x)+ p" (x)}G*

={A(X), (%), . 4, (%), 1 (X), 1 By (X))

The derivatives of ¢, (x) can be obtained as follows

a%(G¢(x)) - Q{R(X)} _ {GR(X) ap(x)}l

(A9

ox | p(x) X ox (A-9)
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