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Abstract—In this paper, three preconditioned parallel mul-
tisplitting methods are established for solving the large sparse
linear systems, including local preconditioned parallel mul-
tisplitting relaxation method, global preconditioned parallel
multisplitting relaxation method and global preconditioned
nonstationary parallel multisplitting relaxation method. The
convergence and comparison results of the methods associat-
ed with USAOR multisplitting are given when the coefficient
matrices of the linear systems are H -matrices. We prove
three preconditioned parallel multisplitting USAOR method
are better than parallel multisplitting USAOR methods for
M -matrices linear systems. Finally, numerical examples are
given to illustrate the methods are valid.

Index Terms—Preconditioned, Relaxation parallel multi-
splitting method, Convergence, USAOR, H -matrix.

I. INTRODUCTION

FOR the linear system

Ax = b , (1)

where A is an n × n square matrix, and x and b are
n-dimensional vectors. The basic iterative method for
solving equation (1) is

M x k+1 =N x k + b , k = 0, 1, · · · , (2)

where A =M −N and M is nonsingular. Thus (2) can be
written as

x k+1 = T x k + c , k = 0, 1, · · · , (3)

where T =M −1N , c =M −1b .
The original systems (1) can be transformed into the

preconditioned form

PAx = P b . (4)

Then, we can define the basic iterative scheme:

Mp x k+1 =Np x k +P b , k = 0, 1, · · · , (5)

where PA =Mp −Np and Mp is nonsingular. Thus (5) can
also be written as

x k+1 = T x k + c , k = 0, 1, · · · ,
where T =M −1

p Np , c =M −1
p P b .

Without loss of generality, we assume that A has unit
diagonal elements. In the literature, various authors have
suggested different models of (I +S )-type preconditioner
[1-7, 24-28] for linear systems (1). These precondition-
ers have effectiveness and low construction cost. For
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example, in this paper, we consider the preconditioner
of (I +S )-type with the following form

P = I +Sα−Sβ , (6)

where

I +Sα =



1 α1r

1 α2s

...

αi u
...

...
αn t 1


,

and

Sβ =



0 β1a1r

0 β2a2s

...

βi ai u
...

...
βn an t 0


.

O’Leary and White [8] invented the matrix multi-
splitting method in 1985 for parallely solving the large
sparse linear systems on the multiprocessor systems
and it was further studied by many authors [9-19]. For
example, Neumann and Plemmons [12] developed some
more refined convergence results for one of the cases
considered in [8]. Elsner [13] established the comparison
theorems about the asymptotic convergence rate of this
case. Frommer and Mayer [14] discussed the successive
overrelaxation (SOR) method in the sense of multisplit-
ting. White [15] studied the convergence properties of the
above matrix multisplitting methods for the symmetric
positive definite matrix class. Zhang, Huang, et al. [9]
presented local relaxed parallel multisplitting method
and global relaxed parallel multisplitting method for H -
matrices, and so on.

A collection of triples (Mk , Nk , Ek ), k = 1,2, . . . ,α, is
called a multisplitting of A. If A =Mk−Nk is a splitting of
A for k = 1, 2, . . . ,α, and Ek ’s, called weighting matrices,

are nonnegative diagonal matrices such that
α∑

k=1
e (k )i i = 1.

The multisplitting method associated with this multisplit-
ting for solving the linear system (1) is as follows.

Suppose that we have a multiprocessor with α pro-
cessors connected to a host processor, that is, the same
number of processors as splittings, and all the processors
have the last update vector x k , then the k th processor
only computes those entries of the vector

M −1
k Nk x k +M −1

k b ,
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which correspond to the diagonal entries E (k )i i of the
matrix Ek . The processor then scales these entries so as
to be able to deliver the vector

EK (M
−1
k Nk x k +M −1

k b ),

to the host processor, performing the parallel multisplit-
ting scheme

x m+1 =
α∑

k=1

Ek M −1
k Nk x m +

α∑
k=1

Ek M −1
k b

=H x m +G b , m = 0, 1, 2, . . . .

Under certain conditions, we establish local precon-
ditioned parallel multisplitting relaxation method, global
preconditioned parallel multisplitting relaxation method
and global preconditioned nonstationary parallel multi-
splitting relaxation method for solving the large sparse
linear systems and study the convergence of our methods
associated with USAOR multisplitting when the coeffi-
cient matrices of the linear systems are H -matrices.

II. ESTABLISHMENTS OF THE METHODS

Let A = I − Lk −Uk , k = 1, 2, . . . ,α, where I is a identity
matrix, Lk , k = 1,2, . . . ,α, are strictly lower triangular
matrices, and Uk , k = 1, 2, . . . ,α, are general matrices, re-
spectively, then parallel multisplitting relaxation USAOR
methods are defined [9] as follows.

Algorithm 2.1. (local parallel multisplitting relaxation
method)

Given the initial vector. For m = 0,1, 2, . . . repeat (I) and
(II), until convergence.

(I) For k = 1,2, . . . ,α, (parallel) solving yk :

Mk yk =Nk x m + b .

(II) Computing

x m+1 =
α∑

k=1

Ek yk .

Algorithm 2.1 associated with LUSAOR method can be
written as

x m+1 =HLU S AO R x m +GLU S AO R b , m = 0,1, · · · ,
where

HLU S AO R =
α∑

k=1
EkUω2 r2

(k )Lω1 r1
(k ),

Uω2 r2
(k ) = (I − r2Uk )−1[(1−ω2)I

+(ω2− r2)Uk

+ω2Lk ],
Lω1 r1

(k ) = (I − r1Lk )−1[(1−ω1)I + (ω1− r1)Lk

+ω1Uk ],

GLU S AO R =
α∑

k=1
Ek (I − r2Uk )−1[(ω1+ω2

−ω1ω2)I +ω2(ω1− r1)Lk

+ω1(ω2− r2)Uk ](I − r1Lk )−1.

By using a suitable positive relaxation parameter β ,
global parallel multisplitting relaxation USAOR method
will be established in the following, which is based on
Algorithm 2.1.

Algorithm 2.2. (global parallel multisplitting relaxation
method)

Given the initial vector. For m = 0, 1, 2, . . . repeat (I) and
(II), until convergence.

(I) For k = 1,2, . . . ,α, (parallel) solving yk :

Mk yk =Nk x m + b .

(II) Computing

x m+1 =β
α∑

k=1

Ek yk +(1−β )x m .

Algorithm 2.2 associated with GUSAOR method can be
written as

x m+1 =HG U S AO R x m +βGLU S AO R b , m = 0, 1, · · · ,
where HG BU S AO R =βHL BU S AO R + (1−β )I .

In the standard multisplitting method, each local ap-
proximation is updated exactly once by using the same
previous iterate x m . On the other hand, it is possible
to update the local approximations more than once, by
using different iterates computed earlier. In this case, we
call this method a nonstationary multisplitting method
[17,18,19]. The main idea of the nonstationary method
is that at the mth iteration each processor k solves the
system q (m , k ) times, using each time the new calculated
vector to update the right-hand side, i.e., we have the
following algorithm:

Algorithm 2.3. (global nonstationary parallel multi-
splitting relaxation method)

Given the initial vector. For m = 0, 1, 2, . . . repeat (I) and
(II), until convergence.

(I) For i = 1, 2, . . . , q (m , k ), (parallel) solving y (i )k :

Mk y (i )k =Nk y (i−1)
k + b .

(II) Computing

x m+1 =β
α∑

k=1

Ek y q (m ,k )
k +(1−β )x m .

Algorithm 2.3 associated with GNUSAOR method can be
written as

x m+1 =HG N U S AO R x m +βGG N U S AO R b , m = 0,1, · · · ,
where

HG N U S AO R = β
α∑

k=1
Ek (Pωr Qξη)q (m ,k )+ (1−β )I

Pωr = (I − rkUk )−1[(1−ωk )I + (ωk − rk )Uk

+ωk Lk ] =W −1
r Rωr ,

Qξη = (I −ηk Lk )−1[(1−ξk )I + (ξk −ηk )Lk

+ξkUk ] =V −1
η Fξη,

GG N U S AO R = β
α∑

k=1
Ek [

q (m ,k )−1∑
i=1

(Wr Vη)−1

(FξηRωr )i ](Wr Vη)−1ωkξk .

It follows that when q (m , k ) = 1, ωk =ω2, rk = r2, ξk =
ω1 and ηk = r1 for 1< k < α, m = 0, 1, 2...., Algorithm 2.3
reduces to Algorithm 2.2.

Let Ã = PA = D̃ − L̃k − Ũk , k = 1,2, . . . ,α, where D̃ is a
diagonal matrix, L̃k , k = 1,2, . . . ,α, are strictly lower trian-
gular matrices, and Ũk , k = 1,2, . . . ,α, are general matri-
ces, respectively. Then Algorithm 2.1 associated with local
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preconditioned parallel multisplitting relaxation method
(LPUSAOR) can be written as

x m+1 = H̃LPU S AO R x m + G̃LPU S AO R b , m = 0,1, · · · ,
where

H̃LPU S AO R =
α∑

k=1
EkŨω2 r2

(k )L̃ω1 r1
(k ),

Ũω2 r2
(k ) = (D̃ − r2Ũk )−1[(1−ω2)D̃

+(ω2− r2)Ũk +ω2L̃k ],
L̃ω1 r1

(k ) = (D̃ − r1L̃k )−1[(1−ω1)D̃
+(ω1− r1)L̃k +ω1Ũk ],

G̃LPU S AO R =
α∑

k=1
Ek (D̃ − r2Ũk )−1[(ω1+ω2

−ω1ω2)D̃ +ω2(ω1− r1)L̃k

+ω1(ω2− r2)Ũk ](D̃ − r1L̃k )−1.

Algorithm 2.2 associated with global preconditioned
parallel multisplitting relaxation method (GPUSAOR)
method can be written as

x m+1 = H̃G PU S AO R x m +βG̃LPU S AO R b , m = 0, 1, · · · , (7)

where H̃G PU S AO R =βH̃LPU S AO R +(1−β )I .
Algorithm 2.3 associated with global preconditioned

nonstationary parallel multisplitting relaxation method
(GPNUSAOR) can be written as

x m+1 = H̃G P N U S AO R x m +βG̃G P N U S AO R b , m = 0,1, · · · ,
where

H̃G P N U S AO R = β
α∑

k=1
Ek (P̃ωr Q̃ξη)q (m ,k )

+(1−β )I
P̃ωr = (D̃ − rkŨk )−1[(1−ωk )D̃

+(ωk − rk )Ũk +ωk L̃k ] = W̃ −1
r R̃ωr ,

Q̃ξη = (D̃ −ηk L̃k )−1[(1−ξk )D̃+
(ξk −ηk )L̃k +ξkŨk ] = Ṽ −1

η F̃ξη,

G̃G P N U S AO R = β
α∑

k=1
Ek [

q (m ,k )−1∑
i=1

(W̃ωṼη)−1

(F̃ξηR̃ωr )i ](W̃ωṼη)−1ωkξk .

Obviously, when q (m , k ) = 1, ωk = ω2, rk = r2, ξk =
ω1 and ηk = r1 for 1 < k < α, m = 0, 1, 2...., GPNUSAOR
method reduces to GPUSAOR method.

III. PRELIMINARIES

We shall use the following notations and lemmas. A
matrix A is called nonnegative (positive) if each entry of
A is nonnegative (positive), respectively. We denote them
by A ≥ 0 (A > 0). Similarly, for n-dimensional vector x ,
by identifying them with n×1 matrix, we can also define
x ≥ 0 (x > 0). A matrix A = (ai j ) is called a Z -matrix if for
any i ̸= j , ai j ≤ 0. A Z -matrix is a nonsingular M -matrix
if A is nonsingular and if A−1 ≥ 0. We call 〈A〉 = (āi j ) its
comparison matrix, if (āi j ) = |ai j | for i = j , if (āi j ) =−|ai j |
for i ̸= j . If 〈A〉 is a nonsingular M -matrix, then A is called
an H -matrix. A =M −N is said to be a splitting of A if M
is nonsingular, A =M −N is said to be regular if M −1 ≥ 0
and N ≥ 0, and weak regular if M −1 ≥ 0 and M −1N ≥ 0.
Additionally, we denote the spectral radius of A by ρ(A).
It is well-known that if A ≥ 0 and there exists a vector
x > 0, such that Ax <αx , then ρ(A)<α.

Some basic properties are given below, which will be
used in the paper.

Lemma 3.1 [21]. Let A be a Z-matrix. Then the follow-
ing statements are equivalent:
(a) A is an M-matrix.
(b) There is a positive vector x such that Ax > 0.
(c) A−1 ≥ 0.
(d) All principal submatrices of A are M-matrices.
(e) All principal minors are positive.

Lemma 3.2 [20]. Let A =M −N be an M-splitting of
A, then ρ(M −1N )< 1 if and only if A is an M-matrix.

Lemma 3.3 [20]. Let A and B be two n ×n matrices
with 0≤ B ≤ A, then ρ(B )≤ρ(A).

Lemma 3.4 [22]. If A is an H−matrix, then |A−1| ≤
〈A〉−1.

Lemma 3.5 [12]. Suppose that A1 =M1 −N1 and A2 =
M2−N2 are weak regular splitting of monotone matrices
A1 and A2 respectively, such that M −1

2 ≥ M −1
1 . If there

exists a positive vector x such that 0 ≤ A1 x ≤ A2 x , then
for the monotone norm associated with x ,

∥M −1
2 N2 ∥x≤∥M −1

1 N1 ∥x . (8)

In particular, if M −1
1 N1 has a positive perron vector, then

ρ(M −1
2 N2)≤ρ(M −1

1 N1). (9)

Moreover if x is a Perron vector of M −1
1 N1 and strictly

inequality holds in (8), then strictly inequality holds in
(9).

Lemma 3.6 [9]. Let A be an H -matrix, and for k =
1,2, . . . ,α, Lk be strictly lower triangular matrices. Define
the matrices Uk , k = 1,2, . . . ,α, such that A =D −Lk −Uk .
Assume that 〈A〉= |D | − |Lk | − |Uk |= |D | − |B |. If

0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then LUSAOR method converges for any initial vector x 0,
where ρ =ρ(J ) =ρ(|D |−1|B |).

Lemma 3.7 [9]. Let A be an H -matrix, and for k =
1,2, . . . ,α, Lk be strictly lower triangular matrices. Define
the matrices Uk , k = 1,2, . . . ,α, such that A =D −Lk −Uk .
Assume that 〈A〉= |D | − |Lk | − |Uk |= |D | − |B |. If

0<ω1,ω2 <
2

1+ρ
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β <

2

1+θ
,

then GUSAOR method converges for any initial vector
x 0, where ρ =ρ(J ) =ρ(|D |−1|B |) and

θ =ma x {|1−ω1|+ω1ρ, |1−ω2|+ω2ρ}.
Lemma 3.8 [9]. Let A be an H -matrix, and for k =

1,2, . . . ,α, Lk be strictly lower triangular matrices. Define
the matrices Uk , k = 1,2, . . . ,α, such that A =D −Lk −Uk .
Assume that 〈A〉= |D | − |Lk | − |Uk |= |D | − |B |. If

0<ωk ,ξk <
2

1+ρ
, 0≤ rk ≤ωk , 0≤ηk ≤ ξk , 0<β <

2

1+θ ′
then GUSAOR method converges for any initial vector
x 0, where ρ =ρ(J ) =ρ(|D |−1|B |) and

θ ′ =ma x {|1−ωk |+ωkρ, |1−ξk |+ξkρ}.
Let A =M −N = F −Q are two splittings of A. If we set

T = F −1Q M −1N .
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Benzi and Szyld [23] have established the following result.
Lemma 3.9 [23]. Let A−1 ≥ 0. If the splitting A =M −

N = F −Q are weak regular, then ρ(T )< 1 and the unique
splitting A = B −C induced by T is weak regular, where
B = F (M +P −A)−1M and C = B −A.

IV. CONVERGENCE

For Algorithms 1, 2 and 3, we give convergence theo-
rems for H−matrices. For convenience, let ti =

(〈A〉x )i
2xm−(〈A〉x )m ,

where x = (x1, x2, · · · , xn )T denotes a vector.
Theorem 4.1. Let A be an H−matrix with unit diagonal

elements. Assume that there exists a positive vector
x = (x1, x2, · · · , xn )T , such that 〈A〉x > 0. If |αi m −βi ai m | ≤
ti , i = 1, 2, · · · , n , then PA is an H−matrix.

Proof. Let (PA)i j = ai j + (αi m − βi ai m )am j , i , j =
1,2, · · · , n , m = r, s , · · · , t , and x =

�
x1, x2, · · · , xn

�T
, then

(〈PA〉 x )i =
��1+ �αi m −βi ai m

�
ami

�� xi− ��ai m +
�
αi m −βi ai m

��� xm− ∑
j ̸=i ,m

��ai j +
�
αi m −βi ai m

�
am j

��x j

≥ xi −
��αi m −βi ai m

�� |ami | xi − |ai m | xm− ��αi m −βi ai m

�� xm − ∑
j ̸=i ,m

��ai j

��x j

− ∑
j ̸=i ,m

��αi m −βi ai m

�� ��am j

�� x j

¬ d .

Case 1. βi ai m ≤αi m ≤βi ai m + ti

d ≥ xi − (αi m −βi ai m ) |ami | xi − |ai m | xm−(αi m −βi ai m )xm − ∑
j ̸=i ,m

��ai j

��x j

− ∑
j ̸=i ,m

(αi m −βi ai m )
��am j

�� x j

= xi − |ai m | xm − ∑
j ̸=i ,m

��ai j

��x j − (αi m −βi ai m ) |ami | xi

−(αi m −βi ai m )xm − ∑
j ̸=i ,m

(αi m −βi ai m )
��am j

�� x j

= (〈A〉 x )i + �αi m −βi ai m

�
(−xm − ∑

j ̸=m

��am j

�� x j )

= (〈A〉 x )i + �αi m −βi ai m

�
(− ∑

j ̸=m

��am j

�� x j + xm −2xm )

= (〈A〉 x )i + �αi m −βi ai m

�
[(〈A〉 x )m −2xm ]

> 0.

Case 2. βi ai m − ti ≤αi m ≤βi ai m

d ≥ xi +
�
αi m −βi ai m

� |ami | xi − |ai m | xm

+
�
αi m −βi ai m

�
xm − ∑

j ̸=i ,m

��ai j

��x j

+
∑

j ̸=i ,m

�
αi m −βi ai m

� ��am j

�� x j

= (〈A〉 x )i + �αi m −βi ai m

�
(
∑

j ̸=m

��am j

��x j − xm +2xm )

= (〈A〉 x )i + �αi m −βi ai m

�
[2xm − (〈A〉 x )m ]

> 0.

Therefore, 〈PA〉 is an M -matrix, and PA is an H -matrix.
Together with Lemma 3.7, Lemma 3.8, Lemma 3.9 and

Theorem 4.1, we can obtain the following results.
Theorem 4.2. Let A be an H -matrix with unit diagonal

elements, and for k = 1, 2, . . . ,α, L̃k be strictly lower
triangular matrices. Define the matrices Ũk , k = 1, 2, . . . ,α,
such that Ã = PA = D̃ − L̃k −Ũk . Assume that 〈Ã〉 = |D̃ | −

|L̃k | − |Ũk | = |D̃ | − |B̃ |. If |αi m −βi ai m | ≤ ti , i = 1,2, · · · , n ,
and

0<ω1,ω2 <
2

1+ ρ̃
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then LPUSAOR method converges for any initial vector
x 0, where ρ̃ =ρ( J̃ ) =ρ(|D̃ |−1|B̃ |).

Theorem 4.3. Let A be an H -matrix with unit diagonal
elements, and for k = 1,2, . . . ,α, L̃k be strictly lower
triangular matrices. Define the matrices Ũk , k = 1,2, . . . ,α,
such that Ã = PA = D̃ − L̃k −Ũk . Assume that 〈Ã〉 = |D̃ | −
|L̃k | − |Ũk | = |D̃ | − |B̃ |. If |αi m −βi ai m | ≤ ti , i = 1,2, · · · , n ,
and

0<ω1,ω2 <
2

1+ ρ̃
, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β <

2

1+ θ̃
,

then GPUSAOR method converges for any initial vector
x 0, where ρ̃ =ρ( J̃ ) =ρ(|D̃ |−1|B̃ |) and

θ̃ =ma x {|1−ω1|+ω1ρ̃, |1−ω2|+ω2ρ̃}.
Theorem 4.4. Let A be an H -matrix with unit diagonal

elements, and for k = 1,2, . . . ,α, L̃k be strictly lower
triangular matrices. Define the matrices Ũk , k = 1,2, . . . ,α,
such that Ã = PA = D̃ − L̃k −Ũk . Assume that 〈Ã〉 = |D̃ | −
|L̃k | − |Ũk | = |D̃ | − |B̃ |. If |αi m −βi ai m | ≤ ti , i = 1,2, · · · , n ,
and

0<ωk ,ξk <
2

1+ ρ̃
, 0≤ rk ≤ωk , 0≤ηk ≤ ξ2, 0<β <

2

1+ θ̃ ′
,

then GPNUSAOR method converges for any initial vector
x 0, where ρ̃ =ρ( J̃ ) =ρ(|D̃ |−1|B̃ |) and

θ̃ ′ =ma x {|1−ωk |+ωk ρ̃, |1−ξk |+ξk ρ̃}.
The proofs of Theorem 4.2, Theorem 4.3 and Theorem

4.4 are similar to Lemma 3.7, Lemma 3.8 and Lemma
3.9, respectively. So omitted.

V. COMPARISON RESULTS OF SPECTRAL RADIUS

In what follows we will give some comparison re-
sults on the spectral radius of preconditioned parallel
multisplitting relaxation USAOR iteration matrices with
preconditioner P . Let

〈A〉 = M̂k − N̂k =
1
ω1
(|D | − r1|Lk |)

− 1
ω1
[(1−ω1)I + (ω1− r1)|Lk |+ω1|Uk |]

= ˆ̂M k − ˆ̂N k =
1
ω2
(|D | − r2|Uk |)

− 1
ω2
[(1−ω2)I + (ω2− r2)|Uk |+ω2|Lk |],

where

M̂k =
1

ω1
(|D | − r1|Lk |),

N̂k =
1

ω1
[(1−ω1)|D |+(ω1− r1)|Lk |+ω1|Uk |],

and
ˆ̂M k =

1

ω2
(|D | − r2|Uk |),

ˆ̂N k =
1

ω2
[(1−ω2)|D |+ (ω2− r2)|Uk |+ω2|Lk |],

and then the iteration matrix of local parallel multisplit-
ting relaxation USAOR method for 〈A〉 is as follows

ĤLU S AO R =
α∑

k=1

Ek
ˆ̂M
−1

k
ˆ̂N k M̂ −1

k N̂k .
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Let

〈PA〉 = M̃k − Ñk =
1
ω1
( ˜|D | − r1|L̃k |)− 1

ω1
[(1−ω1) ˜|D |

+(ω1− r1)|L̃k |+ω1|Ũk |]
= ˜̃M k − ˜̃N k =

1
ω2
( ˜|D | − r2|Ũk |)− 1

ω2
[(1−ω2) ˜|D |

+(ω2− r2)|Ũk |+ω2|L̃k |],
where

M̃k =
1

ω1
( ˜|D | − r1|L̃k |),

Ñk =
1

ω1
[(1−ω1) ˜|D |+ (ω1− r1)|L̃k |+ω1|Ũk |],

and
˜̃M k =

1

ω2
( ˜|D | − r2|Ũk |),

˜̃N k =
1

ω2
[(1−ω2) ˜|D |+(ω2− r2)|Ũk |+ω2|L̃k |],

and then the iteration matrix of local preconditioned
parallel multisplitting relaxation USAOR method for 〈PA〉
is as follows

ḦLPU S AO R =
α∑

k=1

Ek
˜̃M
−1

k
˜̃N k M̃ −1

k Ñk .

Theorem 5.1. Let A be an H -matrix with unit diagonal
elements, and for k = 1, 2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1, 2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and 〈A〉= I −|Lk |− |Uk |. If |αi m −βi ai m | ≤ ti , i = 1, 2, · · · , n ,
and

0<ω1,ω2 < 1, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then ρ(H̃LPU S AO R )≤ρ(ḦLPU S AO R )≤ρ(ĤLU S AO R ).
Proof. Since 〈A〉 is a nonsingular M -matrix, it is easy

to show 〈A〉 = M̂k − N̂k =
ˆ̂M k − ˆ̂N k are two weak reg-

ular splittings. From Lemma 3.10, the unique splitting

〈A〉= B̂k−Ĉk induced by ˆ̂M
−1

k
ˆ̂N k M̂ −1

k N̂k is weak regular s-

plitting, where B̂k =
ˆ̂M (M̂+ ˆ̂M−〈A〉)−1M̂ and Ĉk = B̂k−〈A〉,

and then the iteration matrix of LUSAOR method for 〈A〉
can be rewritten as ĤLU S AO R =

α∑
k=1

Ek B̂−1
k Ĉk .

By Theorem 4.1, 〈PA〉 is a nonsingular M -matrix, and
then 〈PA〉 = M̃k − Ñk = ˜̃M k − ˜̃N k are two weak regular
splittings. Similar to the above analysis, we have the u-

nique splitting 〈PA〉= B̃k −C̃k induced by ˜̃M
−1

k
˜̃N k M̃ −1

k Ñk ,

which is a weak regular splitting, where B̃k = ˜̃M k (M̃k +
˜̃M k −〈PA〉)−1M̃k and C̃k = B̃k −〈PA〉. From

L̃ω1 r1
(k ) = (D̃ − r1L̃k )

−1[(1−ω1)D̃ + (ω1− r1)L̃k +ω1Ũk ],

we have

|L̃ω1 r1
(k )| = |(D̃ − r1L̃k )−1[(1−ω1)D̃ + (ω1− r1)L̃k

+ω1Ũk ]|≤ |(D̃ − r1L̃k )−1||(1−ω1)D̃ + (ω1− r1)L̃k

+ω1Ũk |≤ |(D̃ − r1L̃k )−1||(1−ω1)D̃ + (ω1− r1)L̃k

+ω1Ũk |≤ (|D̃ | − r1|L̃k |)−1|[(1−ω1)|D̃ |+ (ω1− r1)|L̃k |
+ω1|Ũk |]

= M̃ −1
k Ñk .

Similar to the above proving process, we have

|Ũω2 r2
(k )| = |(D̃ − r2Ũk )−1[(1−ω2)D̃ + (ω2− r2)Ũk

+ω2L̃k ]|
≤ ˜̃M

−1

k
˜̃N k ,

and then

|H̃LPU S AO R | = |
α∑

k=1
EkŨω2 r2

(k )L̃ω1 r1
(k )|

≤ α∑
k=1

Ek |Ũω2 r2
(k )||L̃ω1 r1

(k )|
≤ α∑

k=1
Ek

˜̃M
−1

k
˜̃N k M̃ −1

k Ñk

=
α∑

k=1
Ek B̃−1

k C̃k

= ḦLPU S AO R .

(10)

Note that B̃−1
k 〈PA〉= I − B̃−1

k C̃k and
α∑

k=1
Ek B̃−1

k 〈PA〉= I −
α∑

k=1
Ek B̃−1

k C̃k = I − ḦLPU S AO R . Similarly, we have B̂−1
k 〈A〉=

I − B̂−1
k Ĉk and

α∑
k=1

Ek B̂−1
k 〈A〉 = I − α∑

k=1
Ek B̂−1

k Ĉk = I −
ĤLU S AO R . From B̃k = ˜̃M k (M̃k + ˜̃M k −〈PA〉)−1M̃k and B̂k =
ˆ̂M k (M̂k +

ˆ̂M k −〈A〉)−1M̂ , we have

B̃−1
k = M̃ −1

k (M̃k + ˜̃M k −〈PA〉) ˜̃M
−1

k ,

and
B̂−1

k = M̂ −1
k (M̂k +

ˆ̂M k −〈A〉) ˆ̂M
−1

k .

Since
〈PA〉= (I + |S |)〈A〉,

by simple calculation, we have

B̃−1
k ≥ B̂−1

k ≥ 0.

Let x = 〈A〉−1e > 0, then

(〈PA〉− 〈A〉)x = (I + |S |)e > 0,

and then

(
α∑

k=1
Ek B̃−1

k 〈PA〉)x = (I − ḦLPU S AO R )x

≥ (
α∑

k=1
Ek B̂−1

k 〈A〉)x
= (I − ĤLU S AO R )x .

Thus, it follows that

||ḦLPU S AO R ||x ≤ ||ĤLU S AO R ||x .

As ĤLU S AO R is a nonnegative matrix, there exists a pos-
itive perron vector y . By Lemma 3.10, the following
inequality holds:

ρ(ḦLPU S AO R )≤ρ(ĤLU S AO R ).

From (10) and Lemma 3.3, we have

ρ(H̃LPU S AO R )≤ρ(|H̃LPU S AO R |)≤ρ(ḦLPU S AO R ),

and then

ρ(H̃LPU S AO R )≤ρ(ḦLPU S AO R )≤ρ(ĤLU S AO R ).

Using GPUSAOR method, we can also get the following
results.
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Theorem 5.2. Let A be an H -matrix with unit diagonal
elements, and, for k = 1, 2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1, 2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and 〈A〉= I −|Lk |− |Uk |. If |αi m −βi ai m | ≤ ti , i = 1, 2, · · · , n ,
and

0<ω1,ω2 < 1, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β ≤ 1,

then ρ(H̃G PU S AO R )≤ρ(ḦG PU S AO R )≤ρ(ĤG U S AO R ).
Proof. Since ρ(HG BU S AO R ) ≤ ρ(|HG BU S AO R |), we only

need to show

ρ(|H̃G PU S AO R |)≤ρ(ḦG PU S AO R )≤ρ(ĤG U S AO R ).

From (7), we have

|H̃G PU S AO R | = |βH̃LPU S AO R + (1−β )I |≤ |β H̃LPU S AO R |+ |1−β |I .

By Theorem 5.1, we know

|H̃LPU S AO R | ≤ ḦLPU S AO R ≤ρĤLU S AO R ,

and together with 0<β ≤ 1, we can obtain

|H̃G PU S AO R | ≤ |βH̃LPU S AO R |+ |1−β |I≤ βḦLPU S AO R + (1−β )I
= ḦG PU S AO R≤ βĤLU S AO R + (1−β )I
= ĤG U S AO R ,

By Lemma 3.3, we have

ρ(|H̃G PU S AO R |)≤ρ(ḦG PU S AO R )≤ρ(ĤG U S AO R ),

and then

ρ(H̃G PU S AO R )≤ρ(ḦG PU S AO R )≤ρ(ĤG U S AO R ).

Theorem 5.3. Let A be an H -matrix with unit diagonal
elements, and, for k = 1, 2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1, 2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and 〈A〉= I −|Lk |−|Uk |. If |αi m −βi ai m | ≤ ti , i = 1, 2, · · · , n ,
and

0<ωk ,ξk ≤ 1, 0≤ rk ≤ωk , 0≤ηk ≤ ξ2, 0<β ≤ 1,

then ρ(H̃G P N U S AO R )≤ρ(ḦG P N U S AO R )≤ρ(ĤG N U S AO R ).
Proof. Similar to the proofs of Theorem 5.1 and The-

orem 5.2, we can prove Theorem 5.3.
When A is an M -matrix, we can obtain the following

Corollaries.
Corollary 5.1. Let A be an M -matrix with unit diagonal

elements, and, for k = 1, 2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1, 2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and A = I − |Lk | − |Uk |. If |αi m −βi ai m | ≤ ti , i = 1, 2, · · · , n ,
and

0<ω1,ω2 < 1, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2,

then ρ(H̃LPU S AO R )≤ρ(ḦLPU S AO R )≤ρ(HLU S AO R ).
Remark 1. Corollary 5.1 shows that local precondi-

tioned parallel multisplitting relaxation USAOR method is

better than local parallel multisplitting relaxation USAOR
method for M -matrices linear systems.

Corollary 5.2. Let A be an M -matrix with unit diagonal
elements, and, for k = 1,2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1,2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and A = I − |Lk | − |Uk |. If |αi m −βi ai m | ≤ ti , i = 1,2, · · · , n ,
and

0<ω1,ω2 < 1, 0≤ r1 ≤ω1, 0≤ r2 ≤ω2, 0<β ≤ 1,

then ρ(H̃G PU S AO R )≤ρ(ḦG PU S AO R )≤ρ(HG U S AO R ).
Remark 2. Corollary 5.2 shows that global precondi-

tioned parallel multisplitting relaxation USAOR method
is better than global parallel multisplitting relaxation
USAOR method for M -matrices linear systems.

Corollary 5.3. Let A be an M -matrix with unit diagonal
elements, and, for k = 1,2, . . . ,α, L̃k and Lk be strictly
lower triangular matrices. Define the matrices Ũk and
Uk , k = 1,2, . . . ,α, such that Ã = PA = D̃ − L̃k − Ũk and
A = I − Lk −Uk . Assume that 〈Ã〉= 〈PA〉= |D̃ | − |L̃k | − |Ũk |
and A = I − |Lk | − |Uk |. If |αi m −βi ai m | ≤ ti , i = 1,2, · · · , n ,
and

0<ωk ,ξk ≤ 1, 0≤ rk ≤ωk , 0≤ηk ≤ ξ2, 0<β ≤ 1,

then ρ(H̃G P N U S AO R )≤ρ(ḦG P N U S AO R )≤ρ(HG N U S AO R ).
Remark 3. Corollary 5.3 shows that global precon-

ditioned nonstationary parallel multisplitting relaxation
USAOR method is better than global nonstationary par-
allel multisplitting relaxation USAOR method for M -
matrices linear systems.

VI. NUMERICAL EXAMPLE

In this section, we present some numerical examples
which compare the performance of our method (GP-
NUSAOR) with global non-stationary parallel multisplit-
ting relaxation USAOR method by considering the linear
system [1,4]

Ax = b , (11)

where

A =


1 − 1

4− 1
4 1 − 1

4
...

...
...

− 1
4 1 − 1

4− 1
4 1

 ,
and the right hand side vector b is chosen as

b T = (1,
1

4
, . . . ,

1

n 2
).

We take

P =


1 α12+

1
4β1 · · · 0

0
...

...
...

...
... 1 αn−1,n +

1
4βn−1

0 · · · αn ,n−1+
1
4βn 1

 ,
and r = 〈A〉−1e , where e = (1,1, . . . , 1)T , then ti =

1
2rm−1 , αi

and βi meet the inequality |αi +
1
4βi | ≤ ti , (i = 1, 2, . . . , n ).
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Take α= 2, q (m , 1) = 2, q (m ,2) = 1 and α= 2, q (m , 1) =
3, q (m ,2) = 2, respectively.

J1 = {1, 2, . . . , m1}, J2 = {m2, m2+1, . . . , n},
with two positive integers m1 and m2 satisfying 1<m2 <
m1 < n . We determine (I −Lk ,Uk , Ek ) and (I −Uk , Lk , Ek ),
k = 1,2, of the matrix A in accordance with the following
way:

L1 = (L (1)i j ), L (1)i j =

�
1 for j = i −1 and 2≤ i ≤m1,
0 otherwise,

U1 = (U (1)i j ), U (1)i j =

 1 for j = i −1 and m1+1≤ i ≤ n ,
1 for j = i +1 and 1≤ i ≤ n −1,
0 otherwise,

L2 = (L (2)i j ), L (2)i j =

�
1 for j = i −1 and m2 ≤ i ≤ n ,
0 otherwise,

U2 = (U (2)i j ), U (2)i j =

 1 for j = i −1 and 2≤ i ≤m2−1,
1 for j = i +1 and 1≤ i ≤ n −1,
0 otherwise,

Ek = diag (E (k )11 , E (k )22 . . . , E (k )nn ), k = 1, 2,

E (1)i i =

 1 for 1≤ i ≤m2,
1
2 for m2 ≤ i ≤m1,
0 for m1 < i ≤ n .

(12)

E (2)i i =

 0 for ≤ i ≤m2,
1
2 for m2 ≤ i ≤m1,
1 for m1 < i ≤ n .

(13)

Let Ã = PA = (ãi j ), we determine (D̃ − L̃k ,Ũk , Ek ) and
(D̃ −Ũk , L̃k , Ek ), k = 1, 2, of the matrix PA in accordance
with the following way:

D̃ = diag(ã11, ã22, . . . , ãnn ),

L̃1 = (L̃ (1)i j ), L̃ (1)i j =

�
ãi j for j = i −1 and 2≤ i ≤m1,
0 otherwise,

Ũ1 = (Ũ (1)i j ), Ũ (1)i j =

 ãi j for j = i −1 and m1+1≤ i ≤ n ,
ãi j for j = i +1 and 1≤ i ≤ n −1,
0 otherwise,

L̃2 = (L̃ (2)i j ), L̃ (2)i j =

�
ãi j for j = i −1 and m2 ≤ i ≤ n ,
0 otherwise,

Ũ2 = (Ũ (2)i j ), Ũ (2)i j =

 ãi j for j = i −1 and 2≤ i ≤m2−1,
ãi j for j = i +1 and 1≤ i ≤ n −1,
0 otherwise,

Ek = diag (E (k )11 , E (k )22 . . . , E (k )nn ), k = 1, 2,

are same as in (12) and (13). In particular, we select
the positive integer pair (m1, m2) to be m1 =Int( 4n

5 ),
m2 =Int(n5 ), and then we can get two kinds of concrete
cases of the weighting matrices E1 and E2, here, Int(·) de-
notes the integer part of the corresponding real number.

For convenience, we assume that ωk = ω2, rk = r2,
ξk = ω1 and ηk = r1, and let ρ(·) denote the spectral
radius of the corresponding iteration matrices. we take

α12 = α23 = . . . = αn−1,n = αn ,n−1 = 0.25 and βi = 0.3333,
i = 1, 2, . . . , n , namely

P =


1 1

3 · · · 0

0
...

...
...

...
... 1 1

3

0 · · · 1
3 1

 .
In the following, we make three groups of experiments. In
Figure 1, we test the relation between ρ and r , when n =
100, ω1 =ω2 = 1, r1 = r2, α= 2, q (m , 1) = 3, q (m ,2) = 2 and
β = 1, where “◦′′, “+′′ and “∗′′ denotes the spectral radius
of PA, 〈PA〉 and A, respectively. In Table I and Table II,
we report the spectral radius of iteration matrices with
GPNUSAOR and GNUSAOR. The meaning of notations
ρ(Ĥ ), ρ(Ḧ ) and ρ(H ) denotes the spectral radius of PA,
〈PA〉 and A, respectively.

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

r

ρ

Fig. 1. The Relation Between ρ and r , When n = 100, ω1 =ω2 = 1.

From Figure 1, Table I and Table II, we easily see
that the preconditioned multisplitting relaxation USAOR
methods discussed in this paper substantially have better
numerical behaviours than the multisplitting relaxation
USAOR methods studied in [9], which shows that our new
methods are applicable and efficient.

TABLE I
COMPARISON OF SPECTRAL RADIUS WHEN α= 2, q (m , 1) = 2, q (m ,2) = 1

n ω1, r1 ω2, r2 β ρ(H̃ ) ρ(Ḧ ) ρ(H )

50 0.8,0.4 0.7,0.6 0.5 0.0098 0.0211 0.0542

50 1.0,0.6 0.9,0.6 0.8 0.0074 0.0172 0.0437

50 1.0,0.8 1.0,0.7 1 0.0059 0.0154 0.0286

100 0.8,0.4 0.7,0.6 0.5 0.0102 0.0255 0.0563

100 1.0,0.6 0.9,0.6 0.8 0.0085 0.0179 0.0475

100 1.0,0.8 1.0,0.7 1 0.0067 0.0172 0.0304

1000 0.8,0.4 0.7,0.6 0.5 0.0157 0.0312 0.0687

1000 1.0,0.6 0.9,0.6 0.8 0.0105 0.0234 0.0551

1000 1.0,0.8 1.0,0.7 1 0.0089 0.0202 0.0456
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TABLE II
COMPARISON OF SPECTRAL RADIUS WHEN α= 2, q (m ,1) = 3, q (m ,2) = 2

n ω1, r1 ω2, r2 β ρ(H̃ ) ρ(Ḧ ) ρ(H )

50 0.8,0.4 0.7,0.6 0.5 0.0025 0.0123 0.0354

50 1.0,0.6 0.9,0.6 0.8 0.0021 0.0111 0.0298

50 1.0,0.8 1.0,0.7 1 0.0018 0.0095 0.0213

100 0.8,0.4 0.7,0.6 0.5 0.0028 0.0145 0.0388

100 1.0,0.6 0.9,0.6 0.8 0.0026 0.0140 0.0364

100 1.0,0.8 1.0,0.7 1 0.0025 0.0136 0.0325

1000 0.8,0.4 0.7,0.6 0.5 0.0030 0.0151 0.0407

1000 1.0,0.6 0.9,0.6 0.8 0.0029 0.0146 0.0390

1000 1.0,0.8 1.0,0.7 1 0.0027 0.0142 0.0380
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