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Abstract—The novelty of this paper is how we quickly and
accurately choose the true copula if we know the true copula
exists and is one from a given copula families. Goodness-of-fit
test approaches are the most popular procedure to select the
best copula for a particular data set. However, the goodness-
of- fit tests just check whether a parametric copula is rejected
or is not rejected for a specific data. This paper investigates
the feasibility of using Akaike Information Criterion (AIC) to
choose a copula model from a series of candidate copula models.
If the true copula is among the candidate families, the copula
with the least AIC should be the true one; otherwise, the copula
with the least AIC will be the best one. We do simulations to
show that AIC method is generally faster and more precise
than the multiplier goodness-of-fit test method.

Index Terms—AIC, empirical copula, goodness-of-fit, pseudo-
likelihood, pseudo-observations, semi-parametric.

I. INTRODUCTION

COpula have proved to be a very useful tool in the
analysis of dependency structures in modern finance

and insurance. It allows us to model the multi-dependence
without specifying the marginal distributions. The concept of
copula was based on Sklar’s theorem (Sklar [50]): any multi-
variate distribution can be decomposed into a copula and its
marginal; if the marginal distributions are continuous, then
the copula is unique; otherwise, it is uniquely determined on
its corresponding range. One attractive property of copula is
their invariance under strictly increasing transformations of
the margins. For a thorough literature review of copula, see
Nelsen [42]. Copula was first used in financial applications
by Embrechts et. al. [15]. Since then the application on copu-
la theory in finance and economics has grown tremendously.
Moreover, practical applications of this modeling approach
are found in fields such as finance (Nikoloulopoulos et. al.
[43]; Fang and Madsen [16]), hydrology (Genest et. al. [23]),
public health and medical (Winkelmann [52]) and actuarial
science (Frees and Valdez [19]; Otani and Imai [44]).

Although copula are becoming more and more popular
among academics, and many copula families have been
suggested, however, selecting the functional form for copula
is an open question in the literature. Our question is how
to quickly and precisely choose a true parametric copula
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from a series of given candidate families where the true
copula is included. Many authors recently proposed for using
the goodness-of-fit (GOF) test (Genest and Rivest [20] and
Fermanian [17], etc.) for choosing the copula models. Most
of them have been made to test the null hypothesis, e.g.,
Genest and Rivest [20], Shih and Louis [49], Breymann
et. al. [8], Fermanian [17], Genest et. al. [22], Dobrić and
Schmid [12], Genest and Rémillard [25], Genest et. al. [26],
Kojadinovic and Yan [36], Kojadinovic et. al. [35], and so
on. Among the existing approaches, some approaches are
full multivariate approaches while several approaches are
dimension reduction approaches which reduce the multivari-
ate problem to a univariate problem, and then apply some
univariate test. The former one leads to computationally
exhaustive for high dimensional problems, while the latter
one leads to numerically efficient approaches even for high
dimensional problems.

Among the dimension reduction approaches, it is common
to apply standard univariate statistics such as Kolmogorov-
or Cramér-von Mises type statistics. According to the large
scale simulations carried out in Genest et. al. [26], the most
powerful version of test based on the Cramér-von Mises
statistic is the parametric bootstrap-based GOF tests. An
approximate p-value for this test is obtained by means of a
parametric bootstrap whose validity was recently shown by
Genest and Rémillard [25]. Since each parametric bootstrap
iteration requires both random number generation from the
fitted copula and estimation of the copula parameter, hence
the essential inconvenience of this approach is its high
computational cost. Moreover, the larger the sample size,
the more restrictive the application of parametric bootstrap-
based GOF tests becomes. In order to circumvent this very
high computational cost, Kojadinovic and Yan [36] proposed
a fast large-sample testing procedure based on multiplier
central limit theorems. From now on, we will call this testing
procedure as the multiplier GOF test method. However, the
problem with this approach is that in order to get a valid
estimation of the parameter the multiplier GOF test requires
the sample size of at least 300. Another issue with the
multiplier GOF test is that it can not provide the best copula
from a series of candidate families.

The essence of GOF test is checking whether the unknown
copula actually belongs to the chosen parametric copula fam-
ily or not. It is only used to check whether we should reject
or fail to reject the chosen copula, thus we cannot use the
GOF test to chose the true parametric copula from a series of
copula model, even when the true copula is among the given
series. The contribution of the present paper is to accurately
and precisely choose an exact parametric copula for a given
data when the true copula exists and is among a candidate
families. And this paper will be based on the assumption
that the candidate families contain the true copula. Here,
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we introduce Akaike Information Criterion(AIC) developed
by Akaike [2], to chose a true parametric copula model.
Although AIC does not provide us with any understanding
of the power of the decision rule employed, it provides the
comparison of the fitting of different copula, therefore it can
be used as a tool for copula selection. One of the benefits
of AIC is that it takes less time than the multiplier GOF
test method. Furthermore, the smaller the AIC, the better the
copula is.

The purpose of this paper is to present a critical review of
AIC as a tool for choosing copula from a series of candidates
and to compare the relative effectiveness of AIC method
with the multiplier GOF test method through simulation
study, which involves a large number of copula alternatives
and dependence conditions. We provide some basic theory
regarding copulas in Section II. Both multiplier GOF test
and AIC are reviewed in Section III. The simulation results
from five one-parameter copula families, specifically, Clay-
ton, Frank, Gumbel, normal and t copulas, are presented in
Section IV. A brief conclusion is given at the end.

II. BASIC THEORY

A. Copula basics

The definition of a p-dimensional copula is a multivariate
distribution C with uniform (0, 1) margins. According to
Sklar’s theorem (Sklar [50]), any multivariate distribution
function H with the marginal cumulative distribution func-
tions (cdfs) F1, . . . ,Fp can be written as

H(x) = C (F1(x1), . . . ,Fp(xp)) ,x ∈ Rp, (1)

for some copula C. If all the margins are continuous, then
C is unique. Therefore, the copula of the joint distribution
function for a random vector X = (X1, . . . , Xp)

T may be
derived from Equation (1), i.e.,

C(u1, . . . , up) = H
(
F−11 (u1), . . . ,F−1p (up)

)
, (2)

where F−1i (·) is the inverse of the marginal cdfs and ui ∈
[0, 1],∀i = 1, . . . , p. The copula density is given by

c(u1, . . . , up) =
h(F−11 (u1), . . . ,F−1p (up))∏p

i=1 fi(F
−1
i (ui))

, (3)

where fi(·) is the probability density function (pdf) for the
variable F−1i (ui) and h(·) is the joint pdf for multivariate
(F−11 (u1), . . . ,F−1p (up)).

B. Estimation

When considering the problem of estimating the paramet-
ric multivariate density models, usually there are two broad
approaches to estimate the dependence parameter θ. They
differ mainly in the assumption about the parametric margins
or the non-parametric margins. Copula is mostly based
on a parametric copula and the non-parametric marginal
distributions, i.e., the semi-parametric copula. For copula
selection, we are only interested in the fit of the copula. We
do not wish to introduce any distributional assumptions for
the margins. Hence, we will use the semi-parametric copula
or use empirical margins to transform the observed data set
into the observed copula.

Assume that the unknown copula C belongs to an abso-
lutely continuous parametric family C0 = {Cθ : θ ∈ O},

where O is an open subset of Rq for some q = {1, 2, 3, . . .}
and the vector of copula parameters θ = (θ1, . . . , θq) is
estimated from the random sample (X1, . . . ,Xn). When
estimating the parameters for a semi-parametric copula, a
natural estimation method is the pseudo-likelihood approach
introduced in Genest et. al. [21] and Shih and Louis [49].
It consists of maximizing the log pseudo-likelihood function
l(θ), namely,

θn = arg max
θ

l(θ)

= arg max
θ

n∑
i=1

log cθ{Ûi1, . . . , Ûip}, (4)

where cθ is the density function of the parametric copula
Cθ ∈ C0, and the Ûi = (Ûi1, . . . , Ûip) are the pseudo-
observations or the re-scaled empirical distribution of Xi =
(Xi1, . . . , Xip), namely,

Ûij =
Rij
n+ 1

, (5)

where Rij is the rank of Xij among (X1j , . . . , Xnj).

C. Empirical Distribution

According to Deheuvels [9], a consistent estimation of
the underlying copula is possible via the empirical copula,
which also can be described as the distribution function of
the sample of the normalized ranks. The empirical copula
for n pseudo-observations U1, . . . ,Un is given by

Cn(u) =
1

n

n∑
i=1

I(Ui1 ≤ u1, . . . , Uip ≤ up), (6)

where u = (u1, . . . , up) ∈ [0, 1]p, I(·) is the indicator
function, taking the value 1 if Uij ≤ uj and 0 otherwise.

III. THE MULTIPLIER GOF TEST METHOD AND THE AIC
METHOD

We now briefly introduce the procedures for both the mul-
tiplier GOF test method and the AIC method, respectively.

A. Multiplier GOF test method

This subsection describes the multiplier GOF test method
introduced by Kojadinovic et. al. [35]. The multiplier GOF
test method is based on the empirical copula (Deheuvels [9]
and Deheuvels [11]), which is a consistent estimator of the
unknown copula C. The cardinal principle of this test has
been studied by Deheuvels [10] and Genest and Rémillard
[24]. The idea is to compare the empirical copula Cn(u)
defined in Equation (6) with the parametric copula Cθ(u)’s
estimator, Cθn(u), which is obtained by assuming that H0 :
C ∈ C0 = {Cθ : θ ∈ O}. θn defined in Equation (4) is an
estimator of θ. The natural way is to consider the distance
between empirical and null hypothesis distribution functions.
That is, under suitable regularity conditions, the empirical
copula process is

Cn(u) =
√
n{Cn(u)− Cθn(u)}, (7)
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where u = (u1, . . . , up) ∈ [0, 1]p. The test statistic, the
Cramér-von Mises Statistic, is defined as

Sn =

∫
[0,1]p

C2
n(u)dCn(u)

=
n∑
i=1

{Cn(Ûi)− Cθn(Ûi)}2. (8)

The asymptotic distribution of test statistic Sn derived
from the process Cn(u) depends on the unknown distribution
Cθn(u), hence, Kojadinovic et. al. [35] proposed the multi-
plier GOF test which is a fast large-sample testing procedure
based on the multiplier central limit theorems inspired by
Rémillard and Scaillet [46].

Let’s define a sequence of the distributed processes
{Ji}ni=1, that is,

Ji(u) = αθ(u)−Θ× Ċθ(u)

−
p∑
j=1

C
[j]
θ (u)αθ(1, . . . , 1, uj , 1, . . . , 1)

with
αθ(u) = I(Ui ≤ u)− Cθ(u),

Ċθ(u) =
∂Cθ(u)

∂θ
,

C
[j]
θ (u) =

Cθ(u1, . . . , uj + n−1/2, . . . , up)

2n−1/2

− Cθ(u1, . . . , uj − n−1/2, . . . , up)
2n−1/2

,

and

Θ =

[
Ecθ

{
ċθ(u)ċTθ (u)

c2θ(u)

}]−1

× ċθ(Ui)

cθ(Ui)
−

p∑
j=1

∫
[0,1]p

Ij ×
c
(j)
θ (u)

cθ(u)

ċθ(u)

cθ(u)
dCθ(u)


where Ij = I(Uij ≤ uj) − uj , ċθ(u) = ∂cθ(u)/∂θ and

c
(j)
θ (u) = ∂cθ(u)/∂uj . Then J1, . . . , Jn are independent and

identically distributed (i.i.d.) processes whose form depends
on the estimate of θ as well as the hypothesized copula family
Cθ. Let N be a large integer and let Z(k)

i , i ∈ {1, . . . , n}, k ∈
{1, . . . ,N}, be i.i.d. random variables with mean 0 and
variance 1 and be independent of the data X. Under suitable
regularity conditions, the GOF process Cn,C(1)

θ , . . . ,C(N)
θ

defined in (7) converges weakly to ({
∑n
i=1 Ji(u)}/

√
n,

{
∑n
i=1 Z

(1)
i Ji(u)}/

√
n, . . ., {

∑n
i=1 Z

(N)
i Ji(u)}/

√
n) (refer

to [34]).
Let Ĵi(u) be the estimation version of Ji(u) in which

all the unknown quantities are replaced by their estimates,
the approximate p-value for the test based on the multiplier
method can be obtained by means of the following procedure
(see Kojadinovic and Yan [33] and Kojadinovic et. al. [35],
for more details):

Algorithm 3.1: The multiplier GOF test procedure
STEP 1: Compute pseudo-observations Û1, . . . , Ûn from
the observed data X as in Equation (5), then use Ûi to
get Cn(u) by using Equation (6); Estimate the dependence
parameter θ by using Equation (4);
STEP 2: Compute the test statistic Sn defined in Equation

(8);
STEP 3: Set N to be a large integer, and repeat the following
steps for every k ∈ {1, . . . ,N}:

3.1 Generate n i.i.d random variables Z(k)
1 , . . . , Z

(k)
n

from the standard normal distribution with mean 0
and variance 1;

3.2 As in [34], form an approximate independent real-
ization of the test statistic under H0 by

C(k)
n (u) =

1√
n

n∑
i=1

Z
(k)
i Ĵi(u);

3.3 Compute an approximate independent realization of
Sn under H0 by

S(k)
n =

∫
[0,1]p

{
C(k)
n (u)

}2

dCn(u)

=
1

n

n∑
i=1

{
C(k)
n (Ûi)

}2

;

STEP 4: An approximate p-value for the test is given by
1
N
∑N
k=1 1(S

(k)
n ≥ Sn).

Since Ĵi(u) only needs to be computed once, the multiplier
GOF test procedure is faster than the traditional parametric
bootstrap method. However, the derivation and the compu-
tation of terms Ĵi(u) are complicated, since they involve
partial derivatives of cdf and pdf of the hypothesized copula
not only with respect to variables ui but also with respect to
parameters (see Kojadinovic and Yan [33] and Kojadinovic
et. al. [35]). Therefore, we propose a much easier way, i.e.,
the AIC method, to use choose a correct copula.

B. AIC approach

This section introduces the development and application
of AIC (Akaike [2], [3]) in copula selection. AIC derived in
Akaike [3] is defined as

AIC = −2( maximum log likelihood)

+ 2(number of free parameters)
= −2l(θn) + 2q, (9)

where l(θn) is the maximized value of the log pseudo-
likelihood function l(θ) defined in (4), and q is the number
of free parameter.

The AIC is a measure of the relative GOF of a model. We
are trying to reduce the distance between the true copula and
the approximate copula. Lehmann and Casella [39] suggested
using the Kullback-Leibler information as a measure of the
distance between the true model and the null hypothesized
model. Assume that the pdf of the true unknown copula and
the approximate copula model under null hypothesis for a
data set are c(u) and cθ(u) respectively, then the Kullback-
Leibler information measure between c(u) and cθ(u) is
defined as

K (c(u), cθ(u)) =

∫ {
log

[
c(u)

cθ(u)

]}
c(u)du

= Eu

{
log

[
c(u)

cθ(u)

]}
= Eu [log c(u)]− Eu [log cθ(u)] , (10)

where Eu[·] denotes the expected value with respect to vari-
able u. The Kullback-Leibler information K (c(u), cθ(u)) ≥
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0, or equivalently, Eu [log c(u)] ≥ Eu [log cθ(u)], and it
equals to 0 if and only if c(u) = cθ(u) happens almost
surely (see Chapter 2 from Kullback [38]). The smaller
the Kullback-Leibler information, the closer the approximate
copula to the true copula. Alternatively, the larger the quan-
tity Eu [log cθ(u)], the closer the function cθ(u) is to c(u).

Bozdogan [7] suggested that the AIC is an unbiased
estimator of −2Eu [log cθ(u)], viz, AIC = −2Eu [log cθ(u)].
Substituting AIC into Equation (10), the Kullback-Leibler
information can be furtherly expressed as

K (c(u), cθ(u)) = Eu [log c(u)] +
1

2
AIC. (11)

Since AIC definitely is part of Kullback-Leibler informa-
tion, the value of AIC itself is not meaningful. However,
we can minimize AIC to minimize the Kullback-Leibler
information. In other words, the smaller the AIC, the closer
the function cθ(u) is to the true copula pdf c(u). In addition,
AIC provides a versatile procedure for statistical model
identification and is free from the ambiguities inherent in the
application of the conventional hypothesis testing procedures.

When there are several competing copulas, we want to
know which copula fits the data best. The chosen copula
model should be the one that minimizes the Kullback-Leibler
information between the copula model and the true unknown
copula. We can calculate the AIC for each model with the
same data, then the “best” model is the one with the least
AIC value. AIC is more computationally efficient than other
copula selection methods. Though it can’t do a formal GOF
hypothesis test, it can be used to select the best copula from
a group of copula families. The practical advantage of AIC
in copula analysis will be demonstrated in next section by a
simulation study through the comparison between it and the
multiplier GOF test method.

IV. SIMULATION AND RESULTS

To assess the performance of the AIC model-selection
method, we conduct a simulation study comparing the AIC
method with the multiplier GOF test method. The feature
of the multiplier GOF test are its ability to maintain its
nominal level, which is arbitrarily fixed at 5% throughout the
study, and its power under a variety of alternatives. While
the feature of AIC is to check the ability of the true copula
providing the least AIC, namely, the proportion of the least
AIC from the true copula. We simulate N = 1, 000 times
to estimate the level or power of each of the two methods
under consideration. In each times, the multiplier GOF test
method, which is based on N = 1, 000 bootstrap samples, is
used to find out whether the copula under the null hypothesis
is rejected or not rejected; while the AIC method is used to
find out which copula provides the least AIC. After repeating
1,000 times, we will obtain the rejection proportions for the
multiplier GOF test as well as the proportions of the least
AIC for copula under interest. The procedure for calculating
the proportions of the least AIC is given in Algorithm (4.1).

Algorithm 4.1: AIC procedure
STEP 1: Set N = 1000 and repeat the following steps for
every k ∈ {1, . . . , N}:

1.1 From a given copula family we generate the random
variables X(k) = (X

(k)
1 , . . . ,X

(k)
n ), where n is the

number of observations ;

1.2 Compute pseudo-observations Û
(k)
1 , . . . , Û

(k)
n

from the data set X(k) by using Equation (5), then
get the AIC values defined in Equation (9) for all
candidate copula families and find out the copula
with the least AIC;

STEP 2: For all the candidate families, calculate the pro-
portions (out of N ) that each families achieve the least AIC.

In this experimental design of the study, five one-parameter
copula families were considered: Clayton, Frank, Gumbel-
Hougarrd, Normal, and t with ν = 5. They are abbreviated
as C, G, F, N, and t5, respectively, in the forthcoming
tables. Each copula families serve as the true copula or the
generating copula; For each copula family, four dependence
levels (0.2, 0.4, 0.6 and 0.8) corresponding to Kendall’s τ
are considered; Three different sample sizes (n=100, 300 and
500) are used; Three dimension sizes (2-variate, 3-variate and
4-variate) are tested.

Therefore, there are 4 × 3 × 3 = 36 scenarios. For each
scenario, we will

1. conduct the hypothesis test (namely, H0 copula (5
choices: Clayton, Frank, Gumbel, Normal, and t
with ν = 5) and H1 copula (5 choices: Clayton,
Frank, Gumbel, Normal, and t with ν = 5)) for each
of the five copula families (i.e., Clayton, Frank,
Gumbel, Normal, and t with ν = 5) by using the
multiplier GOF test method and

2. compute the AIC’s for each family (i.e, Clayton,
Frank, Gumbel, Normal, and t with ν = 5).

In this simulation, one of the interest is to check whether
the true copula used to generate the random sample gives
the highest proportion of the least AIC. In the following, we
will call this proportion the “correct rate” (i.e. the proportion
that the true copula gives the least AIC in N = 1, 000
repetitions). We are also trying to explore the connection
between the correct rate from the AIC method and the
empirical level (i.e., the proportion of rejections for the true
null hypothesis under N = 1, 000 repetitions) from the
multiplier GOF test method. If the AIC method performs
well, then the “correct rate” is the highest and close to 1.
Conversely, if the multiple GOF test performs well, then the
empirical level is small and close to 0.

Tables I, II and III compare the performance of the AIC
method with the multiplier GOF test method for sample
size n = 100, n = 300 and n = 500, respectively. The
AIC method globally agrees with the multiplier GOF test
method. In other words, a large correct rate corresponds to
a small empirical level. When both the sample size and the
dimension are fixed, as the dependence measure τ increases,
the correct rate from the AIC method generally increase.
Or loosely speaking, the higher the dependence, the more
accurate the AIC method is. For example, for the Gumbel
copula with n = 300 and d = 2, the correct rates are 81.6%,
93.0%, 95.1% and 96.4% for τ = 0.2, 0.4, 0.6 and 0.8,
respectively.

Moreover, we notice that the smaller the sample size, the
larger the correct rate. For example, for Gumbel copula with
τ = 0.2 and d = 2 the correct rate are 60.1%, 81.6% and
90.3% for n = 100, 300 and 500, respectively. Similarly,
when both τ and sample size are fixed, as the dimension
increases, the correct rate correspondingly increases. For
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TABLE I: The proportions of rejection (at 5% significant level) of the null hypothesis and the proportions of the least AIC
obtained from 1, 000 repetitions when d = 2

n True Kendall’s Proportions of the least AIC Proportions of rejection underH0

Copula τ G C F N t G C F N t5

100 G 0.2 60.1 3.3 9.3 11.5 15.8 3.0 66.5 17.7 9.5 14.2
0.4 73.6 0.3 4.1 10.4 11.6 2.9 97.5 44.0 22.5 27.0
0.6 79 0 2.5 8.4 10.1 2.6 100 61.8 29.7 31.7
0.8 78.3 0 1.7 6.8 13.2 3.1 100 77.4 38.5 38.4

C 0.2 1.5 75.3 7.3 7.5 8.4 49.3 8.2 19.4 12.6 16.5
0.4 0 93.9 1.5 2.5 2.1 91.5 8.6 58.0 41.8 47.3
0.6 0 97.4 0.9 0.8 0.9 98.9 9.5 77.6 69.2 65.4
0.8 0 98.5 0.9 0.1 0.5 99.8 10.2 57.4 87.0 67.6

F 0.2 14.5 13.6 44.9 19.0 8.0 18.6 52.8 5.2 9.4 12.9
0.4 10.4 3.5 59.8 19.0 7.3 41.2 93.7 6.6 20.3 37.3
0.6 4.8 0.9 77.9 11.3 5.1 62.6 99.5 5.8 40.9 64.1
0.8 1.5 0 91.4 4.3 2.8 81.4 99.9 5.9 76.2 82.8

N 0.2 21.3 16.5 22.2 30.7 9.3 12.7 45.2 7.6 4.2 10.4
0.4 16.0 7.2 11.7 52.2 12.9 20.9 83.3 13.1 3.8 12.4
0.6 11.3 2.5 7.2 64.3 14.7 18.6 97.3 27.9 4.6 11.9
0.8 10.1 0.3 3.9 64.3 21.4 9.9 99.7 39.4 4.0 12.1

t 0.2 14.8 11.1 3.5 5.0 65.6 8.9 33.1 9.4 8.9 3.8
0.4 16.2 4.6 4.4 10.0 64.8 12.1 79.2 19.3 6.0 3.9
0.6 14.7 3.2 2.5 13.0 66.6 14.0 96.6 34.3 4.8 3.2
0.8 11.7 0.9 2.3 14.8 70.3 10.4 99.3 47.1 8.2 4.7

300 G 0.2 81.6 0.2 3.9 8.4 5.9 3.5 96.3 41.6 24.3 33.0
0.4 93.0 0 0.5 2.7 3.8 4.2 100 81.8 51.2 57.3
0.6 95.1 0 0.1 1.5 3.3 2.8 100 97.3 64.5 68.4
0.8 96.4 0 0.1 0.7 2.8 3.0 100 99.7 69.3 68.2

C 0.2 0 93.8 1.9 2.7 1.6 94.0 5.0 60.0 44.0 58.0
0.4 0 99.7 0.1 0.1 0.1 100 6.0 99.6 97.4 98.5
0.6 0 100 0 0 0 100 5.1 100 100 100
0.8 0 100 0 0 0 100 6.0 100 100 100

F 0.2 6.2 4.2 68.0 18.6 3.0 55.6 87.4 4.9 17.7 43.2
0.4 0.5 0 90.5 8.3 0.7 94.5 100 3.4 58.0 90.5
0.6 0.3 0 98.2 1.4 0.1 99.8 100 4.8 94.1 99.4
0.8 0 0 100 0 0 100 100 3.2 99.8 100

N 0.2 1.26 7.9 18.6 58.5 2.4 32.0 70.5 9.1 4.9 25.5
0.4 4.8 0.8 4.2 87.1 3.1 57.9 99.7 30.0 4.9 36.8
0.6 1.8 0 1.5 90.4 6.2 62.3 100 66.2 3.7 26.5
0.8 1.0 0 0.1 92.9 6.0 53.8 100 94.5 3.7 19.4

t 0.4 5.5 4.2 1.6 1.3 87.4 21.7 61.0 23.8 11.4 4.4
0.6 4.1 0.2 0.6 1.7 93.4 39.1 99.5 58.8 9.0 4.4
0.8 2.0 0 0.2 2.3 95.5 50.7 100 83.8 7.7 4.4
0.2 1.6 0 0.1 3.5 94.8 45.0 100 96.8 8.1 3.7

500 G 0.2 93.0 0 1.5 3.5 2.0 3.2 99.6 59.1 34.6 50.1
0.4 97.7 0 0.2 1.1 1.0 4.3 100 97.0 75.0 80.6
0.6 98.8 0 0 0.5 0.7 3.2 100 100 87.8 88.4
0.8 99.2 0 0 0.2 0.6 2.3 100 100 89.0 89.1

C 0.2 0 97.9 0.5 1.2 0.4 99.3 5.0 84.7 71.9 87.8
0.4 0 99.9 0 0.1 0 100 4.2 100 99.9 100
0.6 0 100 0 0 0 100 5.8 100 100 100
0.8 0 100 0 0 0 100 5.7 100 100 100

F 0.2 1.6 1.5 80.6 16.0 0.3 84.6 97.3 3.7 28.9 77.1
0.4 0 0 97.1 2.9 0 99.9 100 4.1 84.1 99.3
0.6 0 0 99.8 0.1 0.1 100 100 5.7 99.8 99.9
0.8 0 0 100 0 0 100 100 2.5 100 100

N 0.2 6.5 3.6 13.6 75.5 0.6 51.7 88.2 10.2 3.4 45.2
0.4 1.2 0.2 1.5 96.2 0.9 81.2 100 48.1 4.4 58.7
0.6 0.1 0 0 98.6 1.3 88.5 100 88.2 4.2 51.1
0.8 0.1 0 0.2 98.1 1.6 85.4 100 99.9 2.8 30.5

t 0.2 2.5 0.3 0.2 0.3 96.7 33.5 81.9 46.3 16.2 4.8
0.4 1.3 0 0 1.4 97.3 66.5 100 85.0 13.0 4.5
0.6 1.1 0 0 0.4 98.5 75.9 100 98.9 9.6 3.8
0.8 0 0 0 1.1 98.9 73.6 100 100 8.2 3.3

example, for Clayton copula with τ = 0.2 and n = 300
the correct rate are 93.6%, 99.4% and 99.8%.

For the multiplier GOF test method, the empirical levels
globally agree with 5% nominal level well. However, not
only does the empirical level agrees with 5% nominal level,
but also the rejection proportion from other copula family
agrees with 5% nominal level. Therefore, it gives more than
one copula families which provide the small proportion of
rejection for the null hypothesis under consideration. Some-
times, the rejection proportion from other copula instead of
the true copula is even less than the empirical level. For
example, when the generating copula is Frank, τ = 0.2,
d = 4, and n = 300, the proportions of rejection are 4.9%
and 3.2% for Frank and Normal, respectively. The Normal
copula provides less proportion of rejection than the Frank
copula. But if we use the AIC method, only the Frank copula
provides the highest proportion (98.2%) of the least AIC.

As a reference, we will compare the correct rates and
the empirical levels. The simulation results are illustrated in
Figure 1. Each sub-figure gives the simulation results from
the different copula. In each sub-figure, the three columns
from left to right give the combination of multivariate di-
mension and τ for n=100, 300 and 500 respectively. And in
each column, the four dots on each line correspond to the
simulation results with respect to the association parameter τ
(from left to right, τ = 0.2, 0.4, 0.6, 0.8). The three bottom
lines give the empirical levels for the multiplier GOF test
method, while the three upper lines give the correct rate by
using the AIC method.

Figure 1 visually helps us to discern the relationship
between the correct rates and sample size, dimension and
τ . Obviously, all the correct rates are far more than 50%,
which means the AIC method provides only one copula
family that fits the data set well. For example, in figure 1 (e),
all the correct rates are greater than 50% and approaches to
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TABLE II: The proportions of rejection (at 5% significant level) of the null hypothesis and the proportions of the least AIC
obtained from 1, 000 repetitions when d = 3

n True Kendall’s Proportions of the least AIC Proportions of rejection underH0

Copula τ G C F N t G C F N t5

100 G 0.2 81.1 0.8 0.7 6.9 4.2 4.9 71.0 21.5 9.1 7.0
0.4 88.4 0 4.5 2.8 4.3 2.0 98.3 49.1 22.2 17.8
0.6 91.0 0 2.4 3.1 1.7 1.7 100 63.0 21.7 23.6
0.8 89.0 0 1.3 2.4 0 0 100 49.3 9.9 10.2

C 0.2 4.0 87.5 4.5 4.2 3.4 59.9 6.7 34.1 16.9 30.9
0.4 0 97.8 1.4 0.4 0.4 97.7 6.5 74.3 54.1 62.6
0.6 0 99.1 0.5 0.2 0.2 99.4 6.0 82.0 72.4 64.5
0.8 0 99.3 0.6 0 0.1 99.6 2.0 21.9 64.1 14.3

F 0.2 12.4 7.7 59.4 16.0 4.5 19.6 52.9 7.1 2.7 10.5
0.4 6.1 1.8 81.0 8.5 2.6 41.9 95.6 4.9 5.1 30.1
0.6 2.4 0 94.0 3.5 0.1 53.9 100 4.0 23.0 53.0
0.8 0.2 0 98.3 1.0 0.5 56.4 100 0.6 48.3 47.2

N 0.2 11.2 10.9 11.2 60.0 6.7 37.6 62.3 27.0 2.7 20.1
0.4 6.5 3.1 3.2 78.7 8.5 57.9 97.0 39.3 2.2 22.5
0.6 3.6 0.5 1.8 82.4 11.7 44.3 99.5 54.4 2.0 11.6
0.8 3.5 0.1 1.0 75.3 20.1 6.0 99.8 34.5 0.5 2.0

t 0.2 3.8 4.1 1.0 2.1 89.0 30.3 49.0 28.1 7.5 2.5
0.4 3.5 1.5 0.5 3.7 90.8 43.3 93.0 43.7 4.6 2.9
0.6 1.9 0.3 0.3 4.7 92.8 42.0 99.6 57.1 2.2 1.0
0.8 3.3 0.9 0.5 5.8 90.4 11.3 100 38.6 0.9 0

300 G 0.2 96.8 0 2.1 1.0 0.1 2.8 98.5 46.7 36.3 18.4
0.4 99.7 0 0.2 0.1 0 3.5 100 93.3 68.8 50.9
0.6 99.5 0 0.2 0.2 0.1 2.6 100 99.5 70.6 62.8
0.8 99.4 0 0 0.1 0.5 1.1 100 100 59.2 55.6

C 0.2 0 99.4 0.2 0.3 0.1 98.9 4.9 86.3 7.26 89.8
0.4 0 100 0 0 0 100 6.3 100 99.5 99.9
0.6 0 100 0 0 0 100 4.6 100 100 100
0.8 0 100 0 0 0 100 2.9 100 100 100

F 0.2 1.6 0.5 92.1 5.7 0.1 58.0 93.1 5.3 7.2 46.8
0.4 0.1 0 99.5 0.4 0 97.2 100 5.3 42.5 93.7
0.6 0 0 100 0 0 99.9 100 3.4 91.0 99.7
0.8 0 0 100 0 0 100 100 2.1 99.0 100

N 0.2 2.2 2.3 4.7 90.7 0.1 85.3 95.0 46.9 3.4 63.8
0.4 0.1 0 0.3 99.3 0.3 98.9 100 84.3 3.4 75.0
0.6 0.1 0 0 99.6 0.3 99.4 100 96.1 3.4 59.6
0.8 0.1 0 0 98.1 1.8 94.8 100 99.8 2.0 29.0

t 0.2 0.2 0.2 0 0 99.6 63.2 89.4 51.7 11.6 4.1
0.4 0.1 0.1 0 0.2 99.6 91.6 100 89.5 8.8 3.8
0.6 0 0 0 0.2 99.8 95.6 100 99.0 6.1 3.0
0.8 0 0 0 0.3 99.7 90.5 100 99.9 4.0 1.6

500 G 0.2 99.7 0 0.2 0.1 0 3.5 99.8 73.5 66.3 38.4
0.4 100 0 0 0 0 2.9 100 99.6 91.8 79.7
0.6 100 0 0 0 0 4.2 100 100 94.5 90.5
0.8 100 0 0 0 0 1.8 100 100 87.0 83.7

C 0.2 0 100 0 0 0.1 100 3.5 98.7 94.2 99.6
0.4 0 100 0 0 0.1 100 5.2 100 100 100
0.6 0 100 0 0 0.1 100 4.6 100 100 100
0.8 0 100 0 0 0.1 100 3.3 100 100 100

F 0.2 0.4 0 96.9 2.7 0 83.2 99.0 4.5 1.27 75.4
0.4 0 0 100 0 0 100 100 4.6 71.0 99.8
0.6 0 0 100 0.1 0 100 100 2.5 99.4 100
0.8 0 0 100 0 0 100 100 2.1 100 100

N 0.2 0.6 0.3 1.5 97.6 0 97.6 99.7 58.5 4.3 90.2
0.4 0 0 0 99.8 0.1 100 100 97.9 3.1 96.3
0.6 0 0 0 99.9 0.1 100 100 99.9 2.8 88.3
0.8 0 0 0 100 0 99.7 100 100 2.1 54.5

t 0.2 0 0 0 0 100 83.5 98.0 76.1 21.2 4.2
0.4 0 0 0 0 100 99.3 100 99.3 11.8 3.2
0.6 0 0 0 0 100 99.8 100 100 9.6 3.7
0.8 0 0 0 0.1 99.9 99.5 100 100 6.4 2.1

1. Certainly, the AIC results agrees with the result from the
multiplier GOF test method. From figure 1 (e), it is clear that
all the bottom lines are around 5%. Hence, we fail to reject
the t copula. Meanwhile, according to the correct rates, the
t-copula fits the data much better than any other copula.

In addition to do the comparison of the simulation results
from the multiplier GOF test method and the AIC method,
the computational aspect also deserves attention, therefore
we also need to compare the time spent on doing the multi-
plier GOF test method and the AIC method. From section III,
we notice that the multiplier GOF test method includes two
steps, namely, the fitting and the test, while the AIC method
only needs the fitting. Since bivariate Normal copula is very
common in the real life, here we just compare the run time
of the AIC method and the multiplier GOF test method when
using the Normal copula as the generating copula and fixing
dimension to two. Table IV provides the run times in seconds
performed on one 3.20 GHz processor. These are based on

the R implementation of the tests available in the copula R
package. The last row gives the ratios of the run time spent
on the multiplier GOF test method to the run time spent
on the AIC method. As one can notice, the use of the AIC
method results in a very large computational gain. When the
sample size is 500, the run times spent on the multiplier
GOF test method is at least 6.14 times as the run times
spent on the AIC method. Even when the sample is small,
such as 100, the AIC method still same more time than the
multiplier GOF test method. Thus, the AIC method provides
more computational efficiency than the multiplier GOF test
method. For the rest copula families, the ratio results are
almost the same patterns.

V. CONCLUSION

An overview of the AIC method was given, along with the
multiplier GOF test method. A large Monte Carlo study was
presented, examining the proportion of the least AIC fixed
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TABLE III: The proportions of rejection (at 5% significant level) of the null hypothesis and the proportions of the least
AIC obtained from 1, 000 repetitions when d = 4

n True Kendall’s Proportions of the least AIC Proportions of rejection underH0

Copula τ G C F N t G C F N t5

100 G 0.2 88.0 1.0 6.2 3.0 1.8 2.8 70.0 20.7 8.8 1.8
0.4 94.1 0 4.0 1.4 0.5 2.6 99.1 52.9 24.4 9.3
0.6 96.0 0 1.2 1.1 1.7 1.2 100 68.9 17.6 15.8
0.8 93.2 0 1.1 1.1 4.6 0 100 25.8 1.4 1.9

C 0.2 2.0 95.0 1.6 1.8 1.4 62.8 3.5 36.4 17.6 35.7
0.4 0 99.2 0.6 0.2 0 97.1 4.6 76.2 56.6 56.4
0.6 0 99.6 0.3 0.1 0 99.5 3.7 79.1 67.0 48.9
0.8 0 98.8 1.2 0 0 98.5 0.7 4.2 27.5 0.5

F 0.2 9.7 5.1 74.7 9.1 14.0 12.7 53.5 6.8 2.7 10.5
0.4 4.2 0.6 91.5 3.2 0.5 31.9 96.7 5.2 5.1 30.1
0.6 1.7 0 97.0 1.2 0.1 42.1 99.9 1.8 23.0 53.0
0.8 0.5 0 98.8 0.4 0.3 0.3 100 0.4 48.3 47.2

N 0.2 5.9 7.4 6.0 77.8 2.9 59.0 73.8 52.0 1.1 28.0
0.4 1.4 0.9 1.2 91.4 5.1 80.2 99.3 70.5 1.3 28.7
0.6 1.8 0.1 0.4 89.5 8.2 61.9 100 71.1 1.2 11.3
0.8 1.4 0 0.2 78.0 20.4 4.3 100 25.8 0 0.2

t 0.2 0.5 1.1 0.5 1.1 96.8 45.9 54.0 41.8 5.4 2.1
0.4 0.8 0.7 0.1 1.3 97.1 68.9 96.7 64.9 3.8 2.2
0.6 0.8 0.1 0.1 1.5 97.5 63.8 100 73.8 0.6 0.5
0.8 0.7 0 0 2.1 97.2 9.6 100 28.9 0.3 0

300 G 0.2 99.3 0 0.5 0.2 0 4.6 99.4 54.7 56.3 7.5
0.4 99.9 0 0 0.1 0 2.9 100 96.4 84.6 31.0
0.6 100 0 0 0 0 1.8 100 99.6 79.4 55.2
0.8 100 0 0 0 0 0.6 100 100 53.1 46.8

C 0.2 0 99.8 0 0.2 0 99.6 4.5 93.5 88.1 96.3
0.4 0 100 0 0 0 100 4.0 99.9 99.8 100
0.6 0 100 0 0 0 100 3.9 100 100 100
0.8 0 100 0 0 0 100 1.8 100 100 99.9

F 0.2 0.8 0 98.2 1.0 0 52.9 96.0 4.9 3.2 38.6
0.4 0 0 100 0 0 96.2 100 4.3 21.7 91.0
0.6 0 0 100 0 0 100 100 3.3 82.0 99.5
0.8 0 0 100 0 0 100 100 1.9 99.5 99.6

N 0.2 0.3 0.3 1.3 98.1 0 98.7 99.7 90.2 2.1 86.3
0.4 0 0 0.3 99.9 0.1 100 100 99.8 3.2 92.4
0.6 0 0 0 99.6 0.4 100 100 100 2.5 74.2
0.8 0 0 0 99.3 0.7 99.6 100 100 0.7 27.2

t 0.2 0 0 0 0 100 90.3 95.5 85.6 13.8 4.2
0.4 0 0 0 0 100 99.5 100 98.7 7.8 3.4
0.6 0 0 0 0 100 99.9 100 99.9 6.9 2.9
0.8 0 0 0 0.2 99.8 98.7 100 100 2.8 0.5

500 G 0.2 99.7 0 0.2 0.1 0 4.0 100 77.9 86.0 15.9
0.4 100 0 0 0 0 3.8 100 99.8 98.2 59.7
0.6 100 0 0 0 0 2.3 100 100 97.7 85.6
0.8 100 0 0 0 0 1.5 100 100 85.6 79.0

C 0.2 0 100 0 0 0 100 4.2 99.3 98.5 99.9
0.4 0 100 0 0 0 100 4.3 100 100 100
0.6 0 100 0 0 0 100 3.4 100 100 100
0.8 0 100 0 0 0 100 1.5 100 100 100

F 0.2 0 0 100 0 0 78.5 99.7 5.5 6.6 73.1
0.4 0 0 100 0 0 100 100 3.2 50.0 99.8
0.6 0 0 100 0 0 100 100 3.2 98.6 100
0.8 0 0 100 0 0 100 100 2.1 100 100

N 0.2 0 0 0.1 99.9 0 100 100 97.6 3.0 99.1
0.4 0 0 0 100 0 100 100 100 3.3 99.5
0.6 0 0 0 100 0 100 100 100 3.6 96.8
0.8 0 0 0 100 0 100 100 100 1.3 69.6

t 0.2 0 0 0 0 100 98.2 99.8 95.8 21.3 2.6
0.4 0 0 0 0 100 100 100 100 13.8 3.2
0.6 0 0 0 0 100 100 100 100 9.0 3.1
0.8 0 0 0 0 100 100 100 100 4.8 0.8

TABLE IV: The times (seconds) spent on doing the multiplier GOF test method and the AIC method: Normal and d = 2

n = 100 n = 300 n = 500

τ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

AIC 354.37 467.54 591.14 675.99 703.61 1039.36 1068.94 1237.30 1332.81 1523.44 1769.86 1814.36
Multiplier 692.6 811.18 921.86 1018.45 2228.83 2543.45 2767.10 2798.98 10504.80 11192.98 10865.67 11389.22

1.95 1.73 1.56 1.51 3.17 2.45 2.59 2.26 7.88 7.35 6.14 6.28

at the generating copula family under several combinations
of problem dimension, sample size and dependence level.

Under the assumption that the true copula exists and
is among the series of candidate copula family, we have
found that the AIC method achieved better performance by
comparing to the multiplier GOF test method. It should also
be very easy to use the AIC method to choose the real copula.
Furthermore, using the AIC method is faster than using the
multiplier GOF test method to choose a copula, especially
for large sample sizes. Our study supports the use of AIC

to choose the best copula under the certain assumption.
However, without the aforementioned assumption the AIC
method cannot tell whether the copula with the least AIC is
suitable for the particular case, because the AIC is a measure
of the relative GOF of a statistical model and the AIC method
does not perform a formal GOF hypothesis test. When the
true unknown copula in not among the given candidate, the
copula with the least AIC will lead to the poor fitting. In
this paper, we propose using AIC criteria in choosing copula
models. As such, the AIC method is compared against the
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Fig. 1: Plot for both the empirical levels and the correct rates for each copula families with d = (2, 3, 4), n=(100, 300, 500),
and τ = (0.2, 0.4, 0.6, 0.8). The horizontal axis gives the τ levels, and the vertical axis gives the proportions. The upper
three lines give us the correct rates from AIC, while the lower three lines give us the empirical levels (at 5% significance
level) of the multiplier GOF test method.

popular multiplier GOF test method.
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