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Abstract—This work investigates the effect of stochastic 

capital reserve on actuarial risk analysis. The formulated 

mathematical problem is a risk-reserve process of an insurance 

company whose ruin and survival probabilities are analyzed via 

the solutions of a derived integro-differential equation (IDE). 

We further study the interplay between the parameters 

governing the ruin and the survival probabilities regarding the 

risk-reserve model; thereby establish a relationship between the 

probabilities and the initial risk reserve in terms of the other 

parameters. 

 
Index Terms—Stochastic processes, Capital reserve, Risk 

theory and Integro-differential equations. 

 

I. INTRODUCTION 

athematical models are used  in actuarial risk analysis 

and applied probability to describe the inability of an 

insurer to withstand ruin or insolvency. In these models; the 

probability of ruin, distribution of surplus immediately prior 

to ruin and deficit at the time of ruin are of paramount 

interest. 

In 1903, the Swedish actuary, Filip Lunberg [1] 

introduced the theoretical foundation of ruin theory in 

modelling the ruin problem for an insurance company. The 

work of Lundberg was later reviewed and extended by 

Herald Cramer [2] and [3] in the 1930s , hence; the Cramer 

– Lunberg model (or classical compound-Poisson risk model 

or classical risk process or Poisson risk process) which is 

still the climax of insurance mathematics [4]. 

This model describes an insurance company faced with 

two opposing situations with respect to cash flows viz: the 

incoming cash premium and the outgoing claims. 

The premium (from customers) arrives at constant rate 

0k  and the arrival of claims follows a Poisson process 

with intensity and are also independent and identically 

distributed non negative random variables with distribution  

and mean µ (forming a compound Poisson process).  

In extension of the classical model, Andersen [5] 

allows the claim interval times to have arbitrary distribution 
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functions. 

Gerber and Shiu [6] in their work, analyzed the 

behaviour of the insurer‟s surplus through the expected 

discounted penalty function – commonly referred to as 

Gerber-Shiu function and applied this function to the 

classical compound Poisson model while Powers  [7]  is of 

the opinion that insurers‟ surplus is better modeled by a 

family of diffusion processes. 

Paulsen [8] proposed a general risk process with 

stochastic return on investments; taking account of three key 

factors – insurance risk, investment risk and inflation. In his 

work, he modeled those factors through semimartingales and 

obtained an integro–differential equation with an analytical 

expression for ruin probability under certain conditions. 

Yuen and Wang [9] derived an integro–differential 

equation for the Gerber–Shiu expected discounted penalty 

function, and then obtained an exact solution to the equation 

and also obtained closed form expressions for the expected 

discounted penalty function in some special cases. They 

finally examined a lower bound for the ruin probability of 

the risk process. 

Han and Yun [10] introduced the Optimal Homotopy 

Asymptotic Method (OHAM) for solving nonlinear integro-

differential equations; with examples illustrating the 

reliability and efficiency of the proposed OHAM, directed 

towards obtaining approximate solutions of the nonlinear 

IDE. 

In considering a perturbed market–modulated risk 

model with two sided jumps, Dong and Zhao [11] derived a 

system of differential equations for the Gerber–Shiu function 

and gave a numerical result based on Chebyshev polynomial 

approximation with illustrative examples. And Elghribi and 

Haouala [12] constructed, by Bochner subordination, a new 

model – an extension of the Sparre-Andersen model with 

investments that is perturbed by diffusion. 

The paper is structured as follows: Section II deals with 

preliminaries on some basic concepts in actuarial risk 

analysis, section III is on integro-differential equation, 

application, and discussion of result while section IV is on 

conclusion. 

 

II.  PRELIMINARIES 

Some Basic Concepts in Actuarial Risk Analysis: 

In a bid to calculate the risks and premium in an insurance 

company, a risky situation is encountered when the actuary 

wants to pay out a total claim amount.  Hence, the following 

concepts: 
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Definition 2.1 (Compound Poisson Process) 

 the company begins its business at time, 0t   

 claims arrive at random time points: 

1 2, 3,,T T T  with respective claim sizes 1 2, 3,,H H H  

giving rise to a marked point process    i 1
, i i

T H


 called 

risk process. Thus, the risk process has two components. 

Suppose  ( ), 0N t t  is a random counting process, then 

the total claim size is defined and denoted by: 

 

1

 , for 1 or 0 otherwise.
tN

t t t

i

C H N


    (2.1) 

From (2.1),  , 0tC t   is a compound Poisson process if 

 , 0tN t   is a compound Poisson process. 

 

2.2  Risk Reserve Process 

In what follows, we denote a filtered probability space  

  , , ,    upon which all the variables in this work 

are defined. 

In order to minimize loss and to maximize profit, the 

insurance company imposes a certain amount called 

premium on the client. Henceforth, ( )K t  is the 

corresponding total premium income of this insurance 

company in (0, ]t  with tC  as defined in (2. 1), therefore, 

the insurance company makes profit (resp .(loss)) if: 

 ( ( ) ( )) 0,  ( . ( ) ( )) 0) on (0, t]K t C t resp K t C t    . 

Suppose the insurance company has an initial capital or 

initial reserve (0) 0U u   and makes a profit of 

( ( ) ( )) in (0, t]K t C t . Then it has a reserve known as 

risk reserve denoted by: 

( ) C(t)tU u K t              (2.2)  

The corresponding risk reserve process  ( ), 0U t t   is a 

stochastic  process defined on the filtered probability space  

  , , ,    . This is a special type of stochastic 

process belonging to the class of Le vy  processes as 

considered in [13]. 

Classical Assumptions: 

The following assumptions are made for suitability of 

the Cramer- Lundberg Model: 

   

0A  :  ( ), t 0N t  is a homogeneous Poisson process 

with parameter 
1




 ,  such that   

 
( )

( ) , 0
!

t n

t

e t
N n n

n

 

       

1A  :  the claim sizes 1 2, 3,,H H H are independently    

and identically distributed as H . 

2A  : The premium income is a linear function in t   i.e.    

( ) , 0, 0.tk k t kt k t      

3A     : The time horizon is finite. 

Using (2.1) and 
2A  in  (2.2) gives: 

1

( )  
tN

t t

i

U u k t H


            (2.3) 

The major point using this model, is to investigate the 

probability that the insurer‟s surplus level finally falls below 

zero.  As such, the probability of ruin is defined as: 

  ( ) uu    (2.4) 

where the ruin time  is such that  inf ( ) 0U t    and 

0 ( ) 1u  as a natural requirement for solvency  

otherwise  ( ) 1u   implies a certainty of ruin; hence;  the 

imposition: 

 [ ] 0,   0.tU t     (2.5) 

where  is a mathematical expectation operator  with  

respect to  (the martingale measure ) . 

Definition (a) Let 

1
i

n

i

i

AX a


  be real-valued simple 

random variable defined on   , , ,   , then the 

mean value or expected value of  is defined as: 

1

( )   ( )
n

i i

i

X Xd a A




  ∶     (2.6) 

and  the variance of   is : 

  2 2 2
(X) ( ) ( )V X X d X X



      

where  denotes the Euclidean norm. 

 

Definition (b) Let ( )g x  defined on [0, )  be the 

probability density function (pdf) of a non-negative random 

variable X, then the Laplace transform of ( )g x  is defined 

and denoted by: 
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0

ˆ{ ( )} ( ) [ ] ( )sX sxg x g s e e g s ds



       (2.7) 

Definition (c) The n
th

 moment of X in definition (b) is 

defined as: 

1

ˆ( )
[X ] ( 1) ,   0

n
n n

n

s

d g s
for n

ds


      (2.8) 

Lemma 2a Suppose , 1iH i   are stochastically 

independent and identically distributed as H  and are 

independent of  , 0iT t   then: 

a)  C( ), t 0t  has independent homogeneous 

increment  

b) The Laplace transform of C( )t : 
ˆ[ ( ) 1]ˆ{C } ( ) [ ]t H s

t tC s e    

where  e( )ˆ sHsH   

Proof of a: This follows trivially from the properties of 

stochastic processes; see [13] and [14]. 

Proof of b: By (2.1) and (2.7), we have that: 

         1( )ˆ (s) ( ) ( )

Nt

t

i

s H
sC t

tC e e 





    

1 2 3 4 1[ ]
( ) 1Nt

s H H H H H
e
     

   

1 2 3 4 1[ ]

0

( ) ( )Nt
s H H H H H

t

n

e N n


     



 

 

 

0

( )
!

n t

sH n

n

t e
e

n

 




 
  

 
 

  

 

0

( )
!

n

t sH n

n

t
e e

n

 
 



 
  

 
 

  

 
ˆ (

0

)( )
!

H

n

t n

n

s

t
e

n

 




   
   

 
   
  

        ˆ ( )) tH ste e
  

ˆ[ ( ) 1]Ht se         

   

Corollary 2b.  The mean value ( ( ))C t  and variance 

( ( ))Var C t of ( )C t are easily computed via Lemma 2a, 

thus: 

( ( )) ( )C t t H and 
2( ( )) ( ).Var C t t H  

Proof:  From (2.8), we have: 

ˆ ( )
[ ( )] ( 1) ,   1

n
n n t

n

d C s
C t for n

ds
    

Therefore, 1n    yields: 

 
ˆ ( )

( ) ( 1) tdC s
C t

ds
   

       
ˆ ( ) 1

( 1)
t H sd

s
e

d

  



   

   
 e 1

( 1)
sH

t

s
e

d

d


 

  
 
 
 

 

 

    e 1

( 1)
sHtsH et He




    
 

 
  


 


 

∴ 
0

( ( )) ( )
s

C t t H

 . 

 (which is the mean value). 

Similarly, for 2n  , we have: 

 
2

2 2

2

ˆ ( )
( ) ( 1) td C s

C t
ds

   

        2 e 1sHtsHt H ee



    

 
 

  
  

 

          
e 1sHtsH sHet He t He


 

     
  







     

Hence, 

 
22 2

0
( ( )) ( ) ( )

s
C t t H t H 


    

 
22( ) ( )t H t H    

∴     
22

( ( )) ( ) ( )Var C t C t C t   

   
2 22( ) ( ) ( )t H t H t H      

2( )t H    

 

Lemma 2c Suppose  ( )H v   with 
1




  as in 0A  

then,  Λ 0L k v    where ΛL  called safety loading 

guaranteed survival. 

Proof: t tU u kt C   , by definition;  see (2.3) 

Thus,    t tU u kt C    

⇒  

      ( )
lim lim lim lim

t

x x x x

U u t H
k

t t t



   
     
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k v

k v






    

Hence, using the profit condition (2.5) gives: 

 Λ 0L k v     

 

III  INTEGRO-DIFFERENTIIAL EQUATION (IDE) 

This section deals with an Integro-differentiial equation 

satisfied by a survival probability as well as a corresponding 

ruin probability of an insurance company.  For better 

understanding, we introduce the following concepts. 

Definition 3. Let  ,u z , (for 0, 0u z  ) both in 

monetary units) be the survival probability of an insurance 

company with u  as initial capital, such that 0 u z  and 

u k t z    with respect to the time interval  0, t . As 

such    ,  as u z u z   , whence;    u and 

  u  are the survival and ruin probabilities respectively 

,with a relation: 

   =1-u u           (3.1) 

3.1.  Derivation of Integro-differentiial Equation Satisfied    

by  u and   u . 

Here, the procedure for the derivation of a first order 

Integro-differentiial Equation (IDE) satisfied by the survival 

and ruin probabilities of an insurance company as defined 

above is carefully analyzed and studied. 

Procedure: 

Let the distribution function of the claim size H  be  z   

with probability density function (pdf) such that: 

   H z z   and 
 

 
d z

f z
dz

 . 

Now, for simplicity of the steps, the following points are 

noted and conditions are placed. 

 

Considerations: 

1k - Let the corresponding time interval be  0, t  

2k - Since the number of claims follow a Poisson process, 

claims can either be 0 or 1 during this length. 

 

3k - Based on 2k , the probability of having more than one 

claim is trivial. 

4k - Occurrence of a claim (no claim) happens with 

probability    1t t   . 

 

Conditions: 

1c -  for no claim occurring in   0, t   with negative risk 

reserve, the survival probability is zero (0) 

 

2c  - for two or more claims occurring in  0, t , the 

survival probability is zero (0). 

 

3c  - for no claim occurring in  0, t , the survival 

probability is:    u k t   .  

4c  -  for one claim occurring in  0, t  with non-negative 

risk reserve, the survival probability is: 

    
0

u k t

u k t z f z dz

 

     

Therefore, running through the considerations and the 

conditions; using the law of total probability, we have: 

      1 0u t t u k t          

        
0

0 0

u k t

t t u k t z f z dz t
 

          

(3.2) 

⇒         0u u k t t t u k t              

        
0

0 0

u k t

t t u k t z f z dz t
 

          

So, 

        0u k t u t t u k t             

        
0

 0 0

u k t

t t u k t z f z dz t
 

                   

                (3.3) 

Setting  k t h  i.e.  
h

t
k

  and assuming that  u  

is differentiable, (3.3) becomes: 
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     0 0
h h h

u h u u h
k k k

   
    

         
    

 

   
0

0 0

u h
h h h

u h z f z dz
k k k




    
        

    
  

⇒ 

   
 

1
0

u h u h h
u h

h h k k

 
 

    
     

  
 

    
0

0 0

u h
h h h

u h z f z dz
k k k


     

         
     

   

∴ 
   

  
u h u

u h
h k

  


 
   

                                
0

u h

u h z f z dz
k




     

But  
   

 
u h u

u
h

 


 
  as 0h   

Whence, 

       
0

u

u u u z f z dz
k


 

 
    

 
  

               
0

1
u

u u z f z dz
k




 
   

 
  

where 
1




  following assumption 
0A    

 

3.2. The Laplacian Solution of the Integro-differentiial 

    Equation (IDE) 

In order to obtain the solution of the IDE, we apply the 

Laplace Transform, hence the following result: 

Theorem 3.1:  With regard to the above information, 

 u  and   u satisfy the IDE: 

       
0

1
u

u u u z f z dz
k

 


 
    

 
 . 

Proof:  From (2.7) in definition b, we recall that: 

 

0

ˆ{ ( )} ( ) [ ] ( )sX sxg x g s e e g s ds



      

for a well-defined function   g x  on  0,  with: 

 
1 2{ ( )} ( ) (0) (0)n n n ng x s g s s g s g      

      
   13 (0) g 0
nns g
          (3.5) 

and  

    
0

ˆ ˆ{ } ( ) ( )

t

t su u d su         (3.6) 

where ( )ng x  denotes the nth derivative of ( )g x . 

∴        
0

{ }
1

u

u u u z f z dz
k

 


 
  

  
  




  
  

⇒   1 ˆˆ ˆ ˆ(s) (0) (s) (s) ( )s f s
k

   


    

    ˆˆ ˆ(s) (0) (s) 1 ( )k s f s       

ˆˆ ˆ(s) (s) 1 ( ) (0)ks f s k       
 

 

 1 ˆˆ (s) 1 ( ) (0)k s f s k
k

   


 
   

 
 

∴ 

 

(0)
ˆ (s)

1 ˆ1 ( )s f s
k








   
(0)

ˆ1 ( )

k

s k f s

 




 
 (3.7) 

Theorem 3.2 Lundberg Inequality 

For 0u   and 0L   (with L  referred to as  Lundberg 

exponent), ruin (resp. survival) probability satisfies the 

Lundberg Inequality : 

        . 1Lu Luu e resp u e      

The Proof of Theorem 3.2 can be found in [4], [14], [15] 

,[16] and [17]. 

 

3.3 Applications: 

To explicitly illustrate the strength of the model, we consider 

the following results: 

 

Case I 

Corollary 3.1  Suppose the claim size H  of an insurance 
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company is exponentially distributed with parameter 
1


, 

then the survival and the ruin probabilities are: 

 

  1 (1 )u e



 


   and    (1 )u e



 


   

respectively, where (0,1)  .  

Proof:  Let the pdf of H  be ( )f z  such that 

1
( )

z

f z e 





  , since H is exponentially distributed with 

parameter 
1


 but from theorem 3.1, 

 
(0)

ˆ (s)
ˆ1 ( )

k

s k f s

 





 
 see (2.7) 

∴ 

0

ˆ ( ) { (s)} [ ] (z)sz szf s f e e f dz



      

 

0

1
z

sze e dz






 
1

0

1 s z

e dz




    
    

 

1

1

1

0

1

1

s z

s

e
s









 

  
  

 
 

 

 


 

∴ 
   

ˆ1
1

( 1
1

)
1

s

s s
f s



 



 


             (3.8) 

Putting (3.8) in (3.7) yields: 

 

(0)
ˆ (s)

1 ˆ1 ( )s f s
k








  1

1

(0)

s

s
s

k





 


 

  
 

 

        
 

 

1 (0)s k

s k s k

  

   

 
   
  




          (3.9) 

Considering (s) , 0 1   and Lemma 2c, we set 

k k       , that is, k





   

Therefore, (3.9) becomes: 

 
ˆ ((s)

1
0)

s

s s

 












 

 
 
 
 
  

 
 

 

 
 

 

1
(0)

s

s
s

 


  







 

 

1
(0)

s

s s




 





 

But by partial fraction,
 

   
1 2

1
 

s A A

s s s s



   


 

 
, 

with 
1

1
A


  and 

 
2

1
A

 




  

∴ 
 

 
 

11
ˆ ( ) 0s

s s

 


   


 
 

 
  

 
 

11
0

s
s




 




 
 
 
  



  
  

 

⇒   ˆ (s)
1 1 1 1

0
s

s




 





  
      
      

           

  

Thus, taking the Laplace transform of both sides gives: 

   ˆ (s)
1 1 1 1

{ 0s
s

s


 








  
      
       

           



 

 
1 1

0

s

e






 

    
    

     

  

Whence, 

     
1

1 1 0

s

s e



  


 
  

  

            (3.10) 

In order to compute  0  , we restructure (3.10) and apply 

the consequence of Theorem 3.2 (Lundberg inequality) as 

follows: 
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 
 

 

0

1 1

s

u

e













 

 with   1lim
u

u


  such that 

 0   and    1u    

Thus, (3.10) yields: 

   1 1

s

u e



 



    

Equivalently, we denote: 

    1 1

s

u e



 



      (survival probability) 

   1

s

u e



 



          (ruin probability) 

 

Note a: In comparing these results, we see clearly that the 

ruin probability satisfies the Lundberg equation with the 

exponent L



 ,  upon the boundary conditions: 

 

 0 (1 )   ,   0   . 

 

Case II 

Result for Mixture Exponential Claim Sizes: 

Other explicit results can be obtained for mixed exponential 

claim size distributions, thus the following: 

 

Theorem 3.3 

Suppose that the claim size H of an insurance firm is a 

mixture of n  exponential distributions with the density 

function: 

 

1

( ) i

n
z

i i

i

f z d e
 



  , 0z   , 

then, the ruin probability is  

 

 
1

i

n
r u

i

i

k eu 



  

 

for some constants ik , provided that ir  are the distinct 

positive solutions of the Lundberg equation 

 

1

n
i

i

i i

ks
A

s

 

 

   
   

   
 , where 0iA  . 

Proof: 

We shall sketch the proof of theorem 3.3 by the application 

of Laplace Transform as follows, 

Recall from theorem 3.1 that; 

 

 
(0)

ˆ (s)
ˆ1 ( )

k

s k f s

 





 
  

But 

1

( ) i

n
z

i i

i

f z d e
 



 implies that 

1

ˆ ( )
n

i
i

i i

f s d
s





 
  

 
 .Hence, we have: 

 

1

(0)
ˆ (s)

1
n

i
i

i i

k

s k d
s

 








  

   
  



 

For ˆ (s)  being a rational function, and the denominator 

equals zero whenever s is some 
ir  by definition, with the 

application of partial fraction theorem, we therefore write: 

0

1

ˆ (s)
n

i

i i

k k

s s r




 


  

Whereas all the terms under the summation can be 

transformed easily to exponentials by the application of 

Laplace Transform, while the first term becomes a constant 

function by Laplace for 0z  , satisfying    0    with 

0 0k        

Note b: An alternative and a detailed approach with regards 

to the solutions of ODE derived from the associated IDE is 

also applied by [18]. 

 

3.4 Discussion of Result 

For the purpose of the discussion of result, we carefully 

studied the interplay between the associated parameters 

, ,   u and   through some numerical calculations; thus, 

we set 0u   say (0,200]  and fixed the following: 

 0 1 0,1    and 3 4     

Note:  Fig 1and Fig 2 below, represent the graphs of the 

survival probability and the ruin probability respectively. 
 

 

Fig 1 : A graphical representation of the survival 

model. 
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Fig 2 : A graphical representation of the ruin model. 

 

IV. CONCLUSION 

We therefore conclude that the insurance company has a 

better chance of survival when the initial reserve is 

reasonably high; since ( )u  increases as u increases. In 

other words, the ruin probability of the insurance company is 

minimal at such; since  u decreases as  increases. 

These are obviously shown in Fig 1 and Fig 2 above, 

respectively. 

In the paper, two cases are considered; case I is when the 

claim size H of an insurance company is exponentially 

distributed with only one parameter  while case II is when 

the claim size H is a mixture of n  exponential 

distributions. 

 

Remark : The validity of the result is ascertained for all 

values of  0,1 , 0 and 0u     . Hence, the 

effectiveness of the results both in theoretical and 

computational views with regards to actuarial sciences. 
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