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Abstract—In observing the widely spread of patients caused
by infectious diseases or the increase of the number of failures of
equipments, it is crucial to predict the final number of infected
patients or failures at earlier stages. To estimate the number
of infected patients, the SIR model, the ordinary differential
equation model, statistical truncated model are useful. The
predicted value for the final number of patients using data
until truncation time T becomes a function (trend) of T . To
grasp the prediction trend with truncation time, the L-plot is
developed here, which is to plot the predicted final value at the
truncation time. We consider the use of the L-plot to predict
the final number of patients. For example, we have shown to
use the decay function. Applying the multiple methodologies to
the same data, we can expect better predicted values. This
is called the PoP, the prediction on predictions. As one of
the PoP method, we propose to use the ensemble method. By
applying these methods to the SARS case, we have found that
the ensemble method works well as a PoP method.

Index Terms—PoP, Pandemic, SIR model, ordinary differ-
ential equation model, statistical truncated model, generalized
logistic distribution, ensemble method, L-plot, decay function,
restricted RMSE, pandemic, SIR model, ordinary differential
equation model, statistical truncated model, ensemble method.

I. INTRODUCTION

IN observing the increase of the number of patients caused
by an infectious disease, it is crucial to predict the final

number of infected patients. To determine whether the spread
could be an outbreak or not is a great concern to everyone
because a possible pandemic may affect the huge economical
effect as well as the social damages. To estimate the number
of infected patients, the SIR model [1], [11], [14], [4], the
ordinary differential equation (ODE) model [3], [7], and the
statistical truncated model [2], [5], [6], [8], [9] are considered
to be useful to estimate the number of infected patients.

The predicted value for the final number of patients using
data until time T becomes a function (trend) of T . We here
consider the use of this trend to predict the final number of
patients. So far, we have been discussing about the better
predictor in the sense that the newly proposed method is
superior to other conventional methods. However, in this
paper, we try to use all the methods already proposed, and
to make a better result than that by using a single method.
That is, we will make a prediction using the predicted values
already obtained. We call this methodology the PoP, the
prediction on predictions.

It seems that the prediction accuracy will not increase by
this method because we use the same data. However, we may
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expect the better predicted values if we apply the multiple
methods to the same data [10]. In this paper, we show this
by applying the results of the SARS case using the proposed
method.

II. PRIMARY PREDICTION METHODS

We have made the predictions for disease spread by
using three primary prediction models: 1) the SIR model,
2) the ordinary differential equation model, 3) the statistical
truncated model.

A. SIR Model

The SIR model is described by simultaneous ordinary
differential equations to perform pandemic simulations [1],
[11], [14], [4], where S, I , and R are susceptible, infectious,
and removed populations, and the parameters λ and γ the
infection rate and the removal rate (recovery rate), respec-
tively.

S′(t) = −λS(t)I(t),
I ′(t) = λS(t)I(t) − γI(t), (1)
R′(t) = γI(t).

The parameters λ and γ can be computed by using the
the best-backward solution method, BBS ([3], [7]), when we
estimate the parameters λ and γ using the observed data.

B. Ordinary Differential Equation (ODE) Model

The ordinary differential equation (ODE) model [3] uses
the generalized logistic distribution such that

G′(t) =
βG(t)

σ

exp(−(t − µ)/σ)
1 + exp(−(t − µ)/σ)

, (2)

where, G(t) corresponds to the number of infected patients
at time t.

G(t; µ, σ, β) =
N

{1 + exp(−(t − µ)/σ)}β
, (3)

Here, N is the final number of infected patients. The param-
eters are estimated by using the method of least squares, and
the optimization is performed by the simplex method [13].

C. Statistical Truncated Model

Although we use the same probability distribution as
shown above, the method is different from that. The log-
likelihood function

log L(θ) =
r∑

i=1

ni log
{

F (ti+1; θ) − F (ti; θ)
F (tT ; θ)

}
, (4)

is used [2], [5], [6], [8], [9], where tT denotes the truncation
time, ti the ith day from the beginning, and ni the number
of patients on the ith day.
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III. BEST-BACKWARD SOLUTION METHOD, BBS

In estimating the parameters using the observed data, we
use the best-backward solution method, BBS ([7]). This is
basically a method of least squares, but some extension is
included. The procedure for this method is as follows:

1) We obtain initial estimates for parameters using the
simple forward/backward difference method.

2) Using these initial values, we solve differential equa-
tions (5) from tT to 0 backward, where tT is the last time
of observation. We, next, compute Z0 as shown below,

Z0 =
n∑

j=1

(Ŷ (tj) − Ỹ (tj))2, (5)

where, Y (tj) = R(tj) + I(tj) in the SIR model or Y (tj) =
NF (tj) in the single distribution model having a cumulative
distribution function F (t); Ỹ (tj) is the observed value for
Y (tj); Ŷ (tj) is the estimated value for Y (tj). Here, observed
data Ỹ (tj), (j = 1, . . . , n) were assumed to be available,
where tT = tn. We find parameters so that we minimize
Z0 using the downhill simplex method by [13] by iterating
backward-solution until convergence. We have applied this
method to the SIR model and the ODE model.

IV. UNDERESTIMATION ISSUE IN THE TRUNCATED
MODEL

Figure 1 shows a typical case of the observed and predicted
number of cumulative patients using the SARS case data in
Hong Kong in 2003, where the truncation date is set to the
20th day (April 6, 2003) from the beginning; the prediction
method is the statistical truncated model. It seems that the
predicted number of cumulative patients is underestimated.
Such a tendency is often observed when we use the statistical
truncated models.

Fig. 1. Observed and Predicted Number of Cumulative Patients in the Case
of SARS: A Typical Case.

Figure 2 shows the corresponding profile likelihood func-
tion, where the parameter is N , the final number of infected
patients. We can see that the maximum likelihood point is
located at N = 846. Why this tendency is observed cannot be
explained explicitly. However, it seems that the conditional
probability is inclined to estimate the parameters so that the
likelihood uses the observation is sufficiently enough.

Fig. 2. Profile Log-likelihood Function.

V. L-PLOT

Figure 3 shows the observed and predicted number of
cumulative patients using the SARS case data in Hong Kong
in 2003 by the various days of truncation time; the prediction
method is the statistical truncated model. It is very difficult
to grasp the whole prediction trend in the figure.

Fig. 3. Observed and Predicted Number of Cumulative Patients in the Case
of SARS: Various Cases.

The predicted value for the final number of patients using
data until time T becomes a function (trend) of T . To show
this final values, we tried to put the prediction points at
the truncation days together with the cumulative number of
observed values. This is new. We call this trend plot “L-plot”
here. The L-plot shows us how early the prediction method
predicts the final number of patients; see Figure 4, which
demonstrates the SARS case. It would be beneficial if we
can consider to use the L-plot in predicting the final number
of patients easily.

Figure 5 shows the predicted results by using the SIR
model in L-plot form. We can find the clear difference
between the two models, the statistical truncated model
(Figure 4) and the SIR model (Figure 5). In the SIR model,
we can see that the final number of patients are predicted
rather in early stages. The stable prediction can be attained
from the 20th day from the beginning. On the contrary, the
stable prediction may be obtained from the 35th day from
the beginning in the truncated model.
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Fig. 4. Concept of the L-plot.

Fig. 5. L-plot in the SIR Model.

Figure 6 shows an illustration of the L-plots by various
methods, the SIR model (1), the single ODE model (2), the
statistical truncated model (4), with the observed values for
the SARS case. We can see that the SIR model and the single
ODE model can find the final value earlier than the statistical
truncated model does.

VI. PREDICTION ON PREDICTIONS, POP

So far, we are apt to select the best model from many mod-
els in an accuracy sense. For example, we often explain that
the newly proposed method is superior to the conventional
methods. If this tendency is always true, then this makes
sense. However, we sometimes encounter cases that method
A and B produce the similar results, but method C does not;
in one case, A is better than B, but in another case, B is

Fig. 6. L-plots by various methods for the SARS case.

better than A. The results vary according to the situations.
We cannot simply accept which is better deterministically.

Let us take a new look at the prediction method. That is,
we consider to use the combination method of these methods.
In other words, we will make a prediction using the predicted
values already obtained. We call this the PoP, the prediction
on predictions. One idea for this is to use the trend of the
predicted final values (the use of the decay function shown
later), and the other is to select the better candidates for
predicting the the final value (the use of the ensemble method
shown later and the use of mean value also shown later).

A. Use of the Decay Function

Looking at a trend itself by each prediction method (SIR,
single ODE, or statistical truncated) in Figure 6, we may
imagine a continuous curve fitted to the trend and its limiting
value will converge to a constant value as days go on. Then,
we assume the function

di(t) = ci − bi exp(−ait), (6)

where i means the prediction method id; a, b, c are constants
to be fitted. The limiting value is ci. Figure 7 shows this
conceptual idea to use the decay function in the case of the
statistical truncated model. We may fit a curve decaying to
predicted trend using the observed values until the truncation
time T .

B. Use of the Ensemble Method

When the observed data includes the randomness, a much
more accurate estimation method may be applicable; that is,
two heads are better than one. The idea is similar to the
ensemble methods [15].

If each individual has the same probability p for success.
then the value of the majority votes P can be expressed as

P =
2n+1∑

i=n+1

(
2n + 1

i

)
piq2n+1−i. (7)

Figure 8 shows the relationship between p and P . We can
see that P > p whenever p > 0.5. For example, the values
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Fig. 7. An Example of the Decay Function (Statistical Truncated Model).

of P are

P = 0.844, (n = 1, p =
3
4
) (8)

P = 0.790, (n = 2, p =
2
3
) (9)

P = 0.896, (n = 2, p =
3
4
). (10)

This shows the effectiveness of the use of ensemble method.

Fig. 8. Two Heads are Better Than One.

In this paper, we are using three methods to predict the
final values at each T . To select the majority votes, we pick
up two nearest neighbors out of three, and take a mean
value of the two for the new prediction. For example, if
the three methods provide 800, 860, 1000, then, 830 is the
new prediction. Figure 9 shows the L-plots as in Figure 6 by
adding the L-plot using the ensemble method for the SARS
case.

C. Use of the Mean Value

Another method to use the predicted values is to take a
mean value. This is simply to take a mean value of the three
for the new prediction.

Fig. 9. L-plot by the Ensemble Method for the SARS case.

VII. THE CONDITIONS IN THE SIMULATION STUDY

We are dealing with the SARS case here. The litera-
ture [12] shows the mean incubation period of the disease
is estimated to be 6.4 days (95% confidence interval is
[5.2, 7, 7]). If we apply the SIR method to the real data case,
we refer to this information. However, in the simulation study
mimicked to the SARS case, we assume that the incubation
period is just one day because we try to compare the results
with those obtained by other methods which may not require
the value of the incubation period.

In the simulation, the final number of patients is set
to 1,000, and S0 is set to 5,000. The data generation is
followed by the generalized logistic distribution function
with parameter values, µ = 3.99, σ = 12.56, β = 3.27,
which came from the maximum likelihood estimates in the
real SARS case in Hong Kong, 2003 [9]. In this paper,
we have performed 100 simulation cases for the purpose of
comparison.

VIII. PREDICTED RESULTS BY USING THE POP

To show the trend to each prediction method, we made
box-plots using 100 simulation cases as shown in Figure 10.
The SIR shows the high bias to the final value in earlier
stages. The ODE and the statistical truncated methods show
the similar results, revealing the low bias in earlier stages.
We may expect that a simple use of the mean value from
the three may provide a better value because the single ODE
and truncated results show the lower bias contrary to the SIR
results.

A. Restricted Root Mean Square Error, rRMSE

To determine the accuracy for the prediction method, we
can use the root mean square error. However, we introduce,
here, the restricted root mean square error, rRMSE; since
the predicted values for the final number of patients some-
times may have very large values or may not converge, we
will locate these values to the boundary of the window (see
dotted box in Figure 11 on the top). Here, rRMSE is defined
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Fig. 10. Box Plots for the Predicted Trends using the SIR, Single ODE,
Statistical Truncated Models.

as

rRMSE(j)

=

√√√√ 1
|∆j |

∑
k∈∆j

(Ŵr(∞|tT = k) − W (∞))2, (11)

where, Ŵ (∞|tT = k) means the estimate of W (∞) when
using the data from the beginning to the truncation time k
such as

Ŵr(∞|tT = k) = min(Ŵ (∞|tT = k), 2W (∞)).

∆j expresses the days in the target area, and |∆j | denotes the
number of days in ∆j . Ŵr(∞|tT = k) attracts Ŵ (∞|tT =
k) at the boundary 2W (∞) if Ŵ (∞|tT = k) > 2W (∞).
Figure 11 on the bottom shows an illustrative example for
the rRMSE. On the top of the figure, the L-plot is shown,
where we use the values in the window.

Fig. 11. An Illustrative Example for the rRMSE.

Figure 12 the rRMSE for L-plot of the SIR, single ODE,
statistical truncated models, PoP methods (the ensemble
method and taking the mean value) for the SARS Case. We
can see that the ensemble method provides a good result.
The ensemble method could remove the noisy estimates by
the SIR method although the mean value was affected by
this noise.

Figure 13 shows the rRMSE for L-plot of the SIR, single
ODE, statistical truncated models, ensemble method, and the
mean value after decaying process for the SARS Case. The
figure reveals that the decaying process works and that the
SIR and the ensemble methods show lower rRMSE values.
We may use the ensemble method as a PoP method.

IX. CONCLUSION

In observing the widely spread of patients caused by
infectious diseases or the increase of the number of failures
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Fig. 12. rRMSE for L-plot of the ODE, Statistical Truncated Models,
Ensemble Method, Mean Value for the SARS Case.

Fig. 13. rRMSE for L-plot of the SIR, ODE, Statistical Truncated
Models, Ensemble Method.

of equipments, it is crucial to predict the final number of
infected patients or failures at earlier stages. To estimate the
number of infected patients, the SIR model is commonly used
even when the size of observed data is small. Other methods,
such as the ordinary differential equation model, statistical
truncated model are also useful to estimate the number of
infected patients. These methods are also applicable to the
increase of the number of failures. The predicted value for
the final number of patients using data until time T becomes
a function (trend) of T . We call this L-plot. We here consider
the use of the L-plot to predict the final number of patients,
and we defined the decay function using the L-plot. Applying
the multiple methodologies to the same data, we could
expect the better predicted values. This is called the PoP,
the prediction on predictions. As one of the PoP method, we
also proposed to use the ensemble method. The PoP includes
to use the simple mean value, the decay function, and the
ensemble method. By applying these methods to the SARS

case, we have found that the ensemble method works well
as one of the PoP methods.
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