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Abstract—The n-dimensional cube-connected complete
graph, denoted by CCCP (n), is constructed from the
n-dimensional hypercube Qn by replacing each vertex of Qn

with a complete graph of order n. In this paper, we prove that
CCCP (n) is Cayley graph, and study the basic properties
of CCCP (n), including spectra, connectivity, Hamiltonian,
diameter etc.

Index Terms—n-dimensional cube-connected complete graph,
Cayley graph, Vertex-transitive.

I. INTRODUCTION

THROUGHOUT this article, a graph G = (V,E) always
means a finite undirected connected graph without loops

and multiple edges, where V = V (G) is the vertex set
and E = E(G) is the edge set. The hypercube, suggested
by Sullivan and Bashkow[1], is one of the most popular,
versatile and efficient topological structures of intercon-
nection networks. The hypercube Qn has many excellent
features, and thus becomes the first choice for the topological
structure of parallel processing and computing systems. From
hypercube, one of the most popular derivative networks is
a cube-connected cycle. The n-dimensional cube-connected
cycle, denoted by CCC(n), is constructed from the n-
dimensional hypercube Qn by replacing each vertex of Qn
with an undirected cycle of length n. The ith dimensional
edge incident to a vertex of Qn is then connected to the ith
vertex of the corresponding cycle of CCC(n). In this paper,
we define a new topological structure of interconnection
networks from Qn.

Definition 1.1: The n-dimensional cube-connected com-
plete graph, denoted by CCCP (n), is constructed from the
n-dimensional hypercube Qn by replacing each vertex of Qn
with a complete graph of order n.

By modifying the labeling scheme of Qn, we can represent
each vertex of CCCP (n) by a pair (x; i) where i(1 ≤ i ≤ n)
is a position of the vertex within its complete graph and x
(any n-bit binary string) is the label of the vertex in Qn that
corresponds to the complete graph. Precisely, the vertex set
of CCCP (n) is

V = {(x; i) : x ∈ V (Qn), 1 ≤ i ≤ n}.

Two vertices (x; i) and (y; j) are linked by an edge in the
CCCP (n) if and only if either

(i). x = y and |i − j| ≡ s(mod n), s ∈ {1, 2, · · · b 1
2nc},

or
(ii). i = j and x differs from y in precisely the ith bit.
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Edges of the first type are called complete edges, while
edges of the second type are referred to as hypercube edges.

For a vertex v ∈ V (G), N(v) denotes the set of vertices
adjacent to v, dG(v) = |N(v)| is the degree of v in G. An
edge-cut in graph G is a set S of edges of G such that G−S
is disconnected. The edge-connectivity λ(G) of a graph is
the minimum cardinality of all edge-cuts of G. Obviously,
λ(G) ≤ δ(G). A connected graph G is said to be maximal
edge connected, for short max-λ, if λ(G) = δ(G). A graph
G is said to be super-edge-connected, for short super-λ, if
every minimum edge-cut of G isolates a single vertex. An
edge-cut F of G is called a restricted edge-cut if G − F
contains no isolated vertices. The minimum cardinality of all
restricted edge-cuts denoted by λ′(G), is called the restricted
edge-connectivity of G. Similarly, a vertex-cut in graph G is
a set U of vertices of G such that G − U is disconnected.
The vertex-connectivity κ(G) of a graph is the minimum
cardinality of all vertex-cuts of G. Obviously, κ(G) ≤ δ(G).
A connected graph G is said to be maximal vertex-connected,
for short max-κ, if κ(G) = δ(G). A graph G is said to be
super-connected, for short super-κ, if every minimum vertex-
cut of G isolates a single vertex. A vertex-cut U of G is called
a restricted vertex-cut if G−U contains no isolated vertices.
The minimum cardinality of all restricted vertex-cuts denoted
by κ′(G), is called the restricted vertex-connectivity of G. An
independent vertex set of a graph is a subset of the vertices
such that no two vertices in the subset represent an edge of
G. The vertex independence number α(G) of a graph G, is
the cardinality of the largest (vertex) independent set. Let
Γ be a non-trivial finite group, and let S be a subset of Γ
such that closed under taking inverses and does not contain
the identity. Then the Cayley graph CΓ(S) is the graph with
vertex set Γ and edge set E(CΓ(S)) = {gh : hg−1 ∈ S}.
A graph G is vertex-transitive if its automorphism group
acts transitively on V (G). It is wellknown that the Cayley
graph is vertex-transitive. There are some authors studied
the properties of Cayley graph [2-4]. In this paper, we
show that CCCP (n) is Cayley graph, and study the basic
properties of CCCP (n), including spectra, connectivity,
Eulerian, Hamiltonian, diameter, eta.

For graph-theoretical terminology and notation not defined
here we follow Bondy and Murty [5].

II. MAIN RESULT

The following proposition is quite apparent from the
construction of CCCP (n).

Proposition 2.1: The cube-connected complete graph
CCCP (n) is an n-regular graph with n2n vertices and
2n−1(n+ 2n − 1) edges.

Theorem 2.2: The cube-connected complete graph
CCCP (n) is a Cayley graph, and hence is vertex-transitive.

Proof: In order to prove the theorem, we construct a
Cayley graph firstly. Use (Z2)n to denote Z2×Z2×· · ·×Z2,
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which is the Cartesian product of n sets Z2 = {0, 1}. Let

M =



0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0


be an n-square matrix. For any element v in (Z2)n, thinking
of v as a column vector, we let M act on v in the normal
manner except that all additions are computed modulo 2.
Then Mv is also an element of (Z2)n. We can define a new
group Γ = (Z2)n ×Zn. For any (x; i), (y; j) ∈ (Z2)n ×Zn,
the operation ”◦” of Γ is defined as follows:

(x; i) ◦ (y; j) = (M jx + y; i+ j),

where the first addition is componentwise modulo 2(in
(Z2)n) and the second is modulo n(in Zn). It is a simple
exercise to check that this new operation makes Γ = (Z2)n×
Zn a group. Its identity element of Γ is (0; 0) and the inverse

(x; i)−1 = (−Mn−ix;n− i).
Let

S = {(10 · · · 0; 0), (00 · · · 0; 1), (00 · · · 0; 2), · · · , (00 · · · 0;n−1)},

where the first is self-inverse and the following are mutually
inverse. Thus S = S−1 and the Cayley graph CΓ(S) is an
undirected graph.

Hence, in order to complete the proof, it is suffice to prove

CCCP (n) ∼= CΓ(S).

Consider x in the vertex (x; i) as a column vector x. Define
a mapping

φ : (Z2)n × Zn → (Z2)n × Zn

(x; i) 7→ (Mn−i+1x;n− i+ 1)

It is easy to check that the mapping φ is bijective. We now
prove that φ is preserves adjacency. Let (x; i) and (y; j) be
any two distinct vertices of CCCP (n). By the definition,
(x; i) and (y; j) are adjacent in CCCP (n) if and only if
either

(i). x = y and |i − j| ≡ s(mod n), s ∈ {1, 2, · · · b 1
2nc},

or
(ii). i = j and x differs from y in precisely the ith bit.
Noting that

φ(x; i) = (Mn−i+1x;n− i+ 1),

φ(y; j) = (Mn−j+1y;n− j + 1),

φ(x; i)−1 = (Mn−i+1x;n− i+ 1)−1 = (−x; i− 1),

we have that

φ(x; i)−1 ◦ φ(y; j) = (−x; i− 1) ◦ (Mn−j+1y;n− j + 1)
= (−Mn−j+1x +Mn−j+1y;n− j + i).

If (i) occurs, then φ(x; i)−1 ◦ φ(y; j) = (0; s) ∈ S(s ∈
{1, 2, · · · b 1

2nc}) if and only if (x; i) and (y; j) are adjacent
in CΓ(S).

If (ii) occurs, then

φ(x; i)−1 ◦ φ(y; j) = Mn−i+1(−x + y; 0)
= (10 · · · 0; 0) ∈ S

if and only if (x; i) and (y; j) are adjacent in CΓ(S). The
proof is completed.

Next, we consider the spectra of CCCP (n). Recall that a
multigraph G is called semiregular of degrees r1, r2 if it
is bipartite having a representation G = (X1,X2;U) with
|X1| = n1, |X2| = n2, n1 +n2 = |V (G)|, where each vertex
x ∈ Xi has degree ri(i = 1, 2).

Lemma 2.3: [6] Let G be a regular graph of degree r with
ν vertices and m edges, then

PS(G)(λ) = λm−νPG(λ2 − r).

Lemma 2.4: [6] Let G be a semiregular multigraph with
n1 ≥ n2, then

PL(G)(λ) = (λ+2)β
√

(−α1

α2
)n1−n2PG(

√
α1α2)PG(−

√
α1α2).

holds, where αi = λ− ri+2(i = 1, 2) and β = n1r1−n1−
n2.

Theorem 2.5: The cube-connected complete graph
CCCP (n),

PCCCp(n)(λ) = [λ(λ+ 2)](n−2)2n−1

PQn [λ(λ− n+ 2)− n].

Proof: From the definition of CCCP (n), we can
obtain that CCCP (n) ∼= L(S(Qn)). Let Qn be the n-
dimensional hypercube, we have known that Qn is n-regular
and |V (Qn)| = 2n, |E(Qn)| = n2n−1. By lemma 2.3, we
have

PS(Qn)(λ) = λn2n−1−2nPG(λ2−n) = λ(n−2)2n−1

PG(λ2−n).

Since S(Qn) is semiregular graph with n1 = n2n−1, n2 =
2n, r1 = 2, r2 = n. By Lemma 2.4, we have α1 = λ− r1 +
2 = λ − 2 + 2 = λ, α2 = λ − n + 2 and β = n1r1 −
n1 − n2 = n2n−1 · 2 − n2n−1 − 2n = (n − 2)2n−1. Let
α = α1α2 = λ(λ− n+ 2), thus,

PL(S(Qn))(λ)

= (λ + 2)
(n−2)2n−1

√
(−

λ

λ − n + 2
)n2n−1−2nPS(Qn)(

√
α)PS(Qn)(−

√
α)

= (λ + 2)
(n−2)2n−1

(
λ

λ − n + 2
)
(n−2)2n−2

√
α(n−2)2n−1

(PQn
(α − n))2

= (λ + 2)
(n−2)2n−1

(
λ

λ − n + 2
)
(n−2)2n−2

α
(n−2)2n−2

PQn
(α − n)

= (λ + 2)
(n−2)2n−1

λ
(n−2)2n−1

PQn
[λ(λ − n + 2) − n]

= [λ(λ + 2)]
(n−2)2n−1

PQn
[λ(λ − n + 2) − n].

In the following, we will consider the diameter and con-
nectivity of CCCP (n).

Lemma 2.6: [7] For any given vertex x of Qn, there exists
the unique vertex y such that the distance d(Qn;x, y) = n.

Theorem 2.7: For any given vertex x of CCCP (n),
there exists the unique vertex y such that the distance
d(CCCP (n);x, y) = 2n.

Proof: Since CCCP (n) is vertex-transitive by Theorem
2.2, we can, without loss of generality, suppose that

x = (000 · · · 0; 1),
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if there exists y such that d(CCCP (n);x, y) = 2n, then
y = (111 · · · 11, i) for some i ∈ {1, 2, . . . , n} by Lem-
ma 2.6. Thus, x = (000 · · · 00; 1) → (100 · · · 00; 1) →
(100 · · · 00; 2) → (110 · · · 00; 2) → (110 · · · 00; 3) →
(111 · · · 00; 3) → . . . → (111 · · · 10;n − 1) →
(111 · · · 10;n)→ (111 · · · 11;n)→ (111 · · · 11; 1), from the
construction, we know that the path is shortest, and we can
construct the paths of length 2n−1 from x = (000 · · · 00; 1)
to any vertex (111 · · · 111; i), (i = 2, 3, . . . , n). Therefore,
the vertex (111 · · · 11; 1) is the unique vertex such that the
distance

d(CCCP (n); (000 · · · 00; 1), (111 · · · 11; 1)) = 2n.

By Theorem 2.7, we have the following corollary.

Corollary 2.8: The diameter of CCCP (n) is 2n.

Theorem 2.9: The independent number of the cube-
connected complete graph CCCP (n) is 2n.

Proof: Let S be an independent set of CCCP (n). By
Proposition 2.1, CCCP (n) is an n-regular graph with n2n

vertices, So, α(CCCP (n)) ≤ n2n

n = 2n. For every vertex
x ∈ Qn, we can selecte a vertex in {(x, i)|i = 1, 2, . . . , n}
adding to S such that no vertex is adjacent in CCCP (n),
and |S| = 2n. Thus, S is a maximum independent set of
CCCP (n).

Lemma 2.10: The cube-connected cycles CCC(n) is 3-
regular, has n2n vertices and 3n2n−1 edges, has connectivity
3 and contains Hamilton cycles.

Theorem 2.11: The cube-connected complete graph
CCCP (n) is Eulerian if n is even, CCCP (n) is
Hamiltonian if n ≥ 2.

Proof: It is evident that the cube-connected complete
graph CCCP (n) is Eulerian if n is even. Since CCC(n)
is a spanning subgraph of CCCP (n) and CCC(n) is
Hamiltonian if n ≥ 2, Therefore CCCP (n) is Hamiltonian
if n ≥ 2.

Theorem 2.12: The cube-connected complete graph
CCCP (n) is max-κ and max-λ. κ′(CCCP (n)) = n;
λ′(CCCP (n)) = n. Thus, CCCP (n) is not super-κ, and
not super-λ.

Proof: By Theorem 2.2, CCCP (n) ∼= CΓ(S), and
|S| = n, thus CCCP (n) has connectivity n. Hence,
CCCP (n) is max-κ and max-λ. Considering the complete
subgraph with vertices X = {(x, 1), (x, 2), . . . , (x, n)}, the
vertex set {(y, i)|x differs from y in precisely the ith bit}
forms a restricted vertex-cut. Thus, κ′(CCCP (n)) = n. n
hypercube edges which incident with X forms a restricted
edge-cut, thus, λ′(CCCP (n)) = n. Therefore, CCCP (n)
is not super-κ, and not super-λ.
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