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Abstract—In this paper, an interactive decision making
method for multiobjective fuzzy random linear programming
problems based on coefficients of variation is proposed. In the
proposed method, it is assumed that the decision maker intends
to not only maximize the expected degrees of possibilities
that the original objective functions attain the corresponding
fuzzy goals, but also minimize coefficients of variation for such
possibilities, and such fuzzy goals are quantified by eliciting the
corresponding membership functions. Using the fuzzy decision,
both the expected degrees of possibilities and the membership
functions of coefficients of variation are integrated. In the
integrated membership space, a satisfactory solution is obtained
from among an CV-Pareto optimal solution set through the
interaction with the decision maker. In order to show the
efficiency of the proposed method, the interactive processes for
the numerical example under the hypothetical decision maker
are demonstrated, and the proposed method is compared with
the V-model based method.

Index Terms—multiobjective programming, fuzzy random
variables, expectations, coefficients of variation, fuzzy decision,
interactive method.

I. INTRODUCTION

In the real world decision making situations, we often
have to make a decision under uncertainty. In order to
deal with decision problems involving uncertainty, stochastic
programming approaches [1], [2], [3], [6] and fuzzy pro-
gramming approaches [12], [14], [25] have been developed.
Recently, mathematical programming problems with fuzzy
random variables [11] have been formulated [13], [15], [17],
whose concept includes both probabilistic uncertainty and
fuzzy one simultaneously. Extensions to multiobjective fuzzy
random linear programming problems (MOFRLP) have been
done and interactive methods to obtain a satisfactory solu-
tion for the decision maker have been proposed [7], [9],
[15]. In their methods, it is required in advance for the
decision maker to specify permissible possibility levels in
a probability maximization model or permissible probability
levels in a fractile optimization model [16]. However, it
seems to be very difficult for the decision maker to specify
such permissible levels appropriately. From such a point
of view, a fuzzy approach to MOFRLP has been proposed
[21], in which the decision maker specifies not the values
of permissible levels but the membership functions for the
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fuzzy goals of permissible levels. In the proposed method, it
is assumed that the decision maker adopts the fuzzy decision
[5], [14] to integrate the membership functions. As a natural
extension of such methods, interactive fuzzy decision making
methods for MOFRLP to obtain a satisfactory solution from
among an extended Pareto optimal solution set have been
proposed [19], [20], [23], [24]

On the other hand, some decision maker may prefer to
adopt an expectation model (E-model) or a variance model
(V-model) rather than a probability maximization model
or a fractile optimization model to deal with MOFRLP,
because the expectation value or the variance is a well-known
statistical quantity. From such a point of view, Katagiri et al.
[8], [10] proposed interactive decision making methods for
MOFRLP to obtain a satisfactory solution of the decision
maker, using E-model and V-model [18]. However, when
adopting E-model, the effects for the variance of the random
variable coefficients of fuzzy random variables is ignored.
Similarly, when adopting V-model, although the effects for
the variance of the random variable coefficients of fuzzy
random variables is considered in the formulation processes
of MOFRLP, the decision maker must specify in advance
a permissible expectation level for each objective function
of MOFRLP subjectively. In general, the minimization of
a permissible expectation level in a minimization problem
conflicts with the minimization of the variance. Therefore, it
seems to be difficult for the decision maker to specify ap-
propriately a permissible expectation level for each objective
function of MOFRLP.

In this paper, it is assumed that the decision maker intends
to not only maximize the expected degrees of possibilities [5]
that the original objective functions involving fuzzy random
variable coefficients attain the corresponding fuzzy goals, but
also minimize coefficients of variation for such possibilities
in MOFRLP [8], [10]. In order to deal with such decision
making situations in MOFRLP, we introduce an CV-Pareto
optimal solution concept, in which both the expected degrees
of possibilities and the corresponding coefficients of varia-
tion for such possibilities are integrated through the fuzzy
decision [5], [14]. To obtain an CV-Pareto optimal solution,
minmax problem is formulated. An interactive algorithm is
proposed to obtain a satisfactory solution from among an CV-
Pareto optimal solution set by solving the minmax problem
on the basis of convex programming technique [22]. In order
to illustrate the proposed method, a three-objective fuzzy
random linear programming problem is formulated, and the
interactive processes under the hypothetical decision maker
are demonstrated, and the proposed method is compared with
the V-model based method.
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II. MULTIOBJECTIVE FUZZY RANDOM LINEAR
PROGRAMMING PROBLEMS

In this section, we focus on multiobjective programming
problems involving fuzzy random variable coefficients in
objective functions called multiobjective fuzzy random linear
programming problem (MOFRLP).
[MOFRLP]

min
x∈X

˜̄Cx = (˜̄c1x, · · · , ˜̄ckx) (1)

where x = (x1, · · · , xn)
T is an n dimensional decision vari-

able column vector. X is a linear constraint set with respect
to x. ˜̄ci = (˜̄ci1, · · · , ˜̄cin), i = 1, · · · , k are coefficient vectors
of objective function ˜̄cix, whose elements are fuzzy random
variables (The symbols ”-” and ”˜” mean randomness and
fuzziness respectively).

In this paper, we assume that under the occurrence of
each scenario ℓi ∈ {1, · · · , Li}, c̃ijℓi is a realization of a
fuzzy random variable ˜̄cij which is a fuzzy number whose
membership function is defined as follows [15].

µc̃ijℓi
(t) =

max
{
1− dijℓi

−t

αij
, 0
}
, t ≤ dijℓi

max
{
1− t−dijℓi

βij
, 0
}
, t > dijℓi

(2)

where the parameters αij > 0, βij > 0 are constants
and dijℓi varies depending on which a scenario ℓi occurs.
Moreover, we assume that a scenario ℓi occurs with a
probability piℓi , where

∑Li

ℓi=1 piℓi = 1 for i = 1, · · · , k.
By Zadeh’s extension principle, the realization c̃iℓix be-

comes a fuzzy number which characterized by the following
membership function.

µc̃iℓi
x(y) =


max

{
1− diℓi

x−y

αix , 0

}
, y ≤ diℓix

max

{
1− y−diℓi

x
βix

, 0

}
, y > diℓix

(3)
where diℓi = (di1ℓi , · · · , dinℓi), αi = (αi1, · · · , αin) ≥ 0,
βi = (βi1, · · · , βin) ≥ 0.

Considering the imprecise nature of the decision maker’s
judgment, it is natural to assume that the decision maker
has a fuzzy goal for each objective function in MOFRLP.
In this paper, it is assumed that such a fuzzy goal G̃i

can be quantified by eliciting the corresponding membership
function defined as follows.

µG̃i
(yi) =


1 yi < z1i
yi − z0i
z1i − z0i

z1i ≤ yi ≤ z0i

0 yi > z0i

(4)

where z0i represents the minimum value of an unacceptable
level of the objective function, and z1i represents the maxi-
mum value of a sufficiently satisfactory level of the objective
function. By using a concept of possibility measure [5], the
degree of possibility that the objective function value ˜̄cix
satisfies the fuzzy goal G̃i is expressed as follows [9].

Π˜̄cix(G̃i)
def
= sup

y
min{µ˜̄cix(y), µG̃i

(y)} (5)

It should be noted here that if a scenario ℓi occurs with
probability piℓi then the value of possibility measure can be

represent as

Πc̃iℓi
x(G̃i)

def
= sup

y
min{µc̃iℓi

x(y), µG̃i
(y)}. (6)

Using the above possibility measure, MOFRLP can be trans-
formed into the following multiobjective stochastic program-
ming problem (MOSP).
[MOSP]

max
x∈X

(Π˜̄c1x(G̃1), · · · ,Π˜̄ckx(G̃k)) (7)

III. AN EXPECTATION MODEL AND A VARIANCE MODEL
FOR MOFRLP

Katagiri et al.[8], [10] formulated MOFRLP as the multi-
objective programming problems through expectation model
(E-model) and variance model (V-model) respectively. At
First, we explain E-model for MOFRLP formulated as fol-
lows.
[MOP-E1]

max
x∈X

(E[Π˜̄c1x(G̃1)], · · · , E[Π˜̄ckx(G̃k)]) (8)

where E[·] denotes the expectation operator. In order to deal
with MOP-E1, we introduce an E-Pareto optimal solution
concept.

Definition 1: x∗ ∈ X is said to be an E-Pareto optimal
solution to MOP-E1, if and only if there does not exist
another x ∈ X such that E[Π˜̄cix(G̃i)] ≥ E[Π˜̄cix∗(G̃i)],
i = 1, · · · , k with strict inequality holding for at least one i.

It should be noted here that (6) can be represented as
follows [15].

Πc̃iℓi
x(G̃i) =

∑n
j=1(αij − dijℓi)xj + z0i∑n

j=1 αijxj − z1i + z0i
(9)

Since the probability that a scenario ℓi occurs is piℓi ,
E[Π˜̄cix(G̃i)] can be computed as follows.

E[Π˜̄cix(G̃i)] (10)

=

Li∑
ℓi=1

piℓiΠc̃iℓi
x(G̃i)

=

∑n
j=1(αij −

∑Li

ℓi=1 piℓidijℓi)xj + z0i∑n
j=1 αijxj − z1i + z0i

def
= ZE

i (x)

Then, MOP-E1 can be transformed into MOP-E2.
[MOP-E2]

max
x∈X

(ZE
1 (x), · · · , ZE

k (x)) (11)

Next, consider V-model for MOFRLP. The multiobjective
programming problem based on V-model can be formulated
as follows.
[MOP-V1]

min
x∈X

(V [Π˜̄c1x(G̃1)], · · · , V [Π˜̄ckx(G̃k)]) (12)

subject to

E[Π˜̄cix(G̃i)] ≥ ξi, i = 1, · · · , k (13)

where V [·] denotes the variance operator, and ξi represents
a permissible expectation level for E[Π˜̄cix(G̃i)]. Now, we
denote the feasible set of MOP-V1 as

X(ξ)
def
= {x ∈ X|E[Π˜̄cix(G̃i)] ≥ ξi, i = 1, · · · , k}. (14)
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Similar to E-model, in order to deal with MOP-V1, a V-
Pareto optimal solution concept is defined.

Definition 2: x∗ ∈ X(ξ) is said to be a V-Pareto optimal
solution to MOP-V1, if and only if there does not exist
another x ∈ X(ξ) such that V [Π˜̄cix(G̃i)] ≤ V [Π˜̄cix∗(G̃i)],
i = 1, · · · , k with strict inequality holding for at least one i.

It should be noted here that V [Π˜̄cix(G̃i)] can be repre-
sented as follows [15].

V [Π˜̄cix(G̃i)]

=
1

(
∑n

j=1 αijxj − z1i + z0i )
2
V

 n∑
j=1

d̄ijxj


=

1

(
∑n

j=1 αijxj − z1i + z0i )
2
xTV ix (15)

def
= ZV

i (x)

where V i is the variance-covariance matrix of d̄i expressed
by

V i =


vi11 vi12 . . . vi1n
vi21 vi22 . . . vi2n

...
...

. . .
...

vin1 vin2 . . . vinn

 , i = 1, · · · , k, (16)

and

vijj = V [d̄jj ]

=

Li∑
ℓi=1

piℓid
2
ijℓi −

(
Li∑

ℓi=1

piℓidijℓi

)2

,

j = 1, · · · , n, (17)
vijr = Cov[d̄ij , d̄ir]

= E[d̄ij · d̄ir]− E[d̄ij ]E[d̄ir]

=

Li∑
ℓi=1

piℓidijℓidirℓi −
Li∑

ℓi=1

piℓidijℓi

Li∑
ℓi=1

piℓidirℓi ,

j, r = 1, · · · , n, j ̸= r (18)

Furthermore, the inequalities (13) can be expressed by the
following forms.

n∑
j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj

≤ z0i − ξi(z
0
i − z1i ), i = 1, · · · , k (19)

Then, MOP-V1 can be transformed into MOP-V2.
[MOP-V2]

min
x∈X

(ZV
1 (x), · · · , ZV

k (x)) (20)

subject to
n∑

j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj ≤ z0i − ξi(z

0
i − z1i ),

i = 1, · · · , k.
From the fact that

∑n
j=1 αijxj−z1i +z0i > 0, xTV ix > 0,

due to the positive-semidefinite property of Vi, MOP-V2 can
be equivalently transformed to MOP-V3
[MOP-V3]

min
x∈X

(ZSD
1 (x), · · · , ZSD

k (x)) (21)

subject to

n∑
j=1

(
Li∑

ℓi=1

piℓidijℓi − (1− ξi)αij

)
xj ≤ z0i − ξi(z

0
i − z1i ),

i = 1, · · · , k,
where

ZSD
i (x)

def
=

√
xTV ix∑n

j=1 αijxj − z1i + z0i
.

It should be noted here that ZE
i (x) and ZSD

i (x) are
the statical values for the same random function Π˜̄cix(G̃i).
When solving MOFRLP, it is natural for the decision maker
to consider both ZE

i (x) and ZSD
i (x) for each objective

function Π˜̄cix(G̃i) of MOSP simultaneously, rather than
considering either of them. Moreover, it seems be difficult
for the decision maker to express his/her preference for the
standard deviations ZSD

i (x), i = 1, · · · , k. From such a
point of view, in the following sections, we propose the
hybrid model for MOFRLP, in which E-model and V-model
are incorporated simultaneously, and define an CV-Pareto
optimality concept. In order to derive a satisfactory solution
of the decision maker from among an CV-Pareto optimal
solution set, the interactive algorithm is developed.

IV. CV-MODEL FOR MOFRLP

In this section, we consider the following hybrid model for
MOFRLP, where both E-model and V-model are considered
simultaneously.
[MOP-EV1]

max
x∈X

(
ZE
1 (x), · · · , ZE

k (x),

−ZSD
1 (x), · · · ,−ZSD

k (x)
)

(22)

In MOP-EV1, ZE
i (x) and ZSD

i (x) means the expected
value and the standard deviation of the objective function
Π˜̄cix(G̃i) in MOSP. It should be noted here that ZE

i (x) can
be interpreted as an expected value of the satisfactory degree
for Π˜̄cix(G̃i), but ZSD

i (x) does not mean the satisfactory
degree itself. Here, instead of ZSD

i (x), let us consider the
coefficient of variation defined as follows.

ZCV
i (x)

def
=

ZSD
i (x)

ZE
i (x)

=

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(23)

By using the coefficient of variation ZCV
i (x), we can trans-

form MOP-EV1 into MOP-EV2.
[MOP-EV2]

max
x∈X

(
ZE
1 (x), · · · , ZE

k (x),

−ZCV
1 (x), · · · ,−ZCV

k (x)
)

(24)

In MOP-EV2, we assume that the decision maker has fuzzy
goals for ZCV

i (x), i = 1, · · · , k, and the corresponding lin-
ear membership functions are defined as µCV

i (ZCV
i (x)), i =
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1, · · · , k.

µCV
i (si) =


1 si < q1i
si − q0i
q1i − q0i

q1i ≤ si ≤ q0i

0 si > q0i

(25)

where q0i represents the minimum value of an unacceptable
level of the coefficient of variation ZCV

i (x), and q1i repre-
sents the maximum value of a sufficiently satisfactory level
of the coefficient of variation ZCV

i (x).
In order to elicit the linear membership function

µCV
i (ZCV

i (x)) appropriately, we can compute a range of
µCV
i (ZCV

i (x)) as follows.

CVimin
def
= min

x∈X

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(26)

CVimax
def
= max

x∈X

√
xTV ix∑n

j=1(αij −
∑Li

ℓi=1 piℓidijℓi)xj + z0i
(27)

The problem (26) for CVimin is easily solved by apply-
ing a Dinkelbach-type algorithm [4], or a hybrid method
of the bisection method and convex programming tech-
nique. Unfortunately, the problem (27) for CVimax be-
comes a non-convex optimization problem. On the interval
[CVimin, CVimax], the decision maker sets his/her member-
ship function µCV

i (ZCV
i (x)), which is strictly decreasing

and continuous.
From the point of view that both ZE

i (x) and
µCV
i (ZCV

i (x)) means the satisfactory degree for Π˜̄cix(G̃i),
we introduce the integrated membership function in which
the both satisfactory levels ZE

i (x) and µCV
i (ZCV

i (x)) are
incorporated simultaneously through the fuzzy decision [5],
[14].

µDi(x)
def
= min{ZE

i (x), µCV
i (ZCV

i (x))} (28)

Then, MOP-EV2 can be transformed into the following
multiobjective programming problem.
[MOP-EV3]

max
x∈X

(µD1
(x), · · · , µDk

(x)) (29)

µDi(x) can be interpreted as an overall satisfactory degree
for the fuzzy goal G̃i. For MOP-EV3, we introduce an CV-
Pareto optimal solution concept defined as follows.

Definition 3: x∗ ∈ X is an CV-Pareto optimal solution
to MOP-EV3, if and only if there does not exist another
x ∈ X such that µDi(x) ≥ µDi(x

∗), i = 1, · · · , k with
strict inequality holding for at least one i.

In order to generate a candidate of a satisfactory solution
from among an CV-Pareto optimal solution set, the deci-
sion maker is asked to specify the reference membership
values [14]. For the reference membership values µ̂ =
(µ̂1, · · · , µ̂k), the corresponding CV-Pareto optimal solution
is obtained by solving the following minmax problem.
[MINMAX(µ̂)]

min
x∈X,λ∈Λ

λ (30)

subject to

µ̂i − ZE
i (x) ≤ λ, i = 1, · · · , k (31)

µ̂i − µCV
i (ZCV

i (x)) ≤ λ, i = 1, · · · , k (32)

where

Λ
def
=

[
max

i=1,··· ,k
µ̂i − 1, max

i=1,··· ,k
µ̂i

]
= [λmin, λmax] (33)

From the definition of ZE
i (x) and µCV

i (ZCV
i (x)), the con-

straints (31) and (32) can be equivalently transformed into
the following forms respectively.

n∑
j=1

(αij −
Li∑

ℓi=1

piℓidijℓi)xj + z0i

≥

 n∑
j=1

αijxj − z1i + z0i

 · (µ̂i − λ), i = 1, · · · , k

(34) n∑
j=1

(
αij −

Li∑
ℓi=1

piℓidijℓi

)
xj + z0i


·µCV

i

−1
(µ̂i − λ) ≥

√
xTV ix, i = 1, · · · , k (35)

The relationship between the optimal solution (x∗, λ∗) of
MINMAX(µ̂) and CV-Pareto optimal solutions of MOP-EV3
can be characterized by the following theorems.

Theorem 1: If x∗ ∈ X , λ∗ ∈ Λ is an unique optimal
solution of MINMAX(µ̂) then x∗ is an CV-Pareto optimal
solution of MOP-EV3.
(Proof)
Let us assume that x∗ ∈ X is not an CV-Pareto optimal
solution of MOP-EV3. Then, there exists x ∈ X such that
µDi(x) ≥ µDi(x

∗), i = 1, · · · , k, with strict inequality
holding for at least one i. This implies that

µDi(x) ≥ µDi(x
∗)

⇔ µ̂i −min{ZE
i (x), µCV

i (ZCV
i (x))}

≤ µ̂i −min{ZE
i (x∗), µCV

i (ZCV
i (x∗))}

⇔ max{µ̂i − ZE
i (x), µ̂i − µCV

i (ZCV
i (x))}

≤ max{µ̂i − ZE
i (x∗), µ̂i − µCV

i (ZCV
i (x∗))}

≤ λ∗, i = 1, · · · , k.

This contradicts the assumption that x∗ ∈ X , λ∗ ∈ Λ is an
unique optimal solution of MINMAX(µ̂). 2

Theorem 2: If x∗ ∈ X is an CV-Pareto optimal so-
lution of MOP-EV3, then there exists a reference mem-
bership values µ̂ = (µ̂1, · · · , µ̂k) such that x∗ ∈ X ,
λ∗ = µ̂i − µDi(x

∗), i = 1, · · · , k is an optimal solution
of MINMAX(µ̂)
(Proof)
Let us assume that x∗ ∈ X , λ∗ = µ̂i − µDi(x

∗) =
max{µ̂i −ZE

i (x∗), µ̂i − µCV
i (ZCV

i (x∗))}, i = 1, · · · , k, is
not an optimal solution of MINMAX(µ̂). Then, there exists
x ∈ X and λ < λ∗ such that{

µ̂i − ZE
i (x) ≤ λ < λ∗

µ̂i − µCV
i (ZCV

i (x)) ≤ λ < λ∗

⇔ µ̂i − µDi(x) ≤ λ < λ∗

⇔ µ̂i − µDi(x) < µ̂i − µDi(x
∗)

⇔ µDi(x) > µDi(x
∗)
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for all i = 1, · · · , k. This contradicts the fact that x∗ ∈ X
is an CV-Pareto optimal solution of MOP-EV3. 2

Unfortunately, since MINMAX(µ̂) is a nonlinear program-
ming problem, it seems to be difficult to solve it directly.
To overcome such difficulties, we consider the following
function with respect to the constraints (34) and (35).

gi(x, λ)
def
=

√
xTV ix− µCV

i

−1
(µ̂i − λ)

·

 n∑
j=1

(
αij −

Li∑
ℓi=1

piℓidijℓi

)
xj + z0i

 ,

i = 1, · · · , k (36)

hi(x, λ)
def
=

 n∑
j=1

αijxj − z1i + z0i

 · (µ̂i − λ)

−
n∑

j=1

(αij −
Li∑

ℓi=1

piℓidijℓi)xj − z0i ,

i = 1, · · · , k (37)

It should be noted here that gi(x, λ), hi(x, λ), i = 1, · · · , k
are convex with respect to x ∈ X for any fixed λ ∈ Λ.
Let us define the following feasible set X(λ) for some fixed
λ ∈ Λ.

X(λ)
def
= {x ∈ X | gi(x, λ) ≤ 0, hi(x, λ) ≤ 0, i = 1, · · · , k}

(38)
Then, it is clear that X(λ) is a convex set and satisfies the
following property.

Property 1: If λ1, λ2 ∈ Λ, λ1 ≤ λ2, then it holds that
X(λ1) ⊂ X(λ2).

In the following, it is assumed that X(λmin) = ϕ,
X(λmax) ̸= ϕ. From Property 1, we can obtain the opti-
mal solution (x∗, λ∗) of MINMAX(µ̂) using the following
simple algorithm which is based on the bisection method and
the convex programming technique.
[Algorithm 1]
Step 1: Set λ0 ← λmin, λ1 ← λmax, λ← (λ0 + λ1)/2.
Step 2: Solve the convex programming problem for the
fixed λ ∈ Λ,

min
x∈X

hj(x, λ)

subject to

gi(x, λ) ≤ 0, i = 1, · · · , k,
hi(x, λ) ≤ 0, i = 1, · · · , k,

where the index j is one of {1, 2, · · · , k}, and denote the
optimal solution as x(λ).
Step 3: If |λ0 − λ1| < δ, go to Step 4, where δ is a
sufficiently small positive number. If gi(x(λ), λ) ≤ 0 and
hi(x(λ), λ) ≤ 0, for any i = 1, · · · , k, set λ1 ← λ,
λ← (λ0+λ1)/2. Otherwise, set λ0 ← λ, λ← (λ0+λ1)/2.
And return to Step 2.
Step 4: Adopt x∗ ← x(λ), λ∗ ← λ as an optimal solution
of MINMAX(µ̂).

V. AN INTERACTIVE ALGORITHM

In Theorem 1, if the optimal solution (x∗, λ∗) of
MINMAX(µ̂) is not unique, the CV-Pareto optimality can not
be guaranteed. In order to guarantee the CV-Pareto optimality
for (x∗, λ∗), we formulate the CV-Pareto optimality test

problem. Before formulating such a test problem, without
loss of generality, we assume that the following inequalities
hold at the optimal solution x∗ ∈ X,λ∗ ∈ Λ.

ZE
i (x∗) ≤ µCV

i (ZCV
i (x∗)), i ∈ I1 (39)

ZE
i (x∗) > µCV

i (ZCV
i (x∗)), i ∈ I2 (40)

I1 ∪ I2 = {1, · · · , k}, I1 ∩ I2 ̸= ϕ (41)

Under the above conditions, we formulate the following CV-
Pareto optimality test problem.
[CV-Pareto optimality test problem]

max
x∈X,ϵi≥0,i=1,··· ,k

k∑
i=1

ϵi

subject to

ZE
i (x) ≥ ZE

i (x∗) + ϵi, i ∈ I1

µCV
i (ZCV

i (x)) ≥ ZE
i (x∗) + ϵi, i ∈ I1

ZE
i (x) ≥ µCV

i (ZCV
i (x∗)) + ϵi, i ∈ I2

µCV
i (ZCV

i (x)) ≥ µCV
i (ZCV

i (x∗)) + ϵi,∈ I2

The following theorem shows the relationships between the
optimal solution of CV-Pareto optimality test problem and
the CV-Pareto optimal solution for MOP-EV3.

Theorem 3: Let x̌ ∈ X , ϵ̌i ≥ 0, i = 1, · · · , k be an
optimal solution of the CV-Pareto optimality test problem
for (x∗, λ∗). If

∑k
i=1 ϵ̌i = 0, then x∗ ∈ X is an CV-Pareto

optimal solution.
(Proof)
Assume that ϵ̌i = 0, i = 1, · · · , k. If x∗ ∈ X is not an
CV-Pareto optimal solution, there exists some x ∈ X such
that µDi(x) ≥ µDi(x

∗),i = 1, · · · , k, with strict inequality
holding for at least one i. From the inequalities (39) and
(40), this is equivalent to the following relations.

min{ZE
i (x), µCV

i (ZCV
i (x))}

≥ min{ZE
i (x∗), µCV

i (ZCV
i (x∗))}

=

{
ZE
i (x∗), i ∈ I1

µCV
i (ZCV

i (x∗)), i ∈ I2

As a result, the following inequalities holds.
ZE
i (x) ≥ ZE

i (x∗), i ∈ I1

µCV
i (ZCV

i (x)) ≥ ZE
i (x∗), i ∈ I1

ZE
i (x) ≥ µCV

i (ZCV
i (x∗)), i ∈ I2

µCV
i (ZCV

i (x)) ≥ µCV
i (ZCV

i (x∗)), i ∈ I2

(42)

with strict inequality holding for at least one i ∈ I1 ∪ I2.
Hence, there must exist at least one i such that ϵ̌i > 0. This
contradicts the assumption that ϵ̌i = 0, i = 1, · · · , k. 2

Now, following the above discussions, we can construct
the interactive algorithm in order to derive a satisfactory
solution from among an CV-Pareto optimal solution set.
[An interactive algorithm]
Step 1: The decision maker sets the membership function
µG̃i

(y), i = 1, · · · , k for the fuzzy goals of the objective
functions in MOFRLP.
Step 2: Considering the interval CVimin, CVimax, the de-
cision maker sets the membership function µCV

i (ZCV
i (x)),

i = 1, · · · , k.
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TABLE I
PARAMETERS OF OBJECTIVE FUNCTIONS

ℓ1 = 1 ℓ1 = 2 ℓ1 = 3 α1j , β1j

d11ℓ1 -2.5 -2.0 -1.5 0.4

d12ℓ1 -3.5 -3.0 -2.5 0.5

d13ℓ1 -2.25 -2.0 -1.75 0.4

p1 0.25 0.4 0.35

ℓ2 = 1 ℓ2 = 2 ℓ2 = 3 α2j , β2j

d21ℓ2 -2.5 -2.0 -1.5 0.3

d22ℓ2 -0.75 -0.5 -0.25 0.4

d23ℓ2 -2.5 -2.25 -2.0 0.3

p2 0.3 0.5 0.2

ℓ3 = 1 ℓ3 = 2 ℓ3 = 3 α3j , β3j

d31ℓ3 3.0 3.25 3.5 0.4

d32ℓ3 2.5 2.75 3.0 0.5

d33ℓ3 4.5 4.75 5.0 0.4

p3 0.2 0.45 0.35

TABLE II
PARAMETERS OF MEMBERSHIP FUNCTIONS

z0i z1i q0i q1i
i = 1 -91.667 -126.25 5.779 4.244

i = 2 -9.1666 -77.5 1.773 0.841

i = 3 185 91.666 2.258 0.438

Step 3: Set the initial reference membership values as µ̂i =
1, i = 1, · · · , k.
Step 4: Solve MINMAX(µ̂) by applying Algorithm 1,
and obtain the optimal solution x∗ ∈ X,λ∗ ∈ Λ. In
order to guarantee CV-Pareto optimality, solve the CV-Pareto
optimality test problem for x∗ ∈ X .
Step 5: If the decision maker is satisfied with the current
value of the CV-Pareto optimal solution x∗ ∈ X , then
stop. Otherwise, the decision maker updates his/her reference
membership values µ̂i, i = 1, · · · , k and return to Step 4.

VI. NUMERICAL EXAMPLE

In order to demonstrate the proposed method and the in-
teractive processes, we consider the following three-objective
linear programming problem with fuzzy random variable
coefficients.
[MOFRLP]

min
x∈X

z1(x) = ˜̄c11x1 + ˜̄c12x2 + ˜̄c13x3

min
x∈X

z2(x) = ˜̄c21x1 + ˜̄c22x2 + ˜̄c23x3

min
x∈X

z3(x) = ˜̄c31x1 + ˜̄c32x2 + ˜̄c33x3

where

X = {(x1, x2, x3) ∈ R3
+ | 3x1 + 2x2 + x3 ≤ 85,

2x1 + x2 + 2x3 ≤ 115, 3x1 + 4x2 + 3x3 ≤ 155,

x1 + 3x2 + 2x3 ≥ 110}

and it is assumed that a realization c̃ijℓi of a fuzzy random
variable ˜̄cij is an triangular-type fuzzy number whose mem-
bership function is defined as (2) where the parameters dijℓi ,
αij , βij are given in Table I. According to (17) and (18), the
variance-covariance matrices Vi, i = 1, 2, 3 are computed as

follows.

V1 =

 0.1475 0.1475 0.07375
0.1475 0.1475 0.07375
0.07375 0.07375 0.036875


V2 =

 0.1225 0.06125 0.06125
0.06125 0.030625 0.030625
0.06125 0.030625 0.030625


V3 =

 0.032969 0.032969 0.032969
0.032969 0.032969 0.032969
0.032969 0.032969 0.032969


Let us assume that the hypothetical decision maker sets the
membership functions µG̃i

(·), µCV
i (·), i = 1, 2, 3 as follows.

µG̃i
(y) =

y − z0i
z1i − z0i

, z1i ≤ y ≤ z0i , i = 1, 2, 3

µCV
i (s) =

s− q0i
q1i − q0i

, q1i ≤ s ≤ q0i , i = 1, 2, 3

where the parameters z0i , z1i , q0i , q1i are given in Table
II. Then, after the decision maker specifies the reference
membership values µ̂ = (µ̂1, · · · , µ̂k) in his/her subjective
manner, the corresponding minmax problem is formulated as
follows.
[MINMAX(µ̂)]

min
x∈X,λ∈Λ

λ

subject to
n∑

j=1

(αij −
Li∑

ℓi=1

piℓidijℓi)xj + z0i

≥

 n∑
j=1

αijxj − z1i + z0i

 · (µ̂i − λ), i = 1, · · · , k

 n∑
j=1

(
αij −

Li∑
ℓi=1

piℓidijℓi

)
xj + z0i


·µCV

i

−1
(µ̂i − λ) ≥

√
xTV ix, i = 1, · · · , k

At Step 3, set the initial reference membership val-
ues as (µ̂1, µ̂2, µ̂3) = (1, 1, 1). Solve MINMAX(µ̂) by
applying Algorithm 1, and obtain the optimal solution
(µD1(x

∗), µD2(x
∗), µD3(x

∗)) = (0.5831, 0.5831, 0.5831).
Since the hypothetical decision maker is not satisfied with the
current value, the decision maker updates his/her reference
membership values as (µ̂1, µ̂2, µ̂3) = (1, 0.9, 1). The inter-
active processes under the hypothetical decision maker are
summarized in Table III. Let us compare the proposal method
based on CV-model with V-model (MOP-V1) proposed by
Katagiri et al.[10]. According to V-model (MOP-V1), we set
ξi in (13) heuristically as (ξ1, ξ2, ξ3) = (0.8, 0.7, 0.7).
[MOP-V1]

min
x∈X

(V [Π˜̄c1x(G̃1)], V [Π˜̄c2x(G̃2)], V [Π˜̄c3x(G̃3)])

subject to

E[Π˜̄c1x(G̃1)] ≥ 0.8

E[Π˜̄c2x(G̃2)] ≥ 0.7

E[Π˜̄c3x(G̃3)] ≥ 0.7
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TABLE III
INTERACTIVE PROCESSES

Iteration 1 2 3

µ̂1 1 1 1

µ̂2 1 0.9 0.9

µ̂3 1 1 0.9

x∗
1 0.0014 0 0

x∗
2 29.029 31.005 29.522

x∗
3 12.054 10.325 12.303

ZE
1 (x∗) 0.6883 0.7345 0.7261

ZE
2 (x∗) 0.5831 0.5499 0.5943

ZE
3 (x∗) 0.5831 0.6087 0.5617

µCV
1 (ZCV

1 (x∗)) 0.5831 0.6087 0.6617

µCV
2 (ZCV

2 (x∗)) 0.7645 0.6853 0.7491

µCV
3 (ZCV

3 (x∗)) 0.7754 0.7908 0.7416

µD1 (x
∗) 0.5831 0.6087 0.6617

µD2 (x
∗) 0.5831 0.5499 0.5943

µD3 (x
∗) 0.5831 0.6087 0.5617

TABLE IV
COMPARISON BETWEEN CV-MODEL AND V-MODEL

Model CV-model V-model

µ̂1 1 1

µ̂2 1 1

µ̂3 1 1

x∗
1 0.0014 3.0840

x∗
2 29.029 29.252

x∗
3 12.054 9.5795

ZE
1 (x∗) 0.6883 0.8

ZE
2 (x∗) 0.5831 0.7

ZE
3 (x∗) 0.5831 0.7

µCV
1 (ZCV

1 (x∗)) 0.5831 0.3908

µCV
2 (ZCV

2 (x∗)) 0.7645 0.5670

µCV
3 (ZCV

3 (x∗)) 0.7754 0.7668

µD1 (x
∗) 0.5831 0.3908

µD2 (x
∗) 0.5831 0.5670

µD3 (x
∗) 0.5831 0.7

The results are summarized in Table IV. It is shown
that the proper balance between the membership functions
µDi(x), i = 1, 2, 3 is attained in the proposed method.

VII. CONCLUSION

In this paper, under the assumption that the decision
maker intends to not only maximize the expected degrees of
possibilities that the original objective functions attain the
corresponding fuzzy goals, but also minimize coefficients
of variation for such possibilities, an interactive decision
making method for MOFRLP is proposed. In the proposed
method, a satisfactory solution is obtained from among an
CV-Pareto optimal solution set through the interaction with
the decision maker.
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