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Abstract— We consider a 3D elastostatic slip-
dependent frictional contact problem which consists
of a system of partial differential equations asso-
ciated with a homogeneous displacement boundary
condition, a traction boundary condition and a fric-
tional contact boundary condition involving a slip-
dependent friction bound. After describing the me-
chanical model, we deliver a variational formulation
as a mixed variational problem whose Lagrange mul-
tipliers set is solution-dependent. Then, the existence
and the boundedness of the solutions is investigated.
The proof is based on a recent result for an abstract
mixed variational problem with solution-dependent
set of Lagrange multipliers.

Keywords: slip-dependent frictional contact problem,

mixed variational problems, solution-dependent set of

Lagrange multipliers, weak solutions.

1 Introduction

The contact phenomenon is as frequent as complex. A lot
of work was devoted to the modeling in contact mechan-
ics, see e.g. [5, 6, 17, 18, 28, 29, 30, 31, 32, 35]. It is worth
to underline that the solvability of contact models relies
on calculus of variations. The weak formulations of con-
tact problems are related to the theory of variational in-
equalities, see e.g. [8, 32], or to the theory of saddle point
problems, see e.g. [7, 9]. In the last years several papers
were devoted to the weak solvability via Lagrange multi-
pliers of contact models, see e.g. [21, 22, 23, 24, 25, 26, 27]
for qualitative analysis and [2, 10, 11, 12, 13, 14, 15] for
modern numerical approaches.

In the present work we focus on a 3D contact model with
slip-dependent friction bound, for linearly elastic mate-
rials. The first mathematical results on contact prob-
lems with slip displacements dependent friction in elas-
tostatics were obtained in [16]. The model we discuss
in the present paper is mathematically described by a
system of partial differential equations associated with
a displacement boundary condition, a traction bound-
ary condition and a frictional contact boundary condi-
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tion with slip-dependent friction bound. This model was
already analyzed into the framework of quasi-variational
inequalities, see [4]. The novelty in the present paper con-
sists in the variational approach we use; herein, a mixed
variational formulation is proposed in a form of a gen-
eralized saddle point problem, the set of the Lagrange
multipliers being solution-dependent. In contrast to [4],
where the solution of the quasi-variational inequality is
the displacement field u, in this approach, the unknown
is the pair of the displacement field u and a Lagrange
multiplier λ related to the frictional force (λ = −στ |Γ3

where Γ3 is the contact zone and στ is the tangential part
of the Cauchy vector). If we replace the slip-dependent
frictional contact law by Tresca’s law with given friction
bound g = g(x), the set of the Lagrange multipliers be-
comes a fix set Λ (a priori known) and the weak formu-
lation is related to the classical saddle point formulation;
see for instance [9] for classical saddle point problems re-
lated to contact models. The present work draws the
attention on the mathematical difficulties which appear
giving a formulation in which the set of the Lagrange
multipliers is a solution-dependent set Λ(u) (a priori un-
known). We investigate the existence and the uniqueness
of the solutions based on an abstract result recently ob-
tained in [23]. The abstract result was obtained by us-
ing a saddle point technique, see e.g. [9] combined with
a fixed point technique of type Schauder-Tychonoff, see
[3]. For the convenience of the reader we shall recall this
abstract result in Section 2 of the present paper; see [23]
for details.

The mixed variational formulations are related to modern
numerical techniques in order to approximate the weak
solutions of contact models and this motivates the present
study. Referring to numerical techniques for approxima-
ting weak solutions of contact problems via saddle point
technique, we send the reader to, e.g., [10, 33, 34].

The present paper is the extended and revised version of
the conference paper [20].

The rest of the paper is structured as follows. In Section
2 we present the main theoretical tool we use in order
to weakly solve the mechanical model. In Section 3 we
describe the mechanical model for a 3D slip-dependent
frictional contact process. In Section 4 we make the as-
sumptions. In Section 5 we deliver a weak formulation
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via Lagrange multiplier and we define the weak solution
for our mechanical model. Finally, in Section 6 we in-
vestigate the existence and the boundedness of the weak
solutions.

2 An abstract auxiliary result

Let us consider the following abstract mixed variational
problem.

Problem 1 Given f ∈ X, f ̸= 0X , find (u, λ) ∈ X × Y
such that λ ∈ Λ(u) ⊂ Y and

a(u, v) + b(v, λ) = (f, v)X for all v ∈ X, (1)

b(u, µ− λ) ≤ 0 for all µ ∈ Λ(u). (2)

We made the following assumptions.

Assumption 1 (X, (·, ·)X , ∥ · ∥X) and (Y, (·, ·)Y , ∥ · ∥Y )
are two Hilbert spaces.

Assumption 2 a(·, ·) : X × X → R is a symmetric
bilinear form such that

(i1) there exists Ma > 0 :

|a(u, v)| ≤ Ma∥u∥X∥v∥X for all u, v ∈ X,

(i2) there exists ma > 0 :

a(v, v) ≥ ma ∥v∥2X for all v ∈ X.

Assumption 3 b(·, ·) : X × Y → R is a bilinear form
such that

(j1) there exists Mb > 0 :

|b(v, µ)| ≤ Mb∥v∥X∥µ∥Y for all v ∈ X, µ ∈ Y,

(j2) there exists α > 0 :

inf
µ∈Y,µ ̸=0Y

sup
v∈X,v ̸=0X

b(v, µ)

∥v∥X∥µ∥Y
≥ α.

Assumption 4 For each φ ∈ X, Λ(φ) is a closed convex
subset of Y such that 0Y ∈ Λ(φ).

Assumption 5 Let (ηn)n ⊂ X and (un)n ⊂ X be two
weakly convergent sequences, ηn ⇀ η in X and un ⇀ u
in X, as n → ∞.

(k1) For each µ ∈ Λ(η), there exists a sequence (µn)n ⊂
Y such that µn ∈ Λ(ηn) and

lim infn→∞ b(un, µn − µ) ≥ 0.

(k2) For each subsequence (Λ(ηn′))n′ of the sequence

(Λ(ηn))n, if (µn′)n′ ⊂ Y such that

µn′ ∈ Λ(ηn′) and µn′ ⇀ µ in Y as n′ → ∞, then µ ∈
Λ(η).

Theorem 1 If Assumptions 1-5 hold true, then Problem
1 has a solution. In addition, if (u, λ) ∈ X × Λ(u) is a
solution of Problem 1, then

(u, λ) ∈ K1 ×
(
Λ(u) ∩K2),

where

K1 = {v ∈ X | ∥v∥X ≤ 1

ma
∥f∥X};

K2 = {µ ∈ Y | ∥µ∥Y ≤ ma +Ma

αma
∥f∥X},

ma, α and Ma being the constants in Assumptions 2-3.

For the proof of this theorem we refer to [23].

3 The model

We consider a deformable body that occupies the
bounded domain Ω ⊂ R3 with smooth (say Lipschitz
continuous) boundary Γ partitioned into three measur-
able parts, Γ1, Γ2 and Γ3, such that meas(Γ1) > 0. The
unit outward normal vector to Γ is denoted by ν and is
defined almost everywhere. The body is clamped on Γ1,
body forces of density f0 act on Ω and surface traction of
density f2 acts on Γ2.On Γ3 the body is in slip-dependent
frictional contact with a rigid foundation. We denote by
u = (ui) the displacement field and by σ = (σij) the
Cauchy stress tensor. Everywhere below ∥ · ∥ denotes the
Euclidean norm in R3.

The 3D slip-dependent frictional contact model is math-
ematically described as follows.

Problem 2 Find u : Ω → R3 and σ : Ω → S3 such that

Divσ(x) + f0(x) = 0 in Ω, (3)

σ(x) = Eε(u(x)) in Ω, (4)

u(x) = 0 on Γ1, (5)

σν(x) = f2(x) on Γ2, (6)

uν(x) = 0 on Γ3, (7)

∥στ (x)∥ ≤ g(x, ∥uτ (x)∥),
στ (x) = −g(x, ∥uτ (x)∥) uτ (x)

∥uτ (x)∥

if uτ (x) ̸= 0 on Γ3. (8)

Herein Ω = Ω∪∂Ω. As usual, Div denotes the divergence
operator; for every i ∈ {1, 2, 3},

(Divσ)i =
∂σi1

∂x1
+

∂σi2

∂x2
+

∂σi3

∂x3
.
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By E = (Eijkl) we denotes the fourth order elastic ten-
sor and ε = ε(u) is the infinitezimal strain tensor with
components

εij =
1

2

( ∂ui

∂xj
+

∂uj

∂xi

)
for all i, j ∈ {1, 2, 3}.

Problem 2 has the following structure: (3) represents the
equilibrium equation, (4) represents the constitutive law
for linearly elastic materials, (5) represents the homoge-
neous displacements boundary condition, (6) represents
the traction boundary condition and (7)-(8) model the
bilateral contact with friction, the friction law involving
a slip-dependent friction bound g. Notice that uν = u ·ν,
uτ = u−uνν, σν = (σν) ·ν, στ = σν−σνν, where ” · ”
denotes the inner product of two vectors in R3. For more
details on this model we refer to [4].

4 Assumptions

In order to weakly solve Problem 2 we make the following
assumptions.

Assumption 6 E = (Eijls) : Ω× S3 → S3,

• Eijls = Eijsl = Elsij ∈ L∞(Ω),

• There exists mE > 0 such that Eijlsεijεls ≥ mE |ε|2,
ε ∈ S3, a.e. in Ω.

Assumption 7 f0 ∈ L2(Ω)3, f2 ∈ L2(Γ2)
3.

Assumption 8 g : Γ3 ×R+ → R+,

• there exists Lg > 0 :

|g(x, r1) − g(x, r2)| ≤ Lg |r1 − r2| r1, r2 ∈ R+,
a.e. x ∈ Γ3;

• the mapping x 7→ g(x, r) is Lebesgue measurable

on Γ3, for all r ∈ R+;

• the mapping x 7→ g(x, 0) belongs to L2(Γ3).

5 Weak formulation

Let us introduce the following functional space.

V = {v ∈ H1(Ω)3 |γv = 0 on Γ1, vν = 0 on Γ3}. (9)

Notice that, everywhere in this paper, for each w ∈ V,
wν = γw · ν and wτ = γw − wνν a.e. on Γ, where γ
denotes the Sobolev trace operator for vectors. We use
standard notation for the Lebesgue and Sobolev spaces
associated to Ω and Γ.

The space V is a real Hilbert space endowed with the
inner product

(u,v)V =

∫
Ω

ε(u) : ε(v) dx,

and the associated norm ∥ · ∥V . The completeness of the
space (V, ∥·∥V ) follows from the assumption meas Γ1 > 0,
which allows us to use of Korn’s inequality. Notice that
” : ” denotes the inner product of two tensors.

Define f ∈ V using Riesz’s representation theorem,

(f ,v)V =

∫
Ω

f0(x)·v(x) dx+
∫
Γ2

f2(x)·γv(x) dΓ (10)

for all v ∈ V.

Let u be a sufficiently regular solution of Problem 2. By
a Green formula we get, for all v ∈ V,

a(u, v) = (f ,v)V +

∫
Γ3

στ (x) · vτ (x) dΓ (11)

where a(·, ·) : V × V → R,

a(u,v) =

∫
Ω

Eε(u(x)) : ε(v(x)) dx. (12)

Let us introduce the space

S = {γw|Γ3 |w ∈ V }, (13)

where γw|Γ3 denotes the restriction of the trace of the
element γw ∈ V to Γ3. Thus, S ⊂ H1/2(Γ3;R

3) where
H1/2(Γ3;R

3) is the space of the restrictions on Γ3 of
traces on Γ of functions of H1(Ω)3. It is known that S
can be organized as a real Hilbert space, see for instance
[1, 19]. We use the Sobolev-Slobodeckii norm

∥ζ∥S =
(∫

Γ3

∫
Γ3

∥ζ(x)− ζ(y)∥2

∥x− y∥3
dsx dsy

)1/2

.

Let us introduce now the following real Hilber space,

D = S′ (the dual of the space S). (14)

The duality paring between D and S will be denoted by
⟨·, ·⟩.

For each φ ∈ V we define

Λ(φ) = {µ ∈ D | ⟨µ,γv|Γ3⟩ ≤ (15)∫
Γ3

g(x, ∥φτ (x)∥)∥vτ (x)∥ dΓ v ∈ V }.

Let us define a Lagrange multiplier λ ∈ D,

⟨λ, ζ⟩ = −
∫
Γ3

στ (x) · ζ(x) dΓ (16)
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for all ζ ∈ S.

By (16) and (8) we deduce that λ ∈ Λ(u).

We also define

b : V ×D → R b(v,µ) = ⟨µ,γv|Γ3⟩. (17)

Let us rewrite (11) as

a(u, v) = (f ,v)V − ⟨λ,γv|Γ3⟩ for all v ∈ V.

By the definition of the form b(·, ·), we obtain

a(u, v) + b(v,λ) = (f ,v)V for all v ∈ V. (18)

The friction law (8) leads us to the identity∫
Γ3

στ (x) · uτ (x) dΓ = −
∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ.

Thus,

b(u,λ) =

∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ. (19)

By (15) with φ = u we are led to

b(u, ζ) ≤
∫
Γ3

g(x, ∥uτ (x)∥)∥uτ (x)∥ dΓ (20)

for all ζ ∈ Λ(u). Subtract now (19) from (20) to obtain
the inequality

b(u, ζ − λ) ≤ 0 for all ζ ∈ Λ(u). (21)

Therefore, Problem 2 has the following weak formulation.

Problem 3 Find u ∈ V and λ ∈ Λ(u) ⊂ D such that
(18) and (21) hold true.

Each solution of Problem 3 is called weak solution of
Problem 2.

6 Existence and boundedness results

Theorem 2 (An existence result) If Assumptions 6
-8 hold true, then Problem 2 has a solution.

Proof. Since Problem 3 and the abstract problem, Prob-
lem 1, are the same type, the idea of the proof is to use
the abstract result, Theorem 1.

As the spaces V and D are real Hilbert spaces then As-
sumption 1 is fulfilled with X = V and Y = D.

The form a(·, ·) defined in (12) verifies Assumption 2 with

Ma = ∥E∥∞ and ma = mE , (22)

where
∥E∥∞ = max

0≤i,j,k,l≤d
∥Eijkl∥L∞(Ω).

Let us prove (j1) in Assumption 3. Since for each v ∈ V
∥γv|Γ3∥S ≤ ∥γv∥HΓ , taking into account the definition
of the form b(·, ·), we can write

|b(v,µ)| ≤ ∥µ∥D∥γv∥HΓ for all v ∈ V,µ ∈ D.

We recall that HΓ = γ(H1(Ω)3) and the Sobolev trace
operator γ : H1(Ω)3 → HΓ is a linear and continuous
operator. Also, we recall the Sobolev-Slobodeckii norm
on HΓ:

∥ζ∥HΓ =
(∫

Γ

∫
Γ

∥ζ(x)− ζ(y)∥2

∥x− y∥3
dsx dsy

)1/2

.

Due to the fact that ∥ · ∥V and ∥ · ∥H1(Ω)3 are equivalent
norms, we deduce that there exists Mb > 0 such that (j1)
holds true.

We also recall that there exists a linear and continuous
operator Z such that

Z : HΓ → H1(Ω)3 γ(Z(ζ)) = ζ for all ζ ∈ HΓ.

The operator Z is called the right inverse of the operator
γ. Notice that,

γ(Z(γw)) = γw for all w ∈ V.

Since, for each w ∈ V, Z(γw) has the same trace as w,
we deduce that for each w ∈ V, Z(γw) ∈ V. On the other
hand, we note that for each w ∈ V, there exists w∗ ∈ V
such that γw = γw∗ a.e. on Γ3 and γw∗ = 0 a.e. on
Γ2. Notice that ∥γw|Γ3

∥S = ∥γw∗∥HΓ
.

Let us prove now (j2) in Assumption 3.

∥µ∥D = sup
γw|Γ3∈S,γw|Γ3 ̸=0S

⟨µ,γw|Γ3
⟩

∥γw|Γ3∥S

= sup
γw|Γ3∈S,γw|Γ3 ̸=0S

⟨µ,γw∗|Γ3⟩
∥γw∗∥HΓ

≤ c sup
γw|Γ3∈S,γw|Γ3 ̸=0S

b(Z(γw∗),µ)

∥Z(γw∗)∥V

≤ c sup
v∈V,v ̸=0V

b(v,µ)

∥v∥V
,

where c > 0. We can take

α =
1

c
. (23)

Obviously, 0D ∈ Λ(φ). Also, Λ(φ) is a closed convex
subset of the space D. Hence, Assumption 4 is fulfilled.

Let us verify Assumption 5. To start, let (ηn)n ⊂ V and
(un)n ⊂ V be two weakly convergent sequences, ηn ⇀ η
in V and un ⇀ u in V, as n → ∞. Let us take µ ∈ Λ(η).
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In order to check Assumption 5 a crucial point is the
construction of an appropriate sequence in (k1). Let us
define (µn)n as follows: for each n ≥ 1,

< µn, ζ >=

∫
Γ3

g(x, ∥ητ n(x)∥)ψ(uτ n(x)) · ζ(x) dΓ

−
∫
Γ3

g(x, ∥ητ (x)∥)∥uτ n(x)∥ dΓ + ⟨µ,γun|Γ3⟩,

for all ζ ∈ S, where

ψ(r) =

{ r
∥r∥ if r ̸= 0;

0 if r = 0.

Taking into account the definition of Λ(φ) in (15), we
deduce that, for each positive integer n, we have µn ∈
Λ(ηn).

We recall here that γ : H1(Ω)3 → L2(Γ)3 is a compact
operator. Thus, since ηn ⇀ η in V and un ⇀ u in V as
n → ∞, using the compactness of the trace operator we
can write

γηn → γη in L2(Γ)3 as n → ∞;

γun → γu in L2(Γ)3 as n → ∞.

Therefore,

uτ n(x) → uτ (x) a.e. on Γ3 as n → ∞

and

g(x, ∥γηn(x)∥) → g(x, ∥γη(x)∥) a.e. on Γ3 as n → ∞.

Setting ζ = γun|Γ3 in (24) we can write

⟨µn − µ,γun|Γ3⟩ =∫
Γ3

(
g(x, ∥γηn(x)∥)− g(x, ∥γη(x)∥)

)
∥uτ n(x)∥ dΓ.

Hence, passing to the inferior limit as n → ∞, we get

lim inf
n→∞

b(un,µn − µ)

= lim inf
n→∞

∫
Γ3

(
g(x, ∥ητ n(x)∥)

−g(x, ∥ητ (x)∥)
)
∥uτ n(x)∥dΓ

= 0.

Using again the properties of the trace operator and the
assumptions on the friction bound we deduce that (k2)
in Assumption 5 is also verified.

We apply now Theorem 1.

Let us introduce

K1 = {v ∈ V | ∥v∥V ≤ 1

ma
∥f∥V }; (24)

K2 = {µ ∈ D | ∥µ∥D ≤ ma +Ma

αma
∥f∥V }. (25)

Theorem 3 (A boundedness result) If (u,λ) is a
weak solution of Problem 2, then

(u,λ) ∈K1 ×
(
Λ(u) ∩K2)

where K1 and K2 are given by (24)-(25), V given by (9),
D given by (14), f given by (10), ma and Ma being the
constants in (22) and α being the constant in (23).

Proof. The proof is a straightforward consequence of
Theorem 1.
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[13] Hüeber, S., Wohlmuth, B., An optimal a priori error
estimate for non-linear multibody contact problems,
SIAM Journal on Numerical Analysis, 43(1),157-
173, 2005.
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