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L(«)-Stable Second Derivative Block Multistep
Formula for Stiff Initial Value Problems

J. O. EHIGIE! S. A. OKUNUGA |

Abstract— A block multistep method is developed
from a second derivative continuous multistep scheme
with Chebyshev points as collocation points for the
integration of stiff initial value problems. The order,
stability analysis are investigated and the method is
shown to be L(a)-stable, which is a requirement for
numerical integration of stiff initial value problems.
Some experimental problems reveal that the method
is suitable for the solution of stiff initial value prob-
lems.

Keywords: Continuous Schemes, Multistep Colloca-

tion, Chebyshev points, Second Derivative

1 Introduction

The numerical integration of stiff initial value problems
has been the main interest of researchers in numerical
analysis. Although there has been various mathematical
definition attached to this concept. (see [18]). Given a
system of ordinary differential equations of the form

y' = Ay+o(a), a<z<b (1)

y(a) =,

where Yy = (y17y27"' ayS) and n = (n13n27"' 7773)' Let
A; be the eigenvalues of the sx s matrix A, (1) is said to be
stiff if Re (\;) <0,i=1,2,---,s, and Maz|Re (\;)| >>
Min |Re (\;)].

In [9], the famous theorem of Dahlquist [9] known as the
Dahlquist barrier open a new research direction in the
development of numerical algorithm for solution of stiff
IVPs. This made some researchers [2,29] relax some sta-
bility conditions so as to circumvent the Dahlquist bar-
rier. A survey of methods for stiff problems can be found
in literatures [14,15].

In what follows, we shall construct a block second deriva-
tive block multistep with Chebyshev collocation point,
where the nodes are also included in the collocation points
as zeros of the shifted Chebyshev polynomials. We shall
obtain this block method from a single continuous multi-
step scheme with power series interpolating polynomial.
[10,17,21]
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This article is organized as follows: We give the block
formula represented in a block matrix form in section 2.
Some characteristics of the method is investigated and
analyzed in section 3. Finally we solve some problems to
show comparison with some related works.

2 Theoretical Procedure

To solve a stiff initial value problem

y = flz,y),

on the interval I = [z, zy], where y and f are assumed to
be continuously differentiable and satisfy the conditions
to guarantee the existence and uniqueness of solution of
the initial value problem.

y(@o) =y (2)

Using a multistep collocation technique, with collocation
points v = {k -z : T} (xz) = 0} = {v1,vq, -+ ,v;} of the
roots of a Chebyshev polynomial (7} (x)) as the off-grid
points in the proposed integration formula, the interpo-
lating function for a 2-step method is given as

o)=Y, (752) ®)

Jj=0

For k = 2, we have that v = {22 : Ty (z) = 0} =
{1- %\/Z 14 %\/5} Hence, it is necessary to interpolate
(10) at points z = {xm:rn+1_%\/§,xn+17xn+1+%\/§}7 and
collocate y/(x) and y”(z) at © = x,42. We obtain a
system of equations represented in the matrix form

AB=C (4)

where A=

1 aze a3 azq azs az

1 a4 a4z aaa ass age

160
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with {x71+1_%\/§,xn+1,xn+l+%ﬁ} together, yields the block
1 3 7 5 method represented in block matrix finite difference form
age =1— 5\@,@3 =-V2+ 5024 = —1\/5-1- B
AYm, = B}/nz—l + hCFnL + thGﬂ’L (6)
17 41 29 1
ags = =3V2+ —,ags = ——V2+ —,a =1+ V2
4 8 4 2
where A=
38 _ 9 91 19 26 _ 23
3 7 17 e owv2) (FV2tyn) (F-%5V2) o0
a43:\/§+§7a4421\/§+ a45—3\[+4 (% —5%v2) (87 29) ( 57— %V2)
(-5 V2+ g5) —& (§7v2+3) 0
41 29
as = —V2+ 23 26 19 91 38 , 9 ’
8 4 (% 2- 87) (Efﬁ 2) (87+58 2) 0
32 16 8 32 16
B = [ao,al,ag,ag,a4,a5}T (7§\/§+ @) 8T (@ﬁ+ E) -1
C = |YnsYps1- 1y Ynt1s Yy 14 2y3 Dfarz, BP0 ]
1= V2 Inth Un g1t g v nt2) [ Gnz 000 (2v2+2)
solving the system of equation (4) for variable B = 2
T e . 0 0 O -
[ag, a1, as, as,aq,a5]” and substituting in (3), we obtain
a continuous multistep formula B =
00 0 (-gv2+%)
y(z) = Zaj T)Yn+j + Zavj yn+v] + hB2() fri2 1
00 0 L
= +h 62(2)gnt2 (5)
11 13
100 (#£v2-1)
where
172 946 , 755 5 92 , 38 010 &
— 1= 22— 3,94 4 99 5
@o(@) 20" T RT T T Tt Tt T et o
00 1 (-%v2-12
(gg\[+ 136) + (- 38572 -~ %) 22 (-7 29)
422 4 200 14 182 22
a(z) = | TE&FF 2) 2% + (—55 V2 — 35) 2 000 —&
GV
5 1
00 0 (f-%v2)
o) — MO0 TS o ATTT o 272 4 130
! 29 87 87 29 87 000 -
136 64 404 352 2 D=
136 _ 62 /5) o 4 +322./9) g
(55 — 5% V2) (-3 ¥ V2) 000(%+8717\/§)
oy = + (- 200\[+422) 23+ (M3 182)
28 2 0 00 -2
+(5 - % Vv2)2® 87
By = _ﬁ T+ 242 22— 355 23 64 A %xs The 4-dimensional vector Y,,, Y,,_1, F,, and G,, have
29 87 87 29 87 collocation points specified as,
4 131 199 19 11
5 = - - T = Py g 5 }/:’77. n—+uvyy Jdn Y INTV2 IN T7
2 59 ¥ 174$+174 29 +879C [y+1y+1y+zy+T2}
Yot = [yn—vzayn—layn—vlayn] >
T
Evaluating (5) at £ = w,.2 yields the main method, Fn [f"+”1’f"+1’f”+”2’f’”ﬂT’
while differentiating (5) and evaluating at z = Gm = [Intvr>Gnt1s Gntvss nt2] -
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3 Analysis of the Method

The analysis of the L(a)-stable block multistep method
is presented in this section. Numerical Properties such
as Order and Error constant, consistency, stability and
convergence are investigated.

Order and Error Constant

Let the individual linear multistep method with Cheby-
shev collocation points be associated with the formula

k a;y(x + jh) + ay,y(x + v;h)
=S| kB @+ i) = BB,y (@ + vih)
—h251y" (2, + kh)

j=0

Y(xn; h

(7)

where y(z) is an arbitrary smooth function on [a, b]. Ex-
panding (18) with Taylor series expansions of y(x + jh),
y(@ + vih), ¥/ (x + jh), ¥'(w + ;) and y"(z + kh),
7 =0,v1,1,v9,2,..., vk, k to obtain the expression

Lly(wn; h)] = Coy(x) +Crhy' (x) +- - -+ CphPy® (z) +---
where C; are vectors in the form,
B k k
Cy = Zaj + Zayj (8)
=0 j=1
B k k ko ko
Cl = Zjaj—FZ'U]OKUJ Z ]+Zﬁvj (9)
§=0 j=1 =0 j=1

1 k 5 k 2
— 21 (Zj:oﬁ aj + Zj:l V5 Qy;

C, — B ) (10)
i - (Z?:ojﬁj +E?:1 vjﬂuj) — Ok

_ i(za WALTED D ao‘v7)

Co = (Zz 04 B+ Xy vi B >(11)

~waht 0

CI:071727"'7P

Definition 3.1

The block multistep method with Chebyshev collocation
points (6) and the associated linear difference operator is
said to be of order p if,

Co=0C1=Cy=--=0C, =0, Cpi1 £0. (12)

Definition 3.2

The term C,4; is called the Error Constant (EC) and
the local truncation error for the method is given by,

Tnir = Cpi hPy®P e, + OWP2). (13)

Using the appropriate coefficients in (6), methods are of
order p = [5,5,5,5]7 with error constants Cg =

[~1.38 x 107°,9.02 x 107*,—4.88 x 107 *,-6.39 x 107°] .7

Consistency

Since the block multistep method is of order p =5 > 1,
therefore it is consistent. Henrici [16]

Zero Stability of Block Multistep Method

Applying the block multistep method (6) to the test prob-
lem

Y =y,

with z = Ah, solving the characteristic equation

det|¢ - (A—Cz— D2%)— B| =0 for £ at z — 0, the roots
{0,0,0, 1} of the resulting equation are less than or equal
to 1, therefore the numerical method is zero-stable.

Convergence

Since the Block multistep method is consistent and
zero-stable, we can safely assert the convergence of the
new method. (Henrici [16])

Region of Absolute Stability of new method

Solving characteristic equation
det|¢ - (A—Cz—Dz*)—B|=0

for £, we obtain the stability function as

120 + 72z + 1522 + 23

R(z) = -

(2) 120 + 1682 — 11122 + 4523 — 1224 + 225
(14)

Solving (14), we obtain the stability region

S = [(=00,0) U(4.11, 0)].

The block multistep method is Ag-Stable and satisfies
A(a)-Stability with stiff stability properties o = 89.85°,
D = 0.066 and y = 1.4. Hence, The method is Stiffly
Stable. The region of absolute stability is presented in
Figure 2.

Test for L(a)-Stability

The  numerical —method is  A(a)-stable and
lim, ,_o R(2) = 0, we say that block multistep
method is L(«)-Stable.
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Figure 1: RAS of SDBDF for k = 2

4 Experimental Problems
Problem 5.2: A linear stiff problem
The linear system of 3 first order ordinary differential

equations solved by Akinfenwa [1], Brugnano and Tri-
giante [3] and Ramos and Garcia-Rubio [22] given by,

y1’ = =21y + 19y2 — 20y, y1(0) =1,
ygl = 19y1 — 21y2 + 20y3, yQ(O) = 0, (15)
ys' = 40y; — 40y2 + 40ys3, y2(0) = —1,

on the interval 0 < x < 10 is solved with the newly de-
rived block multistep method. We compare the maximum
absolute errors (|y(z) — yn|) on the interval 0 < x < 10
with the Adams Type Block method of Akinfenwa [1] of
order p = 7 (ATBMY7Y) and Generalized Backward Differ-
entiation formula of Brugnano and Trigiante [3] (GBDFS)
using step lengths h = ﬁ, n=20,1,2,3 and 4 for nu-
merical solution of y(x). The order of the methods are
also verified by calculating the rate of convergence with

the formula
Ratep, = logs (ETT%> ,
erry,

where erry, is the maximum absolute error at step length
h.

Also in the range 0 < z < 1, AbsErr(ty) in [22] is
obtained by the new method in comparison with the
CBDFj5 of degree s = 5 in Ramos and Garcia-Rubio
[22] and the following results are presented

Remark 4.1: Clearly from Table 2, it can be seen that
the new method even though it is of order p = 5, per-
forms better that the ATBM7 and the GBDF8, both of
orders 7 and 8 respectively. Also, the rate of convergence
of the new method conforms almost exactly with the
order of our methods unlike the ATBM7 and GBDFS.
Table 2 shows that the new method is comparable with
the CBDFj5 in [22]. Numerical results also show that

Table 1: Problem 4.1: Maximum Absolute Error:
1

maxi <i<n [y1(x) — y1,n| for h = 57555

n | New Method GBDFS8 ATBM7
(Rate) (Rate) (Rate)
0]321x10078 [1.19x 1073 ] 3.95%x 107°
1] 1.01x107 ¥ [139%x1075| 291 x10°8
(4.99) (6.42) (7.08)
21318%x10°10 [ 1.08x 1077 | 2.21 x 10~ 10
(4.99) (7.00) (7.06)
31996x10 1 [ 1.08x1079 | 6.65 x 10°13
(5.00) (6.64) (8.36)
41311x10719 ] 941 x10™2 [ 2.69 x 1015
(5.00) (6.84) (7.95)

Table 2: Problem 4.1: Numerical Results in comparison
with CBDFjy in the range 0 <z <1

’ Steps \ New Method \ Rate \ CBDF; \ Rate ‘
20 | 3.04x 1071 412 x 10712
40 9.75 x 10713 | 4.96 | 1.33 x 10712 | 4.95
80 2.25 x 10714 | 543 | 4.31 x 10715 | 4.95
160 | 9.69 x 10716 | 4.53 | 2.55 x 10715 | 0.75

the new method is consistent with order of the method
as the step size decreases.

Problem 4.2: Cash [4].

We also consider the integration of the stiff system us-
ing the problem whose Jacobian matrix J has imaginary
eigenvalues given by

' =—ay1 — By2 + (a+ -1, y1(0)
Yo' = By1 —aya + (a— B —1)e, 2(0)
<t

)

1
1
2

o

0,
(16)
It is noted that for any given value of parameter o and

B, J is the matrix,
—a -8
g —a )’

with eigenvalues of J as —a=£1/ and the required solution
is

IN

For the case @« = 1 and § = 15 with a fixed step size
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h = 0.25, Table 3 presents the results obtained by the
new method in comparison with the results in Cash [4] for
the second derivative extended backward differentiation

Table 4: Problem 4.3: Table of Accurate Digits A with
a = 10 for methods of Order p =5

formulas (E2BD). | h | New Method | M(5,r5) [ BDF5 |
2 4.53 2.58 -0.41
Table 3: Numerical Results for Problem 4.2, % 5.63 3.66 00
r.xr(—zr) = z.ax x 10777 L
t E2BD SDBDFC2New Method 0 8.83 5.98 00
i =y (O] [ Ty2 —y2(O] | [y1 — 1D [ [y2 — y2(2)] 1 10.46 7.99 8.15
50 | 0.879(-9) | 0.353(-8) | 0.147(-8) | 0.363(-9) 20
10.0 | 0.459(-11) | 0.237(-10) | 0.994(-11) | 0.245(-11) = 12.00 8.14 | 10.00
15.0 | 0.401(-13) | 0.160(-12) | 0.670(-13) | 0.165(-13)
20.0 | 0.270(-15) | 0.108(-14) | 0.451(-15) | 0.111(-15)
Remark 4.2: Table 3 shows clearly that the new 5 Conclusion

method on implementation on Problem 4.2 compares
favourably with the method E2BD as obtained in Cash
[4].

Problem 4.3: Stability test of Chartier [6]

The stability of the method is compared with L-Stable
method of order 5 of Chartier [6] and the Backward Dif-
ferentiation Formula of order 5 (BDF5) using the problem
whose Jacobian matrix J has purely imaginary eigenval-
ues:

1’ =—ay2 + (L +a)cosz,  yi1(0) =0,
yo' = ay; — (1 + a)sinz, y2(0) =1, (17)
0<z< 100,

with exact solution,

yi(2) = sz,

ya(z) = cosa.

It is noted that for any given value of parameter «, J is

the matrix,
0 —«a
a 0 ’

with eigenvalues of J are ¢-« and —i - «. For a = 10, we
present in Table 4 the accurate digits A , which is defined
as,

| S

Y, i
for the following methods defined by acronyms:

e M (5,1r5)- Chartier [6] order at least p =5

e BDF5-Gear [14] Backward Differentiation Formula
of order p =5

Remark 4.3: Numerical overflow is indicated by oo.
Table 4 shows that the new method gained some digits
and behaves correctly over other methods.

In this paper, the construction of L(«a)-stable block mul-
tistep method for solving stiff initial value problem is de-
scribed. We have Investigated some numerical properties
of the method that the methods are uniformly accurate of
order p = 5 and further analysis reveals that the method
possesses some stiff stability properties with good region
of absolute stability. Implementation on some stiff prob-
lems shows that a class of order p = 5 performs better
than methods of order p = 8 in the literature, and could
be competitive with some stiff codes for solving stiff prob-
lems.
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