
   -Stable Second Derivative Block Multistep 
Formula for Stiff Initial Value Problems
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solving the system of equation (4) for variable B =

[a0, a1, a2, a3, a4, a5]
T

and substituting in (3), we obtain
a continuous multistep formula
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Evaluating (5) at x = xn+2 yields the main method,
while differentiating (5) and evaluating at x =
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method represented in block matrix finite difference form

AYm = BYm−1 + hCFm + h2DGm (6)
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The 4-dimensional vector Ym, Ym−1, Fm and Gm have
collocation points specified as,

Ym = [yn+v1 , yn+1, yn+v2 , yn+2]T ,

Ym−1 = [yn−v2 , yn−1, yn−v1 , yn]T ,

Fm = [fn+v1 , fn+1, fn+v2 , fn+2]T ,

Gm = [gn+v1 , gn+1, gn+v2 , gn+2]T .
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3 Analysis of the Method

The analysis of the L(α)-stable block multistep method
is presented in this section. Numerical Properties such
as Order and Error constant, consistency, stability and
convergence are investigated.

Order and Error Constant

Let the individual linear multistep method with Cheby-
shev collocation points be associated with the formula

L[y(xn;h)] =
k∑

j=0

 αjy(x+ jh) + αvj
y(x+ vjh)

−hβjy
′(x+ jh)− hβvj

y′(x+ vjh)

−h2δky′′(xn + kh)


(7)

where y(x) is an arbitrary smooth function on [a, b]. Ex-
panding (18) with Taylor series expansions of y(x+ jh),
y(x + vjh), y′(x + jh), y′(x + vjh) and y′′(x + kh),
j = 0, v1, 1, v2, 2, ..., vk, k to obtain the expression

L[y(xn;h)] = C0y(x)+C1hy
′(x)+ · · ·+Cph

py(p)(x)+ · · ·
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q = 0, 1, 2, · · · , p.

Definition 3.1

The block multistep method with Chebyshev collocation
points (6) and the associated linear difference operator is
said to be of order p if,

C0 = C1 = C2 = · · · = Cp = 0, Cp+1 6= 0. (12)

Definition 3.2

The term Cp+1 is called the Error Constant (EC) and
the local truncation error for the method is given by,

tn+k = Cp+1h
p+1y(p+1)xn +O(h(p+2)). (13)

Using the appropriate coefficients in (6), methods are of
order p = [5, 5, 5, 5]T with error constants C6 =[
−1.38× 10−3, 9.02× 10−4,−4.88× 10−4,−6.39× 10−5

]
.T

Consistency

Since the block multistep method is of order p = 5 ≥ 1,
therefore it is consistent. Henrici [16]

Zero Stability of Block Multistep Method

Applying the block multistep method (6) to the test prob-
lem

y′ = λy,

with z = λh, solving the characteristic equation
det|ξ · (A−Cz−Dz2)−B| = 0 for ξ at z → 0, the roots
{0, 0, 0, 1} of the resulting equation are less than or equal
to 1, therefore the numerical method is zero-stable.

Convergence

Since the Block multistep method is consistent and
zero-stable, we can safely assert the convergence of the
new method. (Henrici [16])

Region of Absolute Stability of new method

Solving characteristic equation

det|ξ · (A− Cz −Dz2)−B| = 0

for ξ, we obtain the stability function as

R(z) = − 120 + 72z + 15z2 + z3

−120 + 168z − 111z2 + 45z3 − 12z4 + 2z5

(14)

Solving (14), we obtain the stability region
S = [(−∞, 0)

⋃
(4.11,∞)].

The block multistep method is A0-Stable and satisfies
A(α)-Stability with stiff stability properties α = 89.85◦,
D = 0.066 and y = 1.4. Hence, The method is Stiffly
Stable. The region of absolute stability is presented in
Figure 2.

Test for L(α)-Stability
The numerical method is A(α)-stable and
limz→−∞R(z) = 0, we say that block multistep
method is L(α)-Stable.
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Figure 1: RAS of SDBDF for k = 2

4 Experimental Problems

Problem 5.2: A linear stiff problem

The linear system of 3 first order ordinary differential
equations solved by Akinfenwa [1], Brugnano and Tri-
giante [3] and Ramos and Garcia-Rubio [22] given by,

y1
′ = −21y1 + 19y2 − 20y3, y1(0) = 1,

y2
′ = 19y1 − 21y2 + 20y3, y2(0) = 0,

y3
′ = 40y1 − 40y2 + 40y3, y2(0) = −1,

(15)

on the interval 0 < x < 10 is solved with the newly de-
rived block multistep method. We compare the maximum
absolute errors (|y(x) − yn|) on the interval 0 < x < 10
with the Adams Type Block method of Akinfenwa [1] of
order p = 7 (ATBM7) and Generalized Backward Differ-
entiation formula of Brugnano and Trigiante [3] (GBDF8)
using step lengths h = 1

2n·100 , n = 0, 1, 2, 3 and 4 for nu-
merical solution of y(x). The order of the methods are
also verified by calculating the rate of convergence with
the formula

Rateh = log2

(
err2h
errh

)
,

where errh is the maximum absolute error at step length
h.

Also in the range 0 ≤ x ≤ 1, AbsErr(tf ) in [22] is
obtained by the new method in comparison with the
CBDF5 of degree s = 5 in Ramos and Garcia-Rubio
[22] and the following results are presented

Remark 4.1: Clearly from Table 2, it can be seen that
the new method even though it is of order p = 5, per-
forms better that the ATBM7 and the GBDF8, both of
orders 7 and 8 respectively. Also, the rate of convergence
of the new method conforms almost exactly with the
order of our methods unlike the ATBM7 and GBDF8.
Table 2 shows that the new method is comparable with
the CBDF5 in [22]. Numerical results also show that

Table 1: Problem 4.1: Maximum Absolute Error:
max1<i<N |y1(x)− y1, n| for h = 1

2n·100
n New Method GBDF8 ATBM7

(Rate) (Rate) (Rate)

0 3.21× 10−13 1.19× 10−3 3.95× 10−6

1 1.01× 10−14 1.39× 10−5 2.91× 10−8

(4.99) (6.42) (7.08)
2 3.18× 10−16 1.08× 10−7 2.21× 10−10

(4.99) (7.00) (7.06)
3 9.96× 10−18 1.08× 10−9 6.65× 10−13

(5.00) (6.64) (8.36)
4 3.11× 10−19 9.41× 1012 2.69× 10−15

(5.00) (6.84) (7.95)

Table 2: Problem 4.1: Numerical Results in comparison
with CBDF5 in the range 0 ≤ x ≤ 1

Steps New Method Rate CBDF5 Rate

20 3.04× 10−11 4.12× 10−12

40 9.75× 10−13 4.96 1.33× 10−12 4.95

80 2.25× 10−14 5.43 4.31× 10−15 4.95

160 9.69× 10−16 4.53 2.55× 10−15 0.75

the new method is consistent with order of the method
as the step size decreases.

Problem 4.2: Cash [4].

We also consider the integration of the stiff system us-
ing the problem whose Jacobian matrix J has imaginary
eigenvalues given by

y1
′ = −αy1 − βy2 + (α+ β − 1)e−t, y1(0) = 1,

y2
′ = βy1 − αy2 + (α− β − 1)e−t, y2(0) = 1,

0 ≤ t ≤ 20,
(16)

It is noted that for any given value of parameter α and
β, J is the matrix, (

−α −β
β −α

)
,

with eigenvalues of J as −α±iβ and the required solution
is

y1(t) = e−t,

y2(t) = e−t,

For the case α = 1 and β = 15 with a fixed step size
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