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Abstract—In this paper, we introduce the Petrov-Galerkin
method for solution of stochastic Volterra integral equations.
Here, we use continues Lagrange-type k-0 elements, since these
elements have simple structure and via them, the solution of
stochastic Volterra integral equation is reduced to algebraic
equations. Also the error analysis of this method is done.
In Comparison with other methods, this method has less
computation.

Index Terms—Petrov-Galerkin method; Continuous
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I. INTRODUCTION

STOCHASTIC Volterra integral equations (SVIEs) is a
fast developing field, with applications in economics,

sociology, biology, medical models and anthropology. Back-
ground material and countless references can be found in
[1-9]. Stochastic Volterra integral equations arise when a
random noise is introduced into Volterra integral equations.
These systems are dependent on a noise source, which is
a Gaussian white one. The Brownian motion process B(t)
serves as a basic model for the cumulative effect of pure
noise. Generally, we are not able to find explicit formulae
for the solutions of SVIEs and thus need to use a numerical
method to approximate the solutions.

The Petrov-Galerkin method is a numerical method based
on Galerkin method but with different trial and test spaces.
This method has been used for approximation of the numeri-
cal solution of Fredholm second kind integral equations [10-
11], Hammerstein integral equations [12-13], and integro-
differential equations [14-15].

We consider the one-dimensional linear stochastic Volterra
integral equation

u(t) = f(t) +

∫ t

0

k1(s, t)u(s)ds+

∫ t

0

k2(s, t)u(s)dB(s)

(1)
t, s ∈ [0, T ] = I,

where, u(t), f(t), k1(s, t) and k2(s, t), for s, t ∈ [0, T ),
are the stochastic processes defined on the same probability
space (Ω,F , P ), and u(t) is unknown random function, B(t)
is a Brownian motion process and

∫ t

0
k2(s, t)u(s)dB(s) is

the Itô integral.
We rewrite this equation in operator form as

(I −K1 −K2)u(t) = f(t), (2)
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where

(K1u)(t) :=

∫ t

0

k1(s, t)u(s)ds,

(K2u)(t) :=

∫ t

0

k2(s, t)u(s)dB(s) t ∈ I.

In this article, we are going to use continuous Lagrange-
type k-0 elements of Petrov-Galerkin system to approximate
the numerical solution of stochastic Volterra integral equa-
tion.

The content of this paper is arranged in five sections. In
Section II, we introduce some general concepts concerning
the Petrov-Galerkin method and stochastic concepts. Section
III, presents error analysis. In Section IV, we show numerical
results. Finally, Section V provides the conclusion.

II. PRELIMINARIES

The Petrov-Galerkin method uses regular pairs {Xn, Yn}
of piecewise polynomial spaces that are called Petrov-
Galerkin elements. In this section, we summarize the key
concepts and results of Petrov-Galerkin method and stochas-
tic calculus.

A. Petrov-Galerkin method

Let X be a Banach space and X∗ be its dual space of
continuous linear functionals, for each positive integer n, we
assume that Xn ⊂ X ,Yn ⊂ X∗, and Xn and Yn are finite
dimensional vector spaces with dim Xn =dim Yn.
In addition, we assume the following property:
(H) If x ∈ X and y ∈ Y , then there are sequences xn
and yn, with xn ∈ X , yn ∈ Y for all n such that xn → x,
yn → y.
Definition 1. For x ∈ X , an element Pnx ∈ Xn is
called the generalized best approximation from Xn to x with
respect to Yn by the equation

< x− Pnx, yn >= 0, ∀yn ∈ Yn. (3)

Lemma 1. [10] For each x ∈ X , the generalized best
approximation from Xn to x with respect to Yn exists
uniquely if and only if

X⊥
n ∩ Yn = {0}, (4)

where, X⊥
n = {x∗ ∈ X;< x, x∗ >= 0,∀x ∈ Xn}.

When condition (4) satisfied, Pn defines a projection; that
P 2
n = Pn.

In addition, we must add some properties to (4) in order to
bring a situation that Pn converges point-wise to the identity
operator.
Definition 2. {Xn, Yn} is called regular pair if a linear
operator

∏
n : Xn → Yn with

∏
nXn = Yn exists and
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satisfy the following two conditions
(H-1) ∥xn∥ ≤ C1 < xn,

∏
xn >

1/2, ∀xn ∈ Xn.
(H-2) ∥

∏
n xn∥ ≤ C2 ∥ xn ∥, ∀xn ∈ Xn.

C1and C2 are constants independent of n and ∥ . ∥ is L2

norm.
Theorem 1. Let pair{Xn.Yn} satisfies dimXn = dimYn
and condition (H) then the corresponding generalized pro-
jection Pn satisfies:
(P1) ∥ Pnx− x ∥→ 0 as n→ ∞.
(P2) ∥ Pn ∥≤ C, n = 1, 2, 3, ... for some constants C.
(P3) ∥ Pnx− x ∥≤ C ∥ Qnx− x ∥, n = 1, 2, 3, ... for some
constants C,
where Qn, is the best approximation from Xn to x.
Proof. See [10].

B. Stochastic concepts of Itô integral

Definition 3.[16] (Brownian motion process). A real-
valued stochastic process B(t), t ∈ [0, T ] is called Brownian
motion, if it satisfies the following properties:

(i) (Independence of increments) B(t) − B(s), t > s, is
independent of the past, that is, of B(u), 0 ≤ u ≤ s, or of
Fs, the σ-field generated by B(u), u ≤ s.

(ii) (Normal increments) B(t) − B(s) has Normal distri-
bution with mean 0 and variance t− s.

(iii) (Continuity of paths) B(t), t ≥ 0 are continuous
functions of t.
Definition 4. [16] Let {N(t)}t≥0 be an increasing family
of σ-algebras of sub-sets of Ω. A process g(t, ω) from
[0,∞) × Ω to Rn is called N(t)-adapted if for each t ≥ 0
the function ω −→ g(t, ω) is N(t)-measurable.
Definition 5. [16] Let ν = ν(S, T ) be the class of functions
f(t, ω) : [0,∞)× Ω −→ R such that,

(i) (t, ω) −→ f(t, ω), is B × F-measurable, where B
denotes the Borel σ-algebra on [0,∞) and F is the σ-algebra
on Ω.

(ii) f(t, ω) is Ft-adapted, where Ft is the σ-algebra
generated by the random variables B(s); s ≤ t.

(iii) E
[ ∫ T

S
f2(t, ω)dt] <∞.

Definition 6. [16] (The Itô integral). Let f ∈ ν(S, T ), then
the Itô integral of f (from S to T) is defined by∫ T

S

f(t, ω)dB(t)(ω) = lim
n→∞

∫ T

S

ϕn(t, ω)dB(t)(ω),

(limit in L2(P ))

where, ϕn is a sequence of elementary functions such that

E
[ ∫ T

S

(f(t, ω)− ϕn(t, ω))
2dt

]
→ 0, as n→ ∞.

Theorem 2. (The Itô isometry), Let f ∈ ν(S, T ), then

E
[
(

∫ T

S

(f(t, ω)dB(t)(w))2
]
= E

[ ∫ T

S

f2(t, ω)d(t)
]
.

Proof. See [16].
Definition 7. (1-dimensional Itô processes), [16]. Let B(t)
be 1-dimensional Brownian motion on (Ω,F , P ). A 1-
dimensional Itô process (stochastic integral) is a stochastic
process X(t) on (Ω,F , P ) of the form

X(t) = X(0) +

∫ t

0

u(s, ω)ds+

∫ t

0

v(s, ω)dB(s),

or

dX(t) = udt+ vdB(t), (5)

where

P
[ ∫ t

0

v2(s, ω)ds <∞, for all t ≥ 0
]
= 1,

P
[ ∫ t

0

| u(s, ω) | ds <∞, for all t ≥ 0
]
= 1.

Theorem 3. (The 1-dimensional Itô formula). Let X(t) be
an Itô process given by (1) and g(t, x) ∈ C2([0,∞) × R),
then

Y (t) = g
(
t,X(t)

)
,

is again an Itô process, and

dY (t) =
∂g

∂t

(
t,X(t)

)
dt+

∂g

∂x

(
t,X(t)

)
dX(t)+

1

2

∂2g

∂x2
(
t,X(t)

)(
dX(t)

)2
, (6)

where (dX(t))2 = (dX(t))(dX(t)) is computed according
to the rules

dt.dt = dt.dB(t) = dB(t).dt = 0, dB(t).dB(t) = dt.
(7)

Proof. See [16].

C. Applying the Petrov-Galerkin method to solve SVIEs

Consider

u(t)−
∫ t

0

k1(s, t)u(s)ds+

∫ t

0

k2(s, t)u(s)dB(s) :=

L(t, ω, u(t)),

with random input parameters

L(t, ω, u(t)) = f(t).

In the first step, Petrov-Galerkin method for Eq.(1) is a
numerical method for finding un =

∑n
i=0 ciϕi(t) ∈ Xn,

such that ci is unknown and must be determined. So

L(t, ω,
n∑

i=0

ciϕi(t)) = f(t).

Using inner product, we take a projection of the equation
onto each basis polynomial ψn ∈ Yn, i.e.

< L(t, ω,
n∑

i=0

ciϕi(t)), ψn >=< f(t), ψn > ∀ ψn ∈ Yn.

(8)
Eq. (8) can be derive from Pnx = 0 for any x ∈ X if
and only if < x,ψn >= 0 for all ψn ∈ Yn. In this case
our problem reduced to a linear system and we can use any
appropriate method for finding coefficients.
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D. Continuous Lagrange-type k-0 elements

Here we give a brief review of construction of continuous
Lagrange-type k−0 elements [10]. We subdivide the interval
[0, 1] into n subintervals. Suppose that Xn be the space of
continuous piecewise polynomials of degree not exceeding
k, and with knots at ti, i = 1, 2, ..., n − 1. It is clear that
dimXn = nk + 1.

Let 0 = t0 < t1 < ... < tn = 1 and Ii = [ti−1, ti]; hi =
ti − ti−1 for i = 1, ..., n. The basis of Xn is constructed by
concept of Lagrange polynomials, for this purpose, let τj =
j
k , j = 0, 1, ..., k and t

(i)
j = ti−1 + τjhi, j = 0, 1, ..., k, i =

1, ..., n.Then, it is clear that ti−1 = t
(i)
0 < ... < t

(i)
k = ti.

Then nk + 1 functions ϕ(i)j (t) as basis of Xn is given by

ϕ
(i)
j (t) =


∏k

l=0l ̸=j

t−t
(i)
l

t
(i)
j −t

(i)
l

t ∈ Ii,

0 t /∈ Ii.
(9)

for i = 1, 2, ..., n, j = 1, 2, ..., k− 1; i = 1, j = 0; i = n, j =
k.

ϕ
(i)
k (t) =


∏k−1

l=0
t−t

(i)
l

t
(i)
k −t

(i)
l

t ∈ Ii,∏k
l=1

t−t
(i+1)
l

t
(i+1)
0 −t

(i+1)
l

t ∈ Ii+1,

0 t /∈ Ii+1 ∪ Ii.

(10)

i = 1, 2, ..., n− 1
To construct the test space Yn, we define

ψ
(1)
0 =

{
1 0 ≤ t < h1

2k ,
0 otherwise.

(11)

ψ
(i)
j =

{
1 ti−1 +

2j−1
2k hi ≤ t < ti−1 +

2j+1
2k hi,

0 otherwise.
(12)

i = 1, ..., n, j = 1, 2, ..., k − 1,

ψ
(i)
k =

{
1 ti−1 +

2k−1
2k hi ≤ t < ti +

1
2khi+1,

0 otherwise.
(13)

ψ
(n)
k =

{
1 ti−1 +

2k−1
2k hn ≤ t < 1,

0 otherwise.
(14)

Furthermore, for any xn ∈ Xn, we have

xn =
k∑

j=0

xn(t
(i)
j )ϕ

(i)
j (t), t ∈ Ii, i = 1, ..., n, (15)

and it is proved in [10] that with linear operator∏
n

Xn → Yn;
∏
n

xn(t) =

k∑
j=0

xn(t
(i)
j )ψ

(i)
j , (16)

t ∈ Ii, i = 1, ..., n,
{Xn, Yn} is a regular pair, therefore it can be used in Petrov-
Galerkin system.

III. ERROR ANALYSIS

In this section, we investigate error analysis for our
method. By Theorem 1 (P1)

lim
n→∞

∥ Pnx− x ∥= 0.

Furthermore, we assume that the speed of convergence is
specified by

∥ (Pn − I)x ∥≤ Chm ∥ x ∥ . (17)

We are interested to find un(t) ∈ Xn such that for t ∈ [0, T ]

un(t) = Pnf + PnK1un(t) + PnK2un(t).

Let e(t) = un(t)−u(t) be the error of this method where, un
is a PG solution and u is the exact solution of the stochastic
Volterra integral Eq.(1).
Theorem 4. Assume that
1. ∥ f(t) ∥<∞,
2.P (w ∈ Ω :∥ u(ω, t) ∥<∞) = 1.
3. ∥ ki(s, t) ∥<∞ i = 1, 2,
then

sup0≤t≤T (E(∥ (u(t)− un(t)) ∥)2)1/2 = O(hm).

Proof: From

un(t)−u(t) = Pnf−f+PnK1un−K1u+PnK2un−K2u,

we get

e = (Pn−I)f+(Pn−I)K1un+K1e+(Pn−I)K2un+K2e,

so
E(∥ un − u ∥2) ≤ 3[E(∥ (pn − I)f) ∥2)+ (18)

E(∥ (Pn−I)K1un+K1e ∥2)+E(∥ (Pn−I)K2un+K2e ∥2)].

Furthermore, from (17) we have
(I − 1) E(∥ (pn − I)f) ∥2) ≤ E(C2h2m ∥ f ∥2) =

Ch2mE(∥ f ∥2).

(I − 2) E(∥ (Pn − I)K1un +K1e ∥2) ≤

3[E(∥ (Pn − I)K1u ∥2) + E(∥ (Pn − I)K1(un − u) ∥2)+

E(∥ K1(un − u) ∥2)].

(I − 3) E(∥ (Pn − I)K1u ∥2) ≤ C.h2mE(∥ u ∥2).

(I − 4) E(∥ (Pn − I)K1(un − u) ∥2) <

Ch2mE(∥ (un − u) ∥2).

(I − 5) E(∥ K1(un − u) ∥2) ≤ C.
∫ t

0
E(∥ (un − u) ∥2)ds.

Then
E(∥ (Pn − I)K1un +K1e ∥2) ≤

C.h2mE(∥ u ∥2) + Ch2mE(∥ (un − u) ∥2)+

C.

∫ t

0

E(∥ (un − u) ∥2)ds.

For third term on the right-hand side of Eq. (18) we can
write

E(∥ (Pn − I)K2un +K2e ∥2)

≤ 3[E(∥
∫ t

0

(Pn − I)k2udB(s) ∥2)+

E(∥
∫ t

0

(Pn − I)k2(un − u)dB(s) ∥2)+

E(∥
∫ t

0

k2(un − u)dB(s) ∥2)]
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≤ 3[

∫ t

0

E(∥ (Pn − I)k2u ∥2)ds+∫ t

0

E(∥ (Pn − I)k2(un − u) ∥2)ds+∫ t

0

E(∥ k2(un − u) ∥2)ds]

≤ Ch2mE(∥ u ∥2)+Ch2mE(∥ un−u ∥2)+C
∫ t

0

E(∥ un−u ∥2)ds.

Finally,

E(∥ (u− un)
2 ∥) ≤ Ch2m + C2

∫ t

0

E(∥ u− un ∥2)ds,

and by using Gronwall’s inequality

E(∥ (u− un)
2 ∥) ≤ Ch2m.

Proposition 1. Suppose that {Xn, Yn} is a regular pair that
satisfies dimXn = dimYn and condition (H). Then, for any
given u ∈ X , there exists a positive integer N such that, for
all n ≥ N , the Petrov-Galerkin equation, < (I −K1un −
K2un, yn >=< f, yn >,∀yn ∈ Yn , has a unique solution
un ∈ Xn that satisfies E(∥ un − u ∥2) ≤ C infxn∈Xn ∥
u− xn ∥, n ≥ N.
Proof: By Theorem 1 (P1), Pn converges pointwise to the
identity operator I in X. Hence, it follows from Theorem 4
that there exists an integer N > 0 for which

E(∥ un − u ∥2) ≤ C ∥ Pnu− u ∥;n > N.

Using this estimate and Theorem 1 (P3), the proof is com-
pleted.

IV. NUMERICAL EXAMPLES

In this section, we present four different examples
for performance of the Petrov-Galerkin method. In these
examples the Error is defined as

∥e∥∞ = max |xn(t(i)j )− x(t
(i)
j )|.

Example 1. [5] Consider the linear stochastic Volterra
integral equation,

u(t) = 1 +

∫ t

0

s2u(s)ds+

∫ t

0

su(s)dB(s) s, t ∈ [0, 1),

(19)
with the exact solution u(t) = e

t3

6 +
∫ t
0
sdB(s), for

0 ≤ t < 1.
The numerical results are shown in Tables I and II.
In theses tables, n is the number of iterations, xE is error
mean, and sE is standard deviation of error.

Example 2. [5] Consider the following linear stochastic
Volterra integral equation,

u(t) =
1

12
+

∫ t

0

cos(s)u(s)ds+

∫ t

0

sin(s)u(s)dB(s)

s, t ∈ [0, 1), (20)

with the exact solution u(t) =
1
12e

− t
4+sin(t)+

sin(2t)
8 +

∫ t
0
sin(s)dB(s) , for 0 ≤ t < 1.

For this example, the numerical results are shown in Tables
III and IV.

Example 3. [1] Consider the following linear stochastic
Volterra integral equation,

u(t) =
1

3
+

∫ t

0

ln(s+1)u(s)ds+

∫ t

0

√
ln(s+ 1)u(s)dB(s),

s, t ∈ [0, 0.5), (21)

with the exact solution

u(t) =
1

3
e−

1
2 t+

1
2 tln(t+1)+ 1

2 ln(t+1)+
∫ t
0

√
ln(s+1)dB(s),

for 0 ≤ t < 0.5.
The numerical results are shown in Table V and Table VI.

As can be seen, by less computation, we get good
accuracy.

Example 4. The Langevin model (Paul Langevin, 1908)
has been quite successfully used to study rotational motion
of molecules in gases, liquids, and solids. Suppose that a
small macroscopic particle of mass m (such as a pollen
grain) is immersed in a liquid at a temperature T . In addition
to any macroscopic motion that the particle may have, its
velocity fluctuates due to the random collisions of the particle
with the molecules of the liquid. For simplicity, we confine
ourselves to one-dimensional motion along the x-axis. Then
the equation of motion of the particle may be written in the
form of stochastic differential equation

m
d2x

dt2
= −αdx

dt
− dV

dx
+ F(t). (22)

The first term on the right-hand side is due to the viscosity
of the fluid and α is the friction constant. The second term,
where V (x) is a potential, represents the interaction of the
particle with any external forces, such as gravity. The final
term is the random force due to collisions with the molecules
of the liquid. Clearly to complete the specification of the
dynamics of the particle we need to give (i) the initial
position and velocity of the particle, and (ii) the statistics of
the random force F(t) (the noise term). Note that since F(t)
is a random variable, solving the Langevin equation will give
x(t) as a random variable [17-18].
Eq. (21) may be equivalent written as

dx

dt
= v,

m
dv

dt
= −αv − dV

dx
+ F(t). (23)

A particularly well-known case is when the Brownian par-
ticle is moving in the harmonic potential V (x) = ax2

2 or
double-well potential V (x) = (x2 − 1)2 . Also, F (t) =
σdB(t), where, σ = 2kT

τm is diffusion coefficient, and B(t)
is Brownian motion.
Here we apply this method for solving the following system{

x(t) = x0(t) +
∫ t

0
v(s)ds,

mv(t) = v0(t)−
∫ t

0
αv(s)ds−

∫ t

0
dV
dx (s)ds+

∫ t

0
σdB(s).

(24)
In order to conform the results above, initial value
x(0) = 0, v(0) = 5 are chosen and parameters
σ = 0.1,m = 1, α = 1.
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TABLE I
MEAN, STANDARD DEVIATION AND CONFIDENCE INTERVAL FOR ERROR MEAN IN EXAMPLE 1 WITH k = 4.

n xE sE %95 Confidence Interval for mean of E
Lower Upper

30 3.274× 10−3 6.793× 10−3 8.435× 10−4 5.705× 10−3

100 6.174× 10−3 3.264× 10−3 5.538× 10−3 6.810× 10−3

200 5.523× 10−3 2.399× 10−3 5.191× 10−3 5.856× 10−3

500 6.910× 10−3 1.510× 10−3 6.777× 10−3 7.042× 10−3

1000 7.014× 10−3 1.151× 10−3 6.943× 10−3 7.086× 10−3

TABLE II
MEAN, STANDARD DEVIATION AND CONFIDENCE INTERVAL FOR ERROR MEAN IN EXAMPLE 1 WITH k = 6.

n xE sE %95 Confidence Interval for mean of E
Lower Upper

30 5.043× 10−3 2.731× 10−3 4.065× 10−3 6.020× 10−3

100 2.311× 10−3 2.072× 10−3 1.905× 10−3 2.718× 10−3

200 2.314× 10−3 1.409× 10−3 2.119× 10−3 2.510× 10−3

500 3.840× 10−3 9, 099× 10−4 3.760× 10−3 3.919× 10−3

1000 2.230× 10−3 6.477× 10−4 2.190× 10−3 2.270× 10−3

TABLE III
MEAN, STANDARD DEVIATION AND CONFIDENCE INTERVAL FOR ERROR MEAN IN EXAMPLE 2 WITH k = 4.

n xE sE %95 Confidence Interval for mean of E
Lower Upper

30 1.198× 10−3 1.256× 10−3 7.485× 10−4 1.647× 10−3

100 1.758× 10−3 6.779× 10−4 1.625× 10−3 1.891× 10−3

200 3.770× 10−3 5.423× 10−4 3.694× 10−3 3.845× 10−3

500 3.298× 10−3 3.271× 10−4 3.269× 10−3 3.327× 10−3

1000 2.272× 10−3 2.424× 10−4 2.709× 10−3 2.739× 10−3

TABLE IV
MEAN, STANDARD DEVIATION AND CONFIDENCE INTERVAL FOR ERROR MEAN IN EXAMPLE 2 WITH k = 6.

n xE sE %95 Confidence Interval for mean of E
Lower Upper

30 5.948× 10−3 3.243× 10−4 5.832× 10−3 6.064× 10−3

100 5.944× 10−3 2.025× 10−4 5.904× 10−3 5.983× 10−3

200 5.906× 10−3 1.535× 10−4 5.885× 10−3 5.927× 10−3

500 3.840× 10−3 9, 099× 10−4 3.760× 10−3 3.919× 10−3

1000 2.230× 10−3 6.477× 10−4 2.190× 10−3 2.270× 10−3

TABLE V
MEAN, STANDARD DEVIATION AND CONFIDENCE INTERVAL FOR ERROR MEAN IN EXAMPLE 3 WITH k = 4.

n xE sE %95 Confidence Interval for mean of E
Lower Upper

30 2.490× 10−3 2.191× 10−3 1.706× 10−3 3.275× 10−3

100 6.210× 10−3 1.329× 10−3 5.949× 10−3 5.647× 10−3

200 5.263× 10−3 8.649× 10−4 5.143× 10−3 5.383× 10−3

500 5.824× 10−3 9.658× 10−5 5.815× 10−3 5.832× 10−3

1000 5.830× 10−3 6.881× 10−4 5.787× 10−3 5.872× 10−3

V. CONCLUSION

We introduced the Petrov-Galerkin method for numerical
solution of stochastic Volterra integral equations. The ad-
vantages of this method is that it can be constructed simply,
and by choosing the degree of test space lower than trial
space’s, we can achieve the same order of Galerkin method
convergence with less computational cost. This method spe-
cific properties lead to numerical results with considerable

accuracy and less computational effort.
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