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Abstract—In this paper, the exp-function method is gener-
alized to construct multiwave solutions of a (2+1)-dimensional
variable-coefficient Toda lattice equation. As a result, single-
wave solution, double-wave solution and three-wave solution
are obtained, from which the uniform formula of N-wave
solution is derived. It is shown that the generalized exp-function
method can be used for generating multiwave solutions of some
other nonlinear differential-difference equations with variable
coefficients.

Index Terms—Multiwave solution, Toda lattice equation, exp-
function method, nonlinear differential-difference equation.

I. INTRODUCTION

IT is the work of Fermi, Pasta and Ulam in the 1950s
[1] that has attached much attention on exact solu-

tions of nonlinear differential-difference equations (DDEs),
which play a crucial role in modelling many phenomena
in different fields like condensed matter physics, biophysics
or mechanical engineering. In the numerical simulation of
soliton dynamics in high energy physics, some DDEs of-
ten arise as approximations of continuum models. Unlike
difference equations which are fully discretized, DDEs are
semi-discretized with some (or all) of their spacial variables
discretized while time is usually kept continuous. Among the
existing DDEs, Toda lattice is a simple model for a nonlinear
one-dimensional crystal. The equation of motion of such a
lattice system is usually given by

m
d2

dt2
xn = V ′(xn+1 − xn)− V ′(xn − xn−1), (1)

where m denotes the mass of each particle, xn = xn(t) is
the displacement of the n-th particle from its equilibrium
position, V ′(r) = dV (r)/dr, V (r) is the interaction poten-
tial. The Toda lattice equation (1) describes the motion of
a chain of particles with nearest neighbor interaction [2],
different versions of which are often used to construct the
mathematical model, for example, the Toda lattice model of
DNA in the field of biology [3]. One important property of
such type of Toda lattice equations is the existence of so-
called soliton solutions (stable waves) which spread in time
without changing their size or shape and interact with each
other in a particle-like way [4]. There is a close relation
between the existence of soliton solutions and the integra-
bility of equations, the known research results show that all
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the integrable systems exist soliton solutions [5]. Multiwave
solutions are a kind of interaction solutions, which include
not only classical multisoliton solutions (without singular
points) but also singular multisoliton solutions. Usually, the
interactions of singular solitons may show entirely different
evolution characteristics from those of regular ones.

In the past several decades, there has been significant pro-
gression in the development of methods for solving nonlinear
partial differential equations (PDEs), such as the inverse
scattering method [6], Hirota’s bilinear method [7], Bäcklund
transformation [8], Painlevé expansion [9], homogeneous
balance method [10], function expansion methods [11], [12],
[13], [14], [15], and others [16], [17], [18], [19], [20]. With
the development of soliton theory, finding multiwave solu-
tions of nonlinear PDEs and DDEs has gradually developed
into a significant direction in nonlinear science. Generally
speaking, it is hard to generalize one method for nonlinear
PDEs to solve DDEs because of the difficulty in searching
for iterative relations from indices n to n± 1. Recently, the
exp-function method [21] has been proposed and applied to
many kinds of nonlinear PDEs [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33]. In 2008, Marinakis [34]
generalized the exp-function method to obtain multisoliton
solutions of the famous Korteweg-de Vries (KdV) equation.
Later, Marinakis’ work was improved for obtaining the
uniform formula of N-soliton solution of a KdV equation
with variable coefficients [35]. More recently, Zhang and
Zhang [36] generalized the exp-function method to construct
multiwave solutions of nonlinear DDEs by devising a rational
ansätz of multiple exponential functions. More and more
studies show that because of its more general ansätz with free
parameters, the exp-function method can be used to construct
multiple types of exact solutions of many nonlinear PDEs
and DDEs.

In the present paper, we shall further generalize the exp-
function method to construct multiwave solutions of non-
linear DDEs with variable coefficients. In order to illustrate
the effectiveness and advantages of the generalized method,
we would like to consider a (2+1)-dimensional variable-
coefficient Toda lattice equation in the form [37]:

∂2un

∂x∂t
=

[
∂un

∂t
+ α(t)

]
(un−1 − 2un + un+1), (2)

where un = un(x, t) and α(t) is an arbitrary function of
t. Particularly, when α(t) = 1, Eq. (2) becomes the (2+1)-
dimensional constant-coefficient Toda lattice equation [38].

The rest of this paper is organized as follows. In Section
2, we generalize the exp-function method to construct multi-
wave solutions of nonlinear DDEs with variable coefficients.
In Section 3, we apply the generalized method to Eq. (2). In
Section 4, some conclusions are given.
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II. METHODOLOGY

In this section, we describe the basic idea of the general-
ized exp-function method with a general ansätz for construct-
ing multiwave solutions of variable-coefficient nonlinear
DDEs, say, in three variables n, x and t:

△(unt, unx, untt, unxt, . . . un−1, un, un+1, · · · , ) = 0, (3)

where △ is a polynomial of un, un±s(s = 1, 2, · · ·) and
their derivatives, otherwise, a suitable transformation can
transform Eq. (3) into such an equation.

The exp-function method generalized in this paper for
single-wave solution is based on the assumption that the
solutions of Eq. (3) can be expressed as follows:

un =

∑p1

i1=0 ai1e
i1ξ1∑q1

j1=0 bj1e
j1ξ1

, (4)

un−s =

∑p1

i1=0 ai1e
i1(ξ1−sk1)∑q1

j1=0 bj1e
j1(ξ1−sk1)

, (5)

un+s =

∑p1

i1=0 ai1e
i1(ξ1+sk1)∑q1

j1=0 bj1e
j1(ξ1+sk1)

, (6)

where ξ1 = k1n + c1(x, t) + ω1, c1(x, t) is an unknown
function of x and t, ai1 , bj1 and k1 are constants to determine
later, ω1 is an arbitrary constant, the values of p1 and q1 can
be determined by balancing the linear term of highest order
in Eq. (3) with the highest order nonlinear term.

In order to seek N-wave solutions for any integer N > 1,
we generalize Eqs. (4)–(6) as follows:

un =

∑p1

i1=0

∑p2

i2=0 · · ·
∑pN

iN=0 ai1i2···iN e

∑N

g=1
igξg∑q1

j1=0

∑q2
j2=0 · · ·

∑qN
jN=0 bj1j2···jN e

∑N

g=1
jgξg

, (7)

un−s =

∑p1

i1=0

∑p2

i2=0 · · ·
∑pN

iN=0 ai1i2···iN e

∑N

g=1
ig(ξg−skg)∑q1

j1=0

∑q2
j2=0 · · ·

∑qN
jN=0 bj1j2···jN e

∑N

g=1
jg(ξg−skg)

,

(8)

un+s =

∑p1

i1=0

∑p2

i2=0 · · ·
∑pN

iN=0 ai1i2···iN e

∑N

g=1
ig(ξg+skg)∑q1

j1=0

∑q2
j2=0 · · ·

∑qN
jN=0 bj1j2···jN e

∑N

g=1
jg(ξg+skg)

,

(9)
where ξg = kgn+ cg(x, t) + ωg. When N = 2, Eqs. (7)–(9)
give:

un =

∑p1

i1=0

∑p2

i2=0 ai1i2e

∑2

g=1
igξg∑q1

j1=0

∑q2
j2=0 bj1j2e

∑2

g=1
jgξg

, (10)

un−s =

∑p1

i1=0

∑p2

i2=0 ai1i2e

∑2

g=1
ig(ξg−skg)∑q1

j1=0

∑q2
j2=0 bj1j2e

∑2

g=1
jg(ξg−skg)

, (11)

un+s =

∑p1

i1=0

∑p2

i2=0 ai1i2e

∑2

g=1
ig(ξg+skg)∑q1

j1=0

∑q2
j2=0 bj1j2e

∑2

g=1
jg(ξg+skg)

, (12)

which can be used to construct double-wave solution of Eq.
(3).

When N = 3, Eqs. (7)–(9) give:

un =

∑p1

i1=0

∑p2

i2=0

∑p3

i3=0 ai1i2i3e

∑3

g=1
igξg∑q1

j1=0

∑q2
j2=0

∑q3
j3=0 bj1j2j3e

∑3

g=1
jgξg

, (13)

un−s =

∑p1

i1=0

∑p2

i2=0

∑p3

i3=0 ai1i2i3e

∑3

g=1
ig(ξg−skg)∑q1

j1=0

∑q2
j2=0

∑q3
j3=0 bj1j2j3e

∑3

g=1
jg(ξg−skg)

,

(14)

un+s =

∑p1

i1=0

∑p2

i2=0

∑p3

i3=0 ai1i2i3e

∑3

g=1
ig(ξg+skg)∑q1

j1=0

∑q2
j2=0

∑q3
j3=0 bj1j2j3e

∑3

g=1
jg(ξg+skg)

,

(15)
which can be used to obtain three-wave solution of Eq. (3).

Substituting Eqs. (10)–(12) into Eq. (3), and using Math-
ematica, then equating each coefficient of the same order
power of exponential functions to zero yields a set of differ-
ential equations. Solving the set of differential equations, we
can determine the double-wave solution, and the following
three-wave solution by the use of Eqs. (13)–(15), provided
they exist. If possible, we may conclude with the uniform
formula of N-wave solution for any integer N ≥ 1.

III. MULTIWAVE SOLUTIONS

In this section, let us apply the generalized exp-function
method described in Section 2 to Eq. (2). To seek single-
wave solution, we suppose that:

un(x, t) =
a1e

ξ1

1 + b1eξ1
, (16)

un−1(x, t) =
a1e

ξ1−k1

1 + b1eξ1−k1
, (17)

un+1(x, t) =
a1e

ξ1+k1

1 + b1eξ1+k1
, (18)

where ξ1 = k1n+c1(x, t)+ω1. Obviously, Eqs. (16)–(18) are
embedded in the same form as Eqs. (4)–(6). Substituting Eqs.
(16)–(18) into Eq. (2), and using Mathematica, then equating
each coefficient of the same order power of exponential
functions to zero yields a set of PDEs as follows:

−a1α(t) + 2a1α(t)e
k1 − a1α(t)e

2k1

+a1c1x(x, t)c1t(x, t)e
k1 + a1c1xt(x, t)e

k1 = 0,

−a1b1α(t) + 2a1b1α(t)e
k1 − a1b1α(t)e

2k1 − a21c1t(x, t)

+2a21c1t(x, t)e
k1 − a21c1t(x, t)e

k1

+a1b1c1x(x, t)c1t(x, t)− a1b1c1x(x, t)c1t(x, t)e
k1

+a1b1c1x(x, t)c1t(x, t)e
2k1 + a1b1c1xt(x, t)

+a1b1c1xt(x, t)e
k1 + a1b1c1xt(x, t)e

2k1 = 0,

a1b
2
1α(t)− 2a1b

2
1α(t)e

k1 + a1b
2
1α(t)e

2k1 + a21b1c1t(x, t)

−2a21b1c1t(x, t)e
k1 + a21b1c1t(x, t)e

2k1

−a1b
2
1c1x(x, t)c1t(x, t) + a1b

2
1c1x(x, t)c1t(x, t)e

k1

−a1b
2
1c1x(x, t)c1t(x, t)e

2k1 + a1b
2
1c1xt(x, t)

+a1b
2
1c1xt(x, t)e

k1 + a1b
2
1c1xt(x, t)e

2k1 = 0,

a1b
3
1α(t)− 2a1b

3
1α(t)e

k1 + a1b
3
1α(t)e

2k1

−a1b
3
1c1x(x, t)c1t(x, t)e

k1 + a1b
3
1c1xt(x, t)e

k1 = 0.

Solving the set of PDEs, we have

a1 = b1d1, c1(x, t) = d1x+
4sinhk1

2

d1

∫
α(t)dt. (19)

We, therefore, obtain the single-wave solution of Eq. (2):

un =
b1d1e

ξ1

1 + b1eξ1
= [ln(1 + b1e

ξ1)]x, (20)
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where ξ1 = k1n + d1x +
4sinh

k1
2

d1

∫
α(t)dt + ω1, b1, d1, k1

and ω1 are arbitrary constants.
In Fig. 1, the evolution characteristics of a single-kink

soliton determined by solution (20) is shown, where we
selected k1 = 0.6, b1 = 2, d1 = 1, ω1 = 0, α(t) =
1+secht+sn(t, 0.5). Fig. 1(c) shows the asymptotic property
of amplitude u0 at x = 3. Fig. 1(d) shows that the velocity
of un periodically changes with time.

To construct double-wave solution, we suppose that:

un =
a10e

ξ1 + a01e
ξ2 + a11e

ξ1+ξ2

1 + b1eξ1 + b2eξ2 + b3eξ1+ξ2
, (21)

un−1 =
a10e

ξ1−k1 + a01e
ξ2−k2 + a11e

ξ1+ξ2−k1−k2

1 + b1eξ1−k1 + b2eξ2−k2 + b3eξ1+ξ2−k1−k2
, (22)

un+1 =
a10e

ξ1+k1 + a01e
ξ2+k2 + a11e

ξ1+ξ2+k1+k2

1 + b1eξ1+k1 + b2eξ2+k2 + b3eξ1+ξ2+k1+k2
, (23)

where ξi = kin+ci(x, t)+ωi (i = 1, 2). Clearly, Eqs. (21)–
(23) possess the same form as Eqs. (10)–(12). Substituting
Eqs. (21)–(23) into Eq. (2), and using the similar manipula-
tions as illustrated above, we get a set of PDEs. Solving the
set of PDEs, we have

a10 = b1d1, a01 = b2d2, (24)

a11 = b1b2(d1 + d2)e
B12 , b3 = b1b2e

B12 , (25)

ci(x, t) = dix+
4sinhki

2

di

∫
α(t)dt (i = 1, 2), (26)

eB12 =
d21Ω

2
2 + d22Ω

2
1 − 2d1d2Ω1Ω2cosh(

k1

2 − k2

2 )

d21Ω
2
2 + d22Ω

2
1 − 2d1d2Ω1Ω2cosh(

k1

2 + k2

2 )
, (27)

Ωi = sinh2
ki
2

(i = 1, 2). (28)

Thus, we obtain the double-wave solution of Eq. (2):

un =
b1d1e

ξ1 + b2d2e
ξ2 + b1b2(d1 + d2)e

ξ1+ξ2+B12

1 + b1eξ1 + b2eξ2 + b1b2eξ1+ξ2+B12

=
[
ln(1 + b1e

ξ1 + b2e
ξ2 + b1b2e

ξ1+ξ2+B12)
]
x
,

(29)

where ξi = kin + dix +
4sinh

ki
2

di

∫
α(t)dt + ωi (i = 1, 2),

b1, b2, d1, d2, k1, k2, ω1 and ω2 are free constants, eB12 is
defined by Eqs. (27) and (28).

In Fig. 2, the evolution characteristics of a double-kink
soliton determined by solution (29) is shown, where k1 = 1,
k2 = 0.3, b1 = 1, b2 = 2, d1 = 1, d2 = 1, ω1 = 0, ω2 = 0,
α(t) = 1+secht+sn(t, 0.5). Fig. 3 shows a singular double-
kink soliton determined by solution (29), all the parameters
of which are same as those of Fig. 2 except b1 = −1. It is
easy to see from Fig. 3 that u0 increases to infinite rapidly
as t → −5 and un has a jump when n = 10, x = −8, t = 0.

We now construct three-wave solution, for this purpose,
we suppose that:

un =
f1,n(ξ1, ξ2, ξ3)

f2
2,n(ξ1, ξ2, ξ3)

, (30)

un−1 =
f1,n−1(ξ1, ξ2, ξ3)

f2
2,n−1(ξ1, ξ2, ξ3)

, (31)

un+1 =
f1,n+1(ξ1, ξ2, ξ3)

f2
2,n+1(ξ1, ξ2, ξ3)

, (32)
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Fig. 1. Evolution plots of single-soliton determined by solution (20): (a)
t = 0; (b) x = 0, t = 0; (c) n = 0, x = 3; (d) velocity curve.

where ξi = kin+ ci(x, t) + ωi (i = 1, 2, 3), and

f1,n(ξ1, ξ2, ξ3) = a100e
ξ1 + a010e

ξ2 + a001e
ξ3 + a110e

ξ1+ξ2

+a101e
ξ1+ξ3 + a011e

ξ2+ξ3 + a111e
ξ1+ξ2+ξ3 ,

f2,n(ξ1, ξ2, ξ3) = 1 + b1e
ξ1 + b2e

ξ2 + b3e
ξ3 + b4e

ξ1+ξ2

+b5e
ξ1+ξ3 + b6e

ξ2+ξ3 + b7e
ξ1+ξ2+ξ3 ,
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Fig. 2. Evolution plots of double-solution determined by solution (29): (a)
t = 0; (b) x = 0; (c) n = 0, x = 0; (d) x = −8, t = 0.

f1,n−1(ξ1, ξ2, ξ3) = a100e
ξ1−k1 + a010e

ξ2−k2 + a001e
ξ3−k3

+a110e
ξ1+ξ2−k1−k2 + a101e

ξ1+ξ3−k1−k3

+a011e
ξ2+ξ3−k2−k3 + a111e

ξ1+ξ2+ξ3−k1−k2−k3 ,

f2,n−1(ξ1, ξ2, ξ3) = 1 + b1e
ξ1−k1 + b2e

ξ2−k2 + b3e
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ξ1+ξ3−k1−k3 + b6e
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Fig. 3. Evolution plots of singular double-soliton determined by solution
(29): (a) t = 0; (b) x = 0; (c) n = 0, x = 0; (d) x = −8, t = 0.

f1,n+1(ξ1, ξ2, ξ3) = a100e
ξ1+k1 + a010e

ξ2+k2 + a001e
ξ3+k3

+a110e
ξ1+ξ2+k1+k2 + a101e

ξ1+ξ3+k1+k3

+a011e
ξ2+ξ3+k2+k3 + a111e

ξ1+ξ2+ξ3+k1+k2+k3 ,

f2,n+1(ξ1, ξ2, ξ3) = 1 + b1e
ξ1+k1 + b2e

ξ2+k2 + b3e
ξ3+k3

+b4e
ξ1+ξ2+k1+k2 + b5e

ξ1+ξ3+k1+k3 + b6e
ξ2+ξ3+k2+k3

+b7e
ξ1+ξ2+ξ3+k1+k2+k3 .
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It is easy to see that Eqs. (30)–(32) have the same form
as Eqs. (13)–(15). By the similar manipulations mentioned
above, we have

a100 = b1d1, a010 = b2d2, a001 = b3d3, (33)

a110 = b1b2d1d2e
B12 , a101 = b1b3d1d3e

B13 , (34)

a011 = b2b3d2d3e
B23 , (35)

a111 = b1b2b3(d1 + d2 + d3)e
B12+B13+B23 , (36)

b4 = b1b2e
B12 , b5 = b1b3e

B13 , b6 = b2b3e
B23 , (37)

b7 = b1b2b3e
B12+B13+B23 , (38)

ci(x, t) = dix+
4sinhki

2

di

∫
α(t)dt (i = 1, 2, 3), (39)

eBij =
d2iΩ

2
j + d2jΩ

2
i − 2didjΩiΩjcosh(

ki

2 − kj

2 )

d2iΩ
2
j + d2jΩ

2
i − 2didjΩiΩjcosh(

ki

2 + ki

2 )
, (40)

Ωi = sinh2
ki
2
, Ωj = sinh2

kj
2

(1 ≤ i < j ≤ 3). (41)

Employing Eqs. (33)–(41), we obtain the three-wave solution
of Eq. (2):

un =
[
ln(1 + b1e

ξ1 + b2e
ξ2 + b3e

ξ3 + b1b2e
ξ1+ξ2+B12

+b1b3e
ξ1+ξ3+B13 + b2b3e

ξ2+ξ3+B23

+b1b2b3e
ξ1+ξ2+ξ3+B12+B13+B23)

]
x
,

(42)

where ξi = kin+ dix+
4sinh

ki
2

di

∫
α(t)dt+ ωi (i = 1, 2, 3),

b1, b2, b3, d1, d2, d3, k1, k2, k3, ω1, ω2 and ω3 are arbitrary
constants, B12, B13 and B23 are determined by Eqs. (40)
and (41).

In Fig. 4, the evolution characteristics of a three-kink
soliton determined by solution (42) is shown, the parameters
of which are selected as k1 = 1, k2 = −1, k3 = 0.36,
b1 = 2, b2 = 1, b3 = 3, d1 = 1, d2 = 1, d3 = 2, ω1 = 0,
ω2 = 0, ω3 = 0, α(t) = 1 + secht+ t2.

If we continue to construct the N-wave solution for any
N ≥ 4, the following similar manipulations become rather
complicated since equating the coefficients of the exponential
functions to zero implies a highly nonlinear system as
pointed out in [34]. Fortunately, by analyzing the obtained
solutions (20), (29) and (42) we can obtain the uniform
formula of N-wave solution as follows:

un =

[
ln

( ∑
µ=0,1

N∏
i=1

bµi

i e

∑N

i=1
µiξi+

∑
1≤i<j≤N

µiµjBij

)]
x

,

(43)
where the summation

∑
µ=0,1 refers to all combinations of

each µi = 0, 1 for i = 1, 2, · · · , N , ξi = kin+dix+
4sinh

ki
2

di
,

and

eBij =
d2iΩ

2
j + d2jΩ

2
i − 2didjΩiΩjcosh(

ki

2 − kj

2 )

d2iΩ
2
j + d2jΩ

2
i − 2didjΩiΩjcosh(

ki

2 + ki

2 )
, (44)

Ωi = sinh2
ki
2
, Ωj = sinh2

kj
2

(i < j; i, j = 1, 2, · · · , N).

(45)
Remark 1. Solutions (20), (29) and (42) obtained above

have been checked with Mathematica by putting them back
into the original Eq. (2). To the best of our knowledge,
solutions (20), (29), (42) and (43) with arbitrary function
α(t) have not been reported in literatures.
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Fig. 4. Evolution plots of three-soliton determined by solution (42): (a)
t = 0; (b) x = 0; (c) n = 0, x = 0; (d) x = −6, t = 0.

IV. CONCLUSION

In summary, single-wave solution (20), double-wave so-
lution (29) and three-wave solution (42) of the (2+1)-
dimensional variable-coefficient Toda lattice equation (2)
have been obtained, from which the uniform formula of N-
wave solution (43) is derived. This is due to the general-
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ization of the exp-function method presented in this paper.
Though these solutions can be constructed by some a future
improvement of Hirota’s bilinear method [7], the proposed
method with the help of Mathematica for generating solu-
tions (20), (29) and (42) is more simple and straightforward.
Hirota’s bilinear method has three steps [36], one of which
is taking a transformation of new dependent variable(s) to
reduce a given DDE to bilinear form(s). However, no general
method has been found for such a transformation. Compared
to Hirota’s bilinear method, the method of this paper does
not follow these steps. Besides, the multiwave solutions
constructed by the generalized exp-function method contain
free parameters b1, b2, · · ·, bN so that they are more general
than the ones (bi = 1, i = 1, 2, · · · , N) obtained by Hirota’s
bilinear method. More importantly, these multiwave solutions
with free parameters maybe possess new evolution character-
istics. For example, when any one parameter is negative, the
multiwave solutions can give singular multisoliton solutions
like the one (b1 = −1) shown in Fig. 3. In this sense, we
may conclude that the generalized exp-function method with
the advantage of simplicity and effectiveness may provide us
with a straightforward and applicable mathematical tool for
generating multiwave solutions of some variable-coefficient
DDEs or testing their existence.
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