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Abstract—Starting from topological principles we first recall
the elementary ones giving Kirchhoff’s laws for current conser-
vation. Using in a second step the properties of spaning tree,
we show that currents are under one hypothesis intrinsically
boundaries of surfaces flux. Naturally flux appears as the
object from which the edge comes from. The current becomes
the magnetomotive force (mmf) that creates the flux in the
magnetostatic representation. Using a metric and an Hodge’s
operator, this flux creates an electromotive force (emf). This emf
is finally linked with the current to give the fundamental tensor
- or ”metric” - of the Kron’s tensorial analysis of networks. As it
results in a link between currents of cycles (surface boundaries)
and energy sources in the network, we propose to symbolize this
cross talk using chords between cycles in the graph structure
on which the topology is based. Starting then from energies
relations we show that this metric is the Lagrange’s operator of
the circuit. But introducing moment space, the previous results
can be extended to non local interactions as far field one. And
to conclude, we use the same principle to create general relation
of information exchange between networks as functors between
categories.

Index Terms—EMC, Kron’s formalism, MKME, tensorial
analysis of networks.

I. INTRODUCTION

GABRIEL KRON (1900 - 1968) has transfered the ten-
sorial analysis developed in the framework of general

relativity to the world of applied electromagnetism [1], [2].
He had felt the straight relations between Kirchhoff’s laws
and topology. To replace his reflexions at this time, we
try to give a brief history of these works, from Kron to
nowdays. As many words exist to call the various elements
available on graphs, we propose some of them that we use
in our paper. Our first purpose is to find again these straight
relations as simplest as possible. Making this exercise and
under the hypothesis that no spaning tree current sources are
involved, only electrostatic and magnetostatic phenomenons
are considered, it appears that the current can be seen as a
fundamental element of the faces boundary space. Through
this vision, the electromotive force belongs to the faces space.
The current seen as a boundary of faces, becomes equivalent
to magnetomotive forces. By a physical understanding, a
relation between magnetomotive forces and electromotive
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forces must exists. A problem appears because both doesn’t
belong to the same differential form dimension. Thanks to
the Hodge operator, we make this link, following previ-
ous existing works. But if the electromotive force, which
give the network its energy, belongs to the faces space,
self inductance reaction must belongs to the same space
and mutual inductance interaction translates the relation of
Hodge. These components, as sensed by Kron, represent
the metric that we take to compute these interactions. This
leads to the Lagrangian expression of the whole graph and
to the ”chords” elements that symbolize these interactions.
This Lagrangian must then be increased taking into account
the spaning tree sources, added to the faces ones. This
new space give us the complete base to take into account
far field interactions. Lamellar fields create current sources,
rotationnal fields create electromotive forces. This continuous
fields are connected to our topology using moment space.
This space is the frontier between our first bounded mani-
folds which generate the graph and continuous not bounded
manifolds which are radiated and propagated fields. The first
topological discussion gives all the base to include this new
interaction through a generalized definition of the chords.
At each step, we first give a topological approach before to
“translate” it in expressions more usually given by physicists.

II. TENSORIAL ANALYSIS OF NETWORKS (TAN)
HISTORY

Gabriel Kron has written is famous ”tensorial analysis
of networks” in 1939. Before this work, he has written in
1931 a first remarkable paper ”Non-Riemannian Dynamics
of Rotating Electrical Machinery” [3]. For this work he had
the Montefiore price of the university of Liege in 1933
and the M.I.T. journal of mathematics and physics publishes
the entire paper in the May 1934 [4]. This paper instantly
produces wide-spread discussion and contreversy [5]. Kron
uses its own notation without regarding established ones.
This leads to some mathematicians contempt. But some of
them were clear enought to understand and study Kron’s
work. Hoffmann [6], Roth [7] make links between Kron’s
concept and topology ones. Physicists like Branin, Happ, and
in France Denis-Papin and Kaufmann [8] promote Kron’s
work for electrical engineers. Many studies were done after
around the concept of Diakoptic initiated by Kron [9]. But
to focus on topology, less references are available. Major
lecture was made by Balasubramanian, Lynn and Sen Gupta
[2]. Recently, there is the work done by Gross and Kotiuga
[10], following first one of Bossavit [11]. These last two
works was made more particularly for finite element method.
But they give fundamental bases through algebraic topology,
following previous works of Roth and others, clarified using
benefit of years passing. In this paper we try to take benefit
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of all this story and to present as clear as we can our
understanding on these concepts.

III. NOTATIONS

We note N the set of integers, R the set of real numbers,
C for complex, T for cells, etc. We work in a complex
cellular T ∞ made of vertexes s ∈ T 0, edges a ∈ T 1 and
faces f ∈ T 2, etc. T is the whole set of these geometrical
or chain objects. Low indices refer to chains, high ones to
the geometric objects. Geometric objects are classical forms.
Chains are abstract objects embedding properties added to
the geometric objects in order to represent symbolically a
real thing. A set of currents runing in a system can be
linked with a set of chains associated with edges. This set
of currents are components of a unique current vector. The
current vector constitute a chain, image of some real currents
on an electronic system. More generally, vectors can be
associated with each of these geometric objects and their
bases: |s〉 for vertexes, |a〉 for edges, |f〉 for faces, etc. We
note Tj the vectorial space created by the geometric vectors
|x〉 of T D(x) (D(x) = 0 if x similar to s, etc.). Tj can be
developped as:

Tj =

{∑
σ∈T j

ασ |σ〉 , ασ ∈ R, C

}
, j ∈ N (1)

In this definition, we see here a generalized formulation
of the classical writing of a vector, using the mute index
notation (each time an index is repeated, the summation
symbol on the index can be omitted) in [12]: ~f = fσ~uσ .
Here ~f is a vector developed on the base ~uσ of components
fσ .

IV. BOUNDARY OPERATOR

We now introduce the boundary operator. It translates the
intuitive understanding of object boundary. The boundary of
a segment is a pair of two points, the one of a surface is
a closed line, and so on. The boundary operator is the base
of all Whitney’s concepts [13]. To define integration through
bounded objects, anyone needs boundaries. Once more, this
boundary concept is natural. It is an application from T to
T , ∂ : T → T , and more precisely, ∂ is an operator from Tj
to Tj−1. Its self composition leads to zero: ∀θ ∈ T D(θ), ∂ ◦
∂ |θ〉 = 0. For example, ∂ ◦ ∂ |a〉 = 0: the boudary of an
edge is a vertex and the boundary of a vertex is null, or
∂ ◦ ∂ |f〉 = 0: the boundary of a face is a closed line, and
the boundary of this closed line is null (remember ∂◦∂ = 0).
As we will see in next paragraph, this operator is linked to
various connectivities in tensorial algebra. A face boundary
is a cycle (a closed line). When we have an edge |a〉, we can
consider its boundary ∂ |a〉 which is a couple of vertices. The
boundaries can be developed on the zero chain of vertices :

∂ |a〉 =
∑
s∈T 0

Bsa |a〉 . (2)

Take a look to the graph figure 1. We can easily find its
incidence B making relations between the vertices s and the
edges a:

B =

 1 −1 −1 0 0
−1 1 0 1 1
0 0 1 −1 −1

 . (3)

Each row is linked to an vertex and each column to an edge.

V. SEEING ELECTRICAL CURRENT AS A 1-CHAIN AND
THE POTENTIAL AS A 0-COCHAIN

In the following we consider the electrical current i as an
element |i〉 of the space T1: on each edge k, the current has
a component ik which is a real number:

|i〉 =
∑
k∈T 1

ik |k〉 . (4)

In the tensorial analysis of networks [1] (as previously
in classical nodal techniques [12]), the boundary operator
applied to edges is called the ”incidence”. Using the sign
rule saying that a current entering a vertex is affected of a
plus sign and a current leaving a vertex is affected of a minus
sign, it is a matrix that gives the relations between vertices
and edges. It is possible to create for each vertex s a linear
form 〈s| acting on all the vertices: 〈s|σ〉 = 0 if s and σ
differ, 〈s|σ〉 = 1 if s = σ. This form belongs to T ∗0 : the
dual space of T0 composed by the 0-cochains. Moreover to
each vertex s ∈ T 0 is associated a potential value Vs. With
this set of numbers we construct the potential V such that:

〈V | =
∑
s∈T 0

Vs 〈s| . (5)

VI. A TOPOLOGICAL FORM OF KIRCHHOFF’S LAWS

We propose here to write the Kirchhoff’s laws in a single
abstract form as:

〈V |∂i〉 = 0, ∀V ∈ T ∗0 , ∀i ∈ T 1 . (6)

This relation applied to electricity is usual for physicists.
If we retain one particular node (for example node 1 on
figure 1), the algebraic sum of the currents ik for k an
edge that contains the vertex number 1 is equal to zero; in
this case i1 − i2 + i3 = 0. To interpret relation (6) as the
second Kirchhoff’s law relative to the mesh law, we need the
mathematical notion of co-boundary.

From the chains Tj , we introduce the space T ∗j of co-
chains of degree j: we have defined the duality product 〈s|σ〉
for two vertices s and σ of the cellular complex. We do
the same for each geometrical object of dimension j. For
α ∈ T j , the dual form 〈α| belongs to T ∗j and is defined for
each θ ∈ T j by 〈α|θ〉 = 0 if α and θ differ, 〈α|θ〉 = 1 if
α = θ. The co-boundary operator ∂o is the polar operator
of the boundary operator ∂. By definition for ϕ ∈ T ∗j and
θ ∈ Tj+1 we have:

〈∂oϕ|θ〉 ≡ 〈ϕ|∂θ〉 , ∀ϕ ∈ T ∗j , θ ∈ Tj+1 . (7)

The co-boundary operator ∂o is defined from each T ∗j and
takes its values in the space T ∗j+1. The boundary operator
makes decreasing the dimension of the chains while the co-
boundary operator makes it increasing.

The co-boundary operator is a good tool to express the sec-
ond Kirchhoff’s law. We re-express the fundamental property
(6) in terms of the co-boundary operator:

〈∂oV |i〉 = 0, ∀V ∈ T ∗0 , ∀i ∈ T 1 . (8)

For each edge a we introduce the potential differences in
term of the potential values Vs for each vertex s and the
incidence matrix B as introduced in (2):

Ua =
∑
s∈T 0

Bsa Vs . (9)
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Fig. 1. spanning tree

So we have: ∂oV =
∑
a∈T 1 Ua 〈a|. We introduce a closed

circuit γ. We test the relation (8) for i = i0
∑
a∈γ |a〉. Then

〈∂oV |i〉 >= i0
∑
a∈T 1

∑
b∈γ Ua 〈a|b〉 = i0

∑
a∈T 1 Ua =

0. The mesh Kirchhoff’s law express that the sum of the
potential differences along a closed circuit is identically equal
to zero. For example if we take a look on circuit 2-3-4 figure
1, we have: U2 − U4 − U3 = 0.

VII. SPANNING TREE FOR PAIR OF NODES CURRENTS

We assume now that the network T is connected. To fix
the ideas we suppose more precisely that this network is
simply connected i.e. does not contain any hole. When this
hypothesis is not satisfied (a torus to fix the ideas) we refer to
the contribution of Rapetti et al. [14]. A spanning tree A is a
subgraph of the set of edges, doesn’t contain any cycle, and
is composed with a number of edges equal to the number of
vertices minus one; if we add to this spanning tree an edge
a which doesn’t belongs to A we obtain a cycle γ composed
by a and edges of the spanning tree. We refer for a precise
definition to the book of Berge [15].

Once a spanning tree A is fixed, any 1-chain can be
decomposed in terms of boundary of faces plus a term
associated to the spanning tree. In particular, each current
can be decomposed in the previous form:

|i〉 =
∑
f∈T 2

βf∂ |f〉+
∑
α∈A

θα |α〉 . (10)

The first term
∑
f∈T 2 βf∂ |f〉 corresponds to the meshes

currents in Kron’s terminology, and the second one∑
α∈A θα |α〉 to the nodes-pairs currents. The formula (10)

describes the direct sum of these two spaces. It is denoted
as the “complete space” in Kron’s approach.

We have the following theorem: if the current i satisfies the
Kirchhoff’s law (6) then the nodes pair currents is reduced
to zero. We have in relation (10): θα = 0 for each edge
α of the spanning tree A. The proof can be conducted as
follows. Consider an arbitrary edge α ∈ A. We construct
a potential V as the one explicited on the figure 1. We
have ∂oVα = 〈α| plus a sum related to edges that does
not belong to the spanning tree A. Then we have the fol-
lowing calculus: 0 = 〈Vα|∂i〉 =

〈
Vα|∂

(∑
f∈T 2 βf∂|f〉

)〉
+
〈
Vα|∂

(∑
β∈A θβ |β〉

)〉
=

〈
Vα|∂

(∑
β∈A θβ |β〉

)〉
=〈

∂oVα|
∑
β∈A θβ |β

〉
=
〈
α|
∑
β∈A θβ |β

〉
= θα. The prop-

erty is established.

When the Kirchhoff’s law are satisfied, the electrical
branches currents can be represented by the meshes currents
|i〉 =

∑
f∈T 2 βf∂ |f〉. In the general case, when charges

are injected to nodes, the Kirchhoff’s laws (6) are no more
satisfied. The node pair currents

∑
α∈A θα |α〉 is not equal

to zero and represents these charges variations. In Maxwell’s
equations, the charge conservation has two terms: “divJ”
which is represented by the mesh currents and “∂tρ” repre-
sented by the node pair currents.

VIII. THE FUNDAMENTAL SPACE OF FACES

In electrodynamic we want to make a relation between the
meshes currents i and some quantity coming from the flux Φ.
It translates the general relation of electrodynamic between
currents and electromotive forces. This flux Φ is in relation
with a magnetomotive force through i. The induced electrical
current described in the previous section can be linked
with the meshes currents through |i〉 =

∑
f∈T 2 βf∂ |f〉.

The boundary operator being linear, we can write: |i〉 =

∂
(∑

f∈T 2 βf |f〉
)

. This makes appear clearly the magnetic
flux Φ given by:

Φ =
∑
f∈T 2

βf |f〉 . (11)

The magnetic flux Φ ∈ T 2 is associated with the faces in
the complex cellular T . The meshes current i being under
this view a boundary current.

We define a dissipation operator W :

T2 × T2 3 (Φ, Φ′) 7−→W (Φ, Φ′) ∈ R.

It creates a positive defined quadratic form: W (Φ, Φ) ≥ 0
and W (Φ, Φ) = 0 ⇒ Φ = 0. This quadratic form W
generates a linear application: T2 3 Φ 7−→ ζ Φ ∈ T ∗2 so
that:

〈ζ Φ|Ψ〉 = W (Φ, Ψ) ∀Φ, Ψ ∈ T2 . (12)

This linear application is nothing else than the impedance
operator. On the faces base of T2 it creates the impedance
matrix Z:

W
(∑
f∈T 2

αf |f〉 ,
∑
g∈T 2

βg |g〉
)
≡
∑
f,g∈T2

Zfgαfβg . (13)

The energy source for the mesh space is given by the
electromotive force e: for Φ ∈ T2, e ∈ T ∗2 the dual product
〈e|Φ〉 is well defined and points out e as the dual source for
faces as well as θ for the current source for nodes. The natural
space for the electromotive force is cochain of degree 2.

Equilibrating sources and dissipation (in the general sense,
i.e. used energy, losses or stored ones) we have:

W (Φ, Ψ) = 〈e|Ψ〉 , ∀Ψ ∈ T2

which means
ζ Φ = e . (14)

Then the current can be obtained through:

i = ∂ ζ−1 e

which is the topological expression for the Kron’s tensorial
equation

iµ = yµνeν .
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Fig. 2. Graph of a filter

IX. RESOLUTION OF NETWORKS IN COMPLETE SPACES
USING THE KRON’S METHOD

The method starts with a graph. This graph is a engi-
neer view of a real system. Through homotopy, homology,
surgery, the problem is projected on a graph [16]. In this
operation, we start by finding a ST passing through the
various remarkable points of the structure. This tree can be
drawn on a sheet. Each point has its own connection with the
original 3D space attached to the structure. Figure 2 shows
such simple graph obtained from a filter.

On this graph, the ST is repaired by bold lines while
closing edges are repaired by thin lines. Meshes are in
doted and blue lines. Each edge current can be described
depending on ST edges and meshes. For example, current
of the edge 1 depends on ST edge 1 and mesh 2. The sign
of this dependance is positive, as all currents flows in the
same direction. When the meshes are constructed through
closing edges from the ST, all the sign of the dependances
are positive. This is a remarkable property linked with this
construction method. The edge currents projection on ST
edges and meshes is synthesized in a connectivity matrix
C. If we choose to number the edges firstly as functions of
closed edges belonging to the ST, then to meshes, the C
matrix has a particular organization:

C =

[
Q L
0 I

]
(15)

As edges belonging to the ST are firstly numbered, they
depend on both closing edges and meshes - that’s why the
submatrixes Q and L make links between these edges and
both current sources and meshes. On the other hand, edges
obtained by closing paths depend only on meshes. So a unity
matrix links these edges with the meshes, and a zero matrix
shows that there’s no links between them and the closing
paths.
Each edge (a) has its own intrinsic property represented by
an operator zaa. This operator can depends on the current
value on the edge (non linear one). This operator is a metric
component which we talk about in the next paragraph. To
present the Kron’s method, we accept that this metric has
the form:

z =

[
A B
E D

]
(16)

We note it the ST edges, ic the closing path edges, J the
current sources belonging to the ST, k the mesh currents.

The connectivity is:[
it

ic

]
=

[
Q L
0 1

] [
J
k

]
(17)

The Kirchhoff’s law for any edges can be written [12] (it
can be used for any physics):[

0
S

]
=

[
V
0

]
+z

[
it

ic

]
=

[
V
0

]
+z

[
Q L
0 1

] [
J
k

]
(18)

S are the mesh sources on which we come back later, V the
ST potential differences. By multiplying on the left by CT

(index T here is for transpose operation) we make appearing
a bilinear transformation CT zC. Noting A′, B′, E′, D′ the
components of this triple products (they are the component
of the metric in the complete space: ST plus meshes), we
obtain finally:[

0
S

]
=

[
QV
LV

]
+

[
A′ B′

E′ D′

] [
J
k

]
(19)

As previously demonstrated LV = 0. The first equation
resolved is: S = E′J+D′k ⇒ k = (D′)

−1
[S − E′J ]. Then,

knowing k, the edges voltages of the ST current sources can
be obtained: QV = − (A′J +B′k).

X. ABOUT THE METRIC

Usually, a metric is a matrix that can be half-positive,
singular [17]. In Kron’s theory, as we want to manipulate
complex operator through this tensor, we accept non strictly
positive matrixes as metric and non symetric. Many mathe-
maticians can object that we are finally far from a metric? But
the notion stills very relevant as it describes a distance under
preferential paths for currents in the topology, and it leads
to the generalized power of the network studied. As said in
[8] page 309 (this is a translation from French): A general
theory for linear networks, symetrics or not, should be based
on a metric space definition with fundamental tensor.... The
connectivity C can be seen as a group transformation that
belongs to SO ( [17] page 271).
We accept from now to call metric the fundamental tensor
obtained from µ. We mean by this that to create the Hodge’s
relation between the magnetic flux and the electromotive
force (emf) we need to give ourselves a metric. This metric
is like a rule to make a correspondance between the vectorial
surface flux and the scalar emf. The metric makes the link
between the first space of mesh currents and the dual quantity
of emf obtained from an Hodge process.
From years, electronicians use the mutual inductance to
translate cross talk between both isolated circuits of a trans-
former. As we said before, emf and so self-inductances are
for us deeply linked with the mesh space. Figure 3 shows
the graph for a transformer cross talking two simple circuits.
On the classical schematic presented fig. 3, we have two
simple circuits having each of them a self-inductance and
cross talked through a mutual inductance u. For each faces
of each circuit, we can, following Maxwell’s laws, compute
the electric field circulation [18]:∮

Γ≡∂f
~E· ~dΓ =

∫
A∈Γ

dΓ
J

σ
+

∫
B∈Γ

dΓ

[∫
t

dt
J

ε

]
−hE0 (20)

A and B begin part of the boundary ∂f of the face f,
hE0 begin the source electrical work giving energy to the
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Fig. 3. Graph of a transformer

circuit. Each kind of energy (dissipative through σ, potential
through ε) can belong to a single edge in the edge space. At
the beginning of the circuit description, we have separate
information for edges. Always for one circuit, one could
be dedicate for dissipative energy (they are the classical
resistors in electrical circuits) and another for potential
energy (capacitances). Each elementary circuit can be for
example a RC one, one edge A being a resistor, and another
edge B being the capacitor. When we construct both circuits,
we first begin to associate couple of edges in a single mesh.
Using the mesh connectivity: LT =

[
1 1

]
, we obtain a

first expression of the metric in the mesh space given for one
circuit gn by:

gn = LT zL =
[

1 1
] [ Rn 0

0 1
Cnp

] [
1
1

]
(21)

(p is the Laplace’s operator, and Rn and Cn the resistance
and capacitance of the circuit n). The metric for the two
circuits comes from the union of all the metrics of separate
circuits involved: g =

⋃
n gn. For us it gives :

g =

[
R1 + 1

C1p
0

0 R2 + 1
C2p

]
(22)

As inductances belong only to the mesh space, we must
add them to the previous matrix through a new one µ, one
including the inductance parts Ln:

g = g + µ, µ =

[
L1p 0

0 L2p

]
(23)

Now if the first circuit has its own energy source hE0 - we
don’t care from where it comes, the second circuit has no
self energy generator. But a cross talk creates in its mesh an
emf e. This emf comes from the mmf F of the first circuit.
Using the previous relations we can write finally a function
between the mesh current of the first circuit k1 and the emf of
the second onde e2: e2 = −upk1. The cross talk is symetric,
it means that the current in the second circuit k2 creates
an emf in the first one: e1 = −upk2. Finally, the complete
magnetic energy tensor added to the one obtain in the edges
space becomes :

µ

[
L1p −up
−up L2p

]
(24)

We compute the emf added to the edge first circuit in a
second step, after transformation of the edge metric in the
mesh space and based on a function depending on the mesh
current of another circuit. The mutual inductance appears
here to be directly an application of the reluctance physic

Fig. 4. Isometric graph

[19]. A reluctance network and the associated graph can be
construct where edges are tubes and vertex are meshes. This
graph is the ”chord” that is associated with the function u
of mutual coupling. In next paragraph we will generalized
this approach for Maxwell’s fields. Before we obtain the
extradiagonal component of our metric by another way.
Another graph gives the same metric that the one of figure
3. Two spaces can be construct with these topologies. An
isometric bijection exists between them that doesn’t preserve
the graph structure, but keep their common metric [20]. We
consider the graph presented figure 4.

Always without ST sources, the current can be expressed
as: I = β1∂ |f1〉 + β2∂ |f2〉. The boundaries of the faces
can be developed on the edges, depending on the directions
chosen: ∂ |f1〉 = |a1〉 + |a12〉 , ∂ |f2〉 = |a2〉 − |a12〉 where
a1 is edge 1 on the graph, a12 edge 2 and a3 edge 3. f1 and
f2 are meshes 1 and 2 (doted blue lines fig.5). If z1, z2 and
z3 are the three components of the metric for the three edges
1, 2 and 3, the metric tensor in the mesh space (Lm : z → g)
becomes:

g =

[
z1 + z2 −z2

−z2 z2 + z3

]
(25)

Comparing with previous one, we see that: z1 = R1 +
(C1p)

−1
+ L1p − up, z2 = R2 + (C2p)

−1
+ L2p − up

and z2 = up. The natural energy distribution leads to the
lagrangian operator obtained in the mesh space using the
Kron’s description of the networks [21]. Graphs from figure
3 and 4 have not the same topology, but they do have the
same metric, that’s why we call isometric the transformation
from one to the other.

XI. EXTENSION OF CHORDS TO RADIATIVE FIELDS

All our previous discussion is based on graphs to describe
a topology. When linked with real objects, these objects are
reduced to edges through some algebraic topology operations
and concepts like homotopy, homology, etc. Representation
of reality is made through agencement of edges as pieces.
The whole object modeled is a group of R connex networks
parts of a global graph. Each of these networks is a set of B
edges, joined by N vertexes. The major characteristic of the
object is its number of meshes M by respect of the equivalent
Poincaré’s law for complex cellular: M = B−N+R. In each
connex network transmission of energy is perfectly controled
because it goes from one vertex to another. By this way, the
mathematical concepts can be applied to Maxwell’s fields
quite easily, under the hypothesis that the field behave like
a bounded volume able to be represented by an edge. This
is true for near and evanescent fields - for which macro-
scopic modelling are resistors, capacitances, inductances,
reluctances, but this is not true for the free radiative field
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that cannot radiate in a bounded volume independently of
the distance. We recall the fundamental difference between
these two kinds of fields, and then we apply our previous
method to these fields.

A. Radiated versus evanescent fields

Basic demonstration for photon starts from the potential
vector in the Coulomb’s gauge [22]. Under this gauge, there
is a formal separation of the transverse part of the field with
the other components. Transverse part of the field leads to the
photon concept of quantum mechanics. All the evanescent
parts are the longitudinal components of the potential and
scalar vectors. They can be modeled using inductances,
capacitances, etc., that are properties (and components of
the metric) of edges or meshes. Strictly speaking, evanescent
modes of the field are virtual photon [23]. The big difference
for us is that the free field cannot be enclosed in a bounded
edge (or a cycle of bounded edge, i.e. a mesh). It radiates
in the infinity space. Another remarkable property of the far
field is the radiation resistance. On the edge radiating, the
property is increased of this radiation resistance. It can be
shown that the radiation resistance is intrinsic to the radiated
edge. When enclosed in a shielded room, the same edge has
its metric modified by the metallic walls of the room. Reflect-
ing the radiated field, the radiation resistance disapears due
to the back induction coming from the walls. This process
allows to desmontrate that the radiation resistance is natively
existing and is modified by the environment [24] [25].

B. emf and chords process for free radiated fields

From years, engineers use antennas very simply: an input
impedance gives the antenna equivalent circuit seen from
the electronics. A radiation diagram describes the radiation
of the antenna in all the free space. A gain, gives the
relation between the free field and the power received. This
very efficient modelling can be translated in our topology
description. Basic principles are well explosed in [26]. We
present these principles before to translate them in topology.

C. Antennas principles

Depending on the antennas gain, the receiving antenna can
integrate the energy coming from the emitting antenna. The
total radiated power Sr in free space (whatever the distance
r from the emitter) is:

Sr =
PtGt
4πr2

e−τp (26)

Pt is the power delivered to the emitter, Gt is its own antenna
gain. The last term makes sure of the causality. The available
power in reception is given by: Pr = SrAr. Ar is the
effective surface of reception of the antenna. The relation
between gain and effective surface is:

Gx (θ, φ) =
4π

λ2
Ax (θ, φ) (27)

Both gain or effective aperture (the other name for the
effective surface of reception or emission) are functions of
the 3D space. Using all the previous relations we find what
is the Friss’ equation:

Pr
Pt

= Ar (θ, φ)

[
e−τp

λ2r2

]
At (θ′, φ′) (28)

Fig. 5. General free field process

Now we just have to make the links between the power
and the topology. For that, fundamental concepts previously
stated should be used.

D. From power to topology

The total power of the radiated field is obtain through the
radiative resistance on an edge. This component represents all
the losses due to the radiation. As inductance and capacitance
are linked with evanescent and lamellar fields, the radiated
and transverse one which leaves the circuit (we consider no
losses due to Joule effect in the wires) is linked with a re-
sistance. For example we have: Pt = R11k

1 and Pr = (e2)2

R22
.

These relations give us the fundamental coupling impedance
for far field:

z21 =
e2

k1
=
√
R11R22Ar (θ, φ) [Gθ,φ,θ′,φ′ ]At (θ′, φ′)

(29)
where Gθ,φ,θ′,φ′ is a Green’s kernel for the Friis formula.
Once more we see that e2 derive from an integration on
a face that belongs to T 2. This kind of interaction can be
generalized, whatever the modes of the field propagated. Take
a look to figure 5.

We see four simple meshes in interactions. For each
of them we can identify the emf and mesh currents, and
both emitted and received power. Going from the source of
dynamic field k1 to the induced emf e4 we can describe
the path: e4 = z43y

33z32y
22z21k

1. The zij are the coupling
metric components and yij the intrinsic inverse metric of
meshes 2 and 3. At and Ar are properties attached to the
graphs 1 and 4, i.e. to faces that belong to each graph of
these circuits. In fact e2 is the emf linked with At: it’s a
face resulting from a co-boundary applied to the cycle k1.
Each point on this face can be linked with a wave vector. The
set of these wave vectors generate the flux St (corresponding
to k2): the cotangent manifold of R4 generated by k1 using
an application φ. The component of this set are transformed
by the propagation operator yzy to have its image through
Sr (k3 and φ−1) where this time, z is not a metric attached
to the cellular complex T ∞ but to the 4D space-time fields
propagation R4. The interface with the receiver is covered
by the scalar product with Ar → k3. Then the emf e4 is
created by k3. Figure 6 shows the general process involved
in the connection between the cell complex T ∞ and the 4D
space R4

The process can be described by the symbolic equation:
e

k
= |At〉 〈St| G| Sr〉 〈Ar| (30)

This process is very general for all electromagnetical or
mechanical phenomenons that involve radiative process. In
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Fig. 6. Sequence of operation for free field

some cases, it can be simplified in three products zyz
[27]. But what is remarkable, is that the process should
be extendable to any information transmission, starting from
the hypothesis that a function φ can be created. That’s the
purpose of the next paragraph.
The T 2 space including the Ax was called the moment space
[18] because it makes reference to the moment modelling of
the radiated field (the magnetic moment is defined by the
product of the current i and the emission surface S: m = iS
[26]).

XII. EXTENSION TO FUNCTORS

Previous function φ is a correspondance between both
topological spaces T 2 and R4: φ : T 2 → R4. We define
as morphism of graphs, functions that preserve the graph
structure, i.e. keep the numbering of vertices, edges, etc. Cell
complexes can be used to project any physical phenomenon
on graphs. It was already usual to employ electroanalogy for
various physics like thermal [28], mechanics [29], quantum
mechanics [31] and even biological information [30], [32].
In this last case, the author introduces the two categories
of continuous and discrete spaces. This theory seems to be
relevant for us, as it gives an algebraic approach for the
method of chords [33]. A possible extension of his approach
could be to generalize our previous work to functors between
these two categories. By the way the method of chords
replaces a large spatial domain where free electromagnetic
energy propagates by a discrete link between topological
objects. This kind of model could be extended to other
physical configurations.

XIII. A CAVITY PROBLEM AS EXAMPLE

Considering a cavity with an aperture and an impeging
parasitic wave, the problem is to compute the internal field
induced by the external wave (figure 7). In the following,
only the vertical polarization of the incident field will be
considered.

This problem can be solved using the formalism developed
above. Thanks to the analogy between respectively the elec-
trical field and the voltage and then the magnetic field and the
current, it is possible to define electrical equivalent scheme
of the problem. In order to make such a representation, we
will begin by the definition of different topological domain,
corresponding to different regions that will be modeled
separatly and then connected together to reconstruct the
entire cavity. Three object have to be modeled:

- the incident field that can be assimilated to a voltage
source in series with a 377 ohms impedance. This model

Fig. 7. Electric field on cavity with an aperture

represents the electrical field propagating in the free space
that is equivalent to the mathematical representation in a
plane wave shape of the incident field arriving with a normal
incidence.

- the aperture, that will be seen from its middle point
and that can be represented as two short circuited half
transmission lines. The impedance seen from the center has
already been extensively studied by different authors. The
famous formulation given by Gupta ( [2]) has proved to
efficiently represent the aperture impedance by a simple
formula:

Za = 120π2[ln(2
1 + 4

√
1− (we/b)2

1− 4
√

1− (we/b)2
)]−1 (31)

- the cavity that can be seen as a transmission line along
the main axis with some particular terminal conditions. On
the side containing the aperture, the line will be directly
connected in parallel with the aperture impedance model.The
opposite side will be short circuited. In the present case, only
the fundamental TE propagating mode will be considered. If
we want to have results in a more large frequency band-
width, we will have to consider each mode as an individual
transmission line and to connect them in parallel. In order
to complete our model, we will add the possibility to realize
a measurement in one point in the internal cavity. As in a
real experiment, we will introduce a sensor that is modeled
here as a resistor having a high value in order to avoid field
perturbations inside the cavity. This can be made by cutting
the line into two half transmission lines located on each side
of the transmission line

After having introduced the topology of our system, it is
now important to give the Kron’s transmission line model. In
fact the more easier way to represent a transmission line is to
give a quadrupole model. This quadrupole can be represented
by two branches coupled by driven voltage sources. In fact,
we can notice that such a representation is nothing else a
circuit model of the impedance matrix of the line seen from
its two extremities: V1 = Z11i

1 + Z12i
2

V2 = Z21i
1 + Z22i

2
(32)

For example, from the branch 1, the first equation shows two
terms: the first one represents the influence of the current
from this branch and the second one the effect of the current
on the first branch. This coupling can be represented by a
voltage source, the equation becomes: V1 = Z11I1 + Vc. As
a conclusion, the Kron’s model of the cavity is given figure
8.
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Fig. 8. Kron’s model for a cavity

Fig. 9. Comparison with FDTD code

In such an application, the important parameter that is
usually modeled is the shielding effectiveness. This quantity
was compared with the one obtained with a FDTD code.
A very good agreement can be observed figure 9. Other
examples between many others are given in [34], [35], [36].

XIV. ANTENNA MODELLING

This second example shows the use of the formalism to
compute the interaction between an antenna and a metallic
wall. The objective of this experience was to understand the
effect of a reflexion of energy on the radiation impedance
of an antenna. One horn antenna is powered through an
amplifier that delivers a amplitude modulated waveform at
10 GHz. 50 cm in front of the antenna, there is a metalic
wall or absorbers. The set-up of the experiments is shown
figure 10.

Fig. 10. Experiment set-up

Fig. 11. Experiment equivalent graph

Fig. 12. Simple line

All the cable lengths were measured and the splitter
resistors values characterized. Figure 11 shows the graph of
the experience.

The splitter is made of three resistors of 17 ohms. Cables
are simulated using Branin’s model. For a cable of electrical
length τ , characteristic impedance Zc, the Branin’s model
consists in two equations defining the electromotive force at
each extremity of the line: e1 =

(
V2 − Zci2

)
e−τp

e2 =
(
V1 + Zci

1
)
e−τp

(33)

V1 and V2 are voltages respectively at the left and right of
the line. i1 and i2 are the currents at the same extremities.
Replacing V1 and V2 by their expressions depending on
the loads and currents, Looking at the circuit figure 12, we
obtain:  V1 = E0 −R0i

1

V2 = RLi2
(34)

So, by replacement in (33) we understand that: e1 = (RL− Zc) e−τpi2

e2 − E0e
−τp = (Zc −R0) e−τpi1

(35)

Any expression involving forms like ei/Ij can be replaced
by an impedance interaction zij . Any line or guided wave
structure can be replaced by an impedance tensor as: RO + Zc (RL− Zc) e−τp

(Zc −R0) e−τp RL+ Zc

 (36)

In the graph figure 11, two of these structures were used.
The last edge of the graph represents the emitting horn
antenna. It is a radiation resistance of fifty ohms. After a
delayed time, when the field is reflected by the metallic wall
in front of the antenna, a reflected field wave comes back
in the horn and creates an electromotive force given by:
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e5 = Gλ (4π2R)
−1
σ
√
Rri

4 (R is the distance to the wall,
σ the reflection coefficient on the wall, G the antenna gain
and Rr the radiation resistance). This creates an interaction
given by e5/i

4. The complete experience is detailed in
[37]. Various measurements were made. Some with the wall
equipped of a metallic plate. Some others with absorbers. The
variation of radio frequency signal envelop at 10 GHz shows
both cases of short circuit on the metallic wall or free space
radiation on the absorbers. Difference between the signal
compute under the Kron’s formalism and measurements is of
1,2%. This performance like others [38] was obtain using the
method which allows to couple various accurate equations
taken from different previous works.

XV. CONCLUSION

From fundamental definitions of discrete topology like the
boundary operator and the notion of duality, we propose a
mathematical model to formalize major results expressed by
Gabriel Kron in his “Tensorial Analysis of Networks”. One
remarkable fact is that the chords introduced in a previous
work appear as links between electromotive forces and
meshes currents. We present an application of this result to an
electromagnetic cavity without the help of three dimensional
Maxwell’s solver. Another application shows free radiated
interaction between an antenna and a wall. This algebraic
concept is flexible and the extension is under work for the
modeling of multidisciplinary systems with networks.
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électrique, Scientific journal AIM, 1988.

[5] Happ, H.H., Gabriel Kron and System Theory Union College Press,
1973.

[6] Hoffmann, B., Kron’s non Riemannian electrodynamics, Reviews of
modern physics, Vol.21, N3, pp. 535-540, 1949.

[7] Roth, J. P., The validity of Kron’s method of tearing, Proceedings of
the National Academy of Sciences of the United States of America, vol.
41, no 8, p. 599, 1955.

[8] Denis-Papin, M., Kaufmann, A., Cours de calcul tensoriel, Albin
Michel editor, 1966.

[9] Happ, H.H., Diakoptics And Networks, Academic Press, 1971.
[10] Gross, P.W., Kotiuga, P.R., Electromagnetic Theory and Computation,

MSRI editor, 2004.
[11] Bossavit, A., Electromagnétisme en vue de la modélisation, Springer

editor, 1993.
[12] Peikari, B., Fundamentals of network analysis and synthesis, R.E.

Krieger Pub. Co, 1982.
[13] Whitney, H., Geometric Integration Theory, Dover publication, 2005.
[14] Rapetti, F., Dubois, F., Bossavit, A., Discret vector potentials for

non-simply connected three-dimensional domains, SIAM journal on
numerical analysis, Vol. 41, issue 4. pp. 1505-1527, 2003.

[15] Berge, C., Theory of graphs and its applications, Wiley, 1962.
[16] Hatcher, A., Algebraic Topology, Cambridge university press, 2001.
[17] Penrose, R., A la découverte des lois de l’univers, Odile Jacob - French

translation, 2007.
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