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A Note on the Beta Function And Some Properties
of Its Partial Derivatives

Nina Shang, Aijuan Li, Zhongfeng Sun, and Huizeng Qin

Abstract—In this paper, the partial derivatives B, (z,y) =

aizgqu(m,y) of the Beta function B(x,y) are expressed in
terms of a finite number of the Polygamma function, where p
and ¢ are non-negative integers, x and y are complex numbers.
In particular, B, ;(z,y) can be expressed by the Riemann zeta
function if x is equal to n or n + % and y is equal to m
or m + %, where n and m are integers. Furthermore, many
integral functions associated with B(z,y) and B, (z,y) can
be expressed as the closed forms.

Index Terms—Riemann zeta function, Beta function, Gamma
function, Polygamma function, Digamma function, closed form.

I. INTRODUCTION

N mathematics, the Beta function was studied by Euler
and Legendre as a special function. It is usually defined
by

1
B(x,y):/o "N (1 — )yt (1)

for Rex > 0 and Rey > 0. It is often applied in many fields
such as mathematical equations and probability theory. Its
definition was extended to complex numbers values of x and
y by using the neutrix limit in [1]. Furthermore, the partial
derivatives of the Beta function on the complex numbers z
and y exist a close relationship with many special functions
and special integrals. For example, the following relation was
proved in [2]

1
/ N1 =) P tIn?(1 — t)dt = B, 4(x,y)  (2)
0

for integers p,q > 0 and ¢ + Rex,p + Rey > 0, where
p+q TR

By 4(z,y) = agTaqu(x’y)' Moreover, K. S. KOlbig gave

the closed expressions of (2) for x = 0 and y = 1 in [3].

Putting t = sin? w in (2), we have

s — — .
fOZ sin®* 1 4 cos?¥~1 4 In? sin v In? cos udu 3)

= 2_p_q_1Bp7q(a:, Y).

K. S. KOlbig also gave the closed expression of (3) for z =
y = % in [4]. Note that the most effective way of computing
(1) and (2) is based on power series expansion, even for
integral equations[5]. Moreover, many scholars have studied
different Integro-differential equation by different methods
in [6] and [7].

In this paper, we concern about the recurrence formulas
and the closed forms of By, 4(x,y) in (1) and (2). Also, we
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consider the existence condition of the closed forms and the
representations of B, 4(z,y).

From

1
B(z,y)

= w foﬂ/Q cos(x — y)t cos® Y2 tdt,
(see [8]) and I'(2)I'(1 — 2) = —, where I'(z) is the
Gamma function, we see that the following formulas

Jo (2cos g)m cos y0do
B2z + 1,y —z)sinn(y — x),
z—y<0,Rex > —3, “4)
—B(2z+1,—z —y)sinw(xz + y),
1

r+y <0,Rex > —3,

and

Jo 7 (2cos %)% cos (yt + L-) In? (2cos L) dt
p P .4 J
G S apmics S 7k el Y (~1)n2u -
=0 k=0 w=0
By g+j—u-k(2z + 1,y — x)sinar,
a = 729—2“';1""’“_] , Re(z - y) <0,
. D T4 j :
el DI CREHD IS Vel
§=0 k=0 uw=0
Bugtj—u—k(2x +1,—z— y) sin b,
b= ZAEPHET] Re(z +y) <0,

®)
exist for non-negative integers p,q and Rex > —%.

If we can establish the closed forms of B, ,(x,y), then
the above integrals can be expressed as the associated closed
forms. It is well known that an expression is said to be the
closed form expression if it can be expressed analytically in
terms of a finite number of the Riemann zeta function and
some special constants 7, 7, where v denotes Euler constant.

II. THE REPRESENTATION OF B, ,(z,y) FOR
xay>x+y7é07_1a_25"'

Theorem 2.1 Let p and ¢ be non-negative integers, x and y
be complex numbers satisfying z,y,x +y # 0, —-1,—-2,---
Then the following recurrence relations hold

Bpo(z,y) = B(z,y)HY (x, 2 +y), (6)

Boq(x,y) = B(z,y)HY (y,x + ), (7)

(Advance online publication: 28 November 2014)



TAENG International Journal of Applied Mathematics, 44:4, IJAM 44 4 06

where
Hy(2,y) = Z H\(2,y),
HYo(,y) = (7~ i>1(m> p-N(y),
H;p1(33ay) = ;1 ( p;l
(W 1 J)( ) u)(p—l—j)(y_)l Ppl— 1)(x) 1p(j—l)( ))

(®)
and 1 (z) denotes the Digamma function which is defined by

¥()

d 1 /1 1
= ZInT(z) = —~ — = o=
dz nT(z) v x+l_zl<l l+x)’ ©)

and ¢(x) = JHe@)p = 01,2,
Polygamma function.

-) denotes the
Proof. It is well known that B(x,y) = Fr((ﬂx)igl)) Calcu-

lating p-order partial derivatives on x of B(z,y) by using
the Leibniz rule, we have

Buro(z,y) = (¢¥(2) — (= +y)) B(z,y),

and

Bp,O(xa y)
(z) =™ (z +

=7

)) Bp—1—k,0(9€7y)-

(10)

o

(w(k)

By repeating use of (10), the formula (6) can be obtained.

By Boyq(z,y) = Bgo(y,x), the formula (7) can also be
obtained.

Theorem 2.2 Let p and ¢ be non-negative integers, x and
y be complex numbers satisfying x,y, x+y # 0, —1, =2, - -.
Then the partial derivatives of B(z,y) is given by

Bpg(z,y) = B(z,y) 25 HY (y, = + y)
p_
'S (§ ) B ) e o),
(11)
or
Bpq(w,y) = wy)aqu’(x T +y)
"‘ q
+B( 2 ( k q k y7x+y)d ka (SU,Q?—‘Fy),

(12)

where

* 11y rl % v
297 H (z,y) = 2 WHIJJ(I,Q),
=0

a H;bo( y) = —p@TE=D(y),

k

§y~Hﬁ1($7y)
SR ot 19 () gy (R 1)
)X () et gl (v)

7=1 =1
j:( pJ 1 )w(?LHC 1 g)( )(1/)( 71)(I) *ijl)(y))
p=1,
_ ;1 ( P ; )
(q/)(pflfj)(x) 1/](17717])(3/)) W*’“*U(y)
%H;,/fq(x,y)

36; Hjq-1(z,y)
k—1 n—1
> ( k ) > ( ot )w(n+k—l—1—j)(y).

WHj7q—1 (l‘, y)7
(13)
for k=1,2,---
Proof. Calculating p-order partial derivatives on « for (7),
we have

P/ ok
= Z ( k ) Bpfk,O(‘r?y)WHg)(yux +y)

k=0 (14)
By (6) and (14), the formula (11) can be obtained. Similarly,
we can get (12).

Now we consider the closed forms of B, ,(z,y). For the
Polygamma function ¢*) (2)(k = 0,1,2, - - -), the following
relations were proved in [8]

Bp,q(xv Y)

*’Y+Hn—1;k :07
k!(—l)k+1~

(k1) —HED) k=12,
=—v—2In2+2Hy, 1 — Hy_1,
)k-‘rl (2k+1 _ 1) C(k + 1)
H,Sﬁ;’i”), k= ]-a 23 Tty
- 1) C(k+ 1)

(15)
H,(LD, and

> lg(s =12
Let p anld 1q be non-negative integers and x,y be complex
numbers satisfying one of the following conditions
1) mzl,y:k,l,kzO,l,Q,---;
Dar=Il+iy=k---,1=0%+l1 ﬂ,.--,k:o,m;
Nr=lLy=k+31=012-,k=0%1,+£2,;
Hr=I+3,y=k+3k1=0+1+2,-
Then it follows from (15) that B, ,(z, y) will be expressed
as the closed forms.

-) is the Riemann zeta function.

Now we give two numerical examples.
Example 2.1 It follows from (5) and (11) that we give
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the following closed forms

o t? cos® £ cos (2t +7)In® (2cos &) dt

— 60171' + 787(;1;l (3)

117° ™

=0. 641844987626494533239002524121588582124699- X

f t2,/2c052cos(3t—|—7r)ln (2c05 )dt

:217T—|—7T —1?% —|—217T1112—|—27T31n2—|-7r In2
217 0?2 + 2708 10?2 4 14r In® 2 — 870 1% 2
—7rint 2 — 21m((3) — BB

—427¢(3) In 2 — 307¢(3) In® 2 + 487¢(5)
= —7.0632696755688808282197425398498764182017 e
f t3 cos® £ cos (5t + 37”) In? (2 cos ) dt

__ 269730166060012621864155776 _ 184362220121195687r
- 185638965365206529228278]225 274470141343773355
380007 + 1978597651847~ In 2 4536864573440 In

"~ 27054027 2031081077025

731920376916729
197859765184¢ (3

9018009 290154439575
_33902865076519117112321n2 | 243200¢(3) In 2

4121169172276757225625 1288287
= 0.026069374524913862714208655131337961571802 - - -

1216007r In” 2

However, the above closed forms can not be obtained by the
symbolic computation systems in Mathematica.

Example 2.2 It follows from (5) and (11) that we can
also obtain the following closed form
75 taevt cosh72"”(t - a) In? cosh(t —a)dt

_ (=P jlnp 72 u kal” "
ﬁ%c ZC Ecq PN
5=

(16)
k

> (=1

v=0

Y CY Byt jtk—u—n (@ + y, 2 — y).

We note that if 2z + 2y and 2x — 2y are integers, then the
integral (16) has the closed form. For example,

[ %€ cosh™(t — a) In® cosh(t — a)dt = 28§T-
48371 4 272(887 + 61n2(145 + 691n 2))
+4a? (6972 + 2(875 + 61n2(145 + 691n 2)))
12a%(57% 4 6(3 +10In? 2 + 61n 2))

8 ( 61n2(22 4 61n2 + 483¢(3)) )

+5(34 + 609¢(3))
3574 + 672 (7+ 101”2+ 61n2)

42 + 21¢(3) )

+9a
24 ( +21n2(18 + 61n2 + 35¢(3))

a7

ITII. THE REPRESENTATION OF B,, ,(x,y) FOR
z=0-1,-2,---ORy=0,-1,-2,---

More generally, it was proved in [1] that the neutrix limit

L Bp,q(%y)
— _ . —€ ,x—1 _ AN\y—11,p q _
N EB{)&OL P11 =)y P ¢t In?(1 — ¢)dt
(13)

existed for all z,y and p,q = 0,1,2,---, where N denotes
the neutrix[9]. To prove the next theorems, we need the

following results

—z X (@)
1-nr=x"
=0

Inf(1— ) = k1 Y, CLsnr

(@) = g (@), =
o | |
q' ZZ < g > (_1>]_q_l (LL') S(J - l? q)>
=0
dk l— ]_ (71)k—i
G = T Z < > TR

tn+1 (1 t)m+1

=y ( m )tﬂ'—"—1+ > ( n ) (1—tyi=m=1,
§=0 J i=0 ?
(19)
where (z), is a Pochhammer symbol, ie., (z), = z(z +
1)---(z +n—1) and s(i, k) is the Stirling number of the
first kind.
Theorem 3.1 1) Let m be a non-negative integer

and x be a complex number satisfying x # m +
1,m,---,0,—1,—2,---. Then

B(LC, _m) _ (=)™ (xz—m),, ((x— mni!)Bo 1(z—m—1,1)— m).

(20)
2) Let m be a non-negative integer and n be a positive
integer. Then
n—1 n—1 (71),;
i=0,i#m
3) Let m and n be non-negative integers. Then
B(—n,—m)
mal n+ti " mtj 1 (22)
> < =D VS G R
)=

Proof. 1) Integrating by parts, we have

— _ . l1—e 2.1 o y—1
B(z,y) =N Egﬁriofs tl (1 1t) dt
W(1-e)pt — el - e)y
——IN - 1 ©
iU T S0k \ —(z—1) [T (1 — v
. =L (1721 — t)vdt
= _Egg}i_o ay(l e)r ™~ 1_g2— 1(1 €)Y -
Y
= (x(;;":mB(xm— m,y +m)
~N - dim Y e
€040 /=4 Y)
(Sy_1+l(1 _ E)z—l _ am—l(l _ S)y—l—i-l) ,
(23)
and thus
_ _ . 1—e .1 - —1
B(z,0) =N ngﬁofe t*~ 1 —t)~dt
=N— lim [T ldn(l —¢)

e—0+0 L )
—(1 — &)™ e=1]n(1 —
C N— lim (1—2¢) 1lnas +_f52 In(1—¢)
=040 +(z—1) [0 " t"2In(1 — t)dt
= (Z‘ — 1)30’1(]} — 1, 1)
24
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Using (19), we have

m

N— lim Y (z+1-1),_4-

5—)O+Ol:1
(6—7n—1+l(176)m—176'c—
(_n)z
I (w+1-1),_,

1(175)—7”—1“)

=N A o (25)
<§ (l_i'r)ke?,H’H*kfl _ i (m+]:'_l)k61+kl)
k=0 k=0 '
x+1—1 l ), m m)m
_ Z( = W)Ll) 177(l+1)l)-'¢_1 L ( 1) (x n) H
It follows from (23)-(25) that (20) holds.
2)
_ — I 1= n—1717 _ \—m—1
B(n,—m) =N agg}roff "1 —t) dt
.ol n—1 ;
_N_Egg}roz;) ( é )(_1) '
STE(L -ty
nl n—1 —1)° i—m
() e
—N— lim [ i=0i#m
e—0+0 n—1
- ( > (=1)™Ine
m
n—1 n—1 _1)
8 (T
i=0,i£m

3) From (19), we have
B(—n,—m)

=N — lim
e—0+40

i ( m+] )tj—n—l
i J

(1 _ t)ifmfl

dt

(1—e)i " —ein
j—n

Theorem 3.2 Let m be a non-negative integer
and x be a complex number satisfying =z # m +

1,m,---,0,—1,—2,---. Then
B’7 (3}70)
_ @=D)Bpgsi (oo b EpBy1gii (@—11) (26)
o q+1 ’
and
By q(x,—m) = plq! Z o— k Z:
a1y p(at1-1) M (- 1)15(1 k)(z D) g1
== (lk(l)‘ ) Z:k id(m+1—1— z)+' = b
ml'z< >a‘m’Pk(x_m)'
g z—m—1)B 1(x—m—1,1)+kBg_1 1(x—m—1,1
2 ( kgt (]Jrl))' k=141 ( )bm,m,q—j,
(27)
-1 l— 1 (,1)]’
where bl m,q — ZO ] W.

Proof. It can be easily seen that (26) holds for m = 0.
When m > 0, calculating p-order partial derivatives on x

and g-order partial derivatives on y for (23), respectively, we

have
Bt =5 (1) 5 (1)

p—Fk q—3J
Byj (2 —m,y +m) fomr (& = m),,, G -

E(2)s()

m
N — 1 y—141 1— -1,
TP
a7l 1

k
€) In’ 5d‘ip,k r+1-10),_, dyi=7 (y),

(
S50

S z—1 y—141,
N Eg]giolzle (1—¢)

In" eln’ (1 — E)dwp (x+1-

(28)

In*(1—

l d1=J 1
)lfl dya=3 (y)z :

From (19), we have

N — lim e ™ 1%(1 -
e—0+0

_p S EsR) §S
=% 0 u= _
N — lim gwtitl-m-l]yJ ¢
e—0+0

1— i (s
’”i P 1) is(i k) (1=a) sy
(m+1—1—i)! J

e) " n*(1 —e)In e

k!

J=0,
i=k

0, 7>,
g)~m Ik elnd(1 - ¢) =0,

(29)

N — lim e*7}{(1—
e—0+0

and

Byj(z,0) = N — lim [/~5f Initmia-h e’ (1-0) gy

c a—p1
lim
e—0+40
e 1In* eInd (1 —¢)
—(1—g)* 'Inf(1—e)Inf e
= 1) [T P e (L - )
e [T I T (1 - ) de

(I 1)Bk J+1(£D 1 1)+k7Bk 1J+1($ 1 1)
eS|

Combining (28), (29), (30) and (19), we can obtain (27).
Remark From (6), (7) and (8), we can get all results in
[3]. For example,

(30)

Blnt g, -n) = 0= (3), (3Boa(3,1) + Ha).
(€29)
Substituting
Boa(~3%,1) = B(=5, DH{ (1, ) = —2H] (1, }),
HY'(1,3) = Hio(1, %) v(1) = ¥(3)
=—v—(—y—-2In2)=2In2

to (31), we obtain Theorem 3 in [10]. Let z = %:I:n, y=r+1
and ¢ = 1 in (7), respectively. Then we obtain
BOJ(% + n,r —+ 1)
:B(%:I:n,r—kl)Hip(r—kl,%:I:n—Fr)

P 1 (32)
mHl (7“-'—1,5:':77,—'—7"—"—1),

and
Hip(r—&-l,%:lzn—l—r)szO(r+17%:|:n+r)
=v(r+1) =95 £ (r+ 1))

2H2n+27‘+1 - Hn+r
=2In2 + Hr - 9
2H2n—2r—3 - Hn—r—27

(33)
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SO
(21 .—
Bo(5 +n,7+1) = B2 e i),
27
(34)
and
'2In2+H,.—2H3y _op_3+H, _,_
BO,l(%*nﬂ"Jrl): T( n2+H, 2n—2r—3+tHn_—r 2)’

(3-n),,,
n>r+1
(35)

We notice that the formulas (34) and (35) contain Theorem
4 in [10]. Furthermore, it can be shown that all Corollaries
in [4] have been simplified here.

For B, (n,—m)(n = 1,2,---,m + 1,m > 0) and
By 4(—n,—m)(n, m > 0), the condition of Theorem 3.2 is
not satisfied. Therefore, we give the following Theorem.

Theorem 3.3 1)

mnt2 [ 4+ 2
a_m): Z ( l >
=0
By m+2—1,1—m)

BPA,q (TL (36)

for the integer m > 0,n=1,2,---,m+ 1.
2)
nom i \" I -+ 1
Ba-n-m) == (" )" ( ARRE
=0 J 1=0

Bq7p(2—|—n—j—ll —n)

m n+ . m—i+1 —Z+1
ST ()
=0 =0

pq(2+m—z—ll+z— m)

)

(37
for the integer m > 0,n=1,2,---,m+ 1.
Proof. 1) By the following relation

By, _m):zk:< " )Bp,q(n+k—z,z_m),

1=0
we have

mnt2 [y 42

Bpgm+2—-11—m).
2) By (36) and (19), we have

. mdFt m -+ 1
Braltg-m =" ("),

=0
Bpgm—j+2—-114+j—m),

nmti "I n—+1

E(PYE ()
=0 J =0
B,p(2+n—j—1,l—n+j)

m n—i—z m—i+1 —Z+1

ECT)E()
i=0 1=0
Bps2+m—i—1,l—m+i).

Example 3.1 It follows from (2) that we can obtain the
following closed forms

1 1In?¢In?(1—t
I Wg)dt Byu(—2,-1)

4 -0
+ 1870 54¢(3) + 187%¢(3) - B8
—204¢%(3) — 727%¢(5) + 1152¢(7)
= 29.4677632578940455122127204733195227 - - -,
(3%)

= 872

and

1 1n® tIn?(1—1t)

0 t\/(l )3 dt =
_ 10772 15174
- 4 + 16

Bsa(—3,—-2)

— Gor? +877r21n2+ o n2
—3841n%2 — 672 1n? 2 152” In? 2—714(( )+
18807 (3) — 840¢(3) In 2— 215 ((3) In 2

—336¢(3 )1 29 4 20¢0) _ TE) 4 9790¢ (5 )ln2
— 5.5820556269047814149601231842882139

(39)
Example 3.2 From [8], we can obtain
. 1 42—1 1— y—1

(—1)PFD2Y(1 + 2)® [, % In? - In =Lt

P o ) q
= L (-G (1+2) 3 (-1
§=0 k=0

C’f; In?=* 2Bj ik (z,y),

(40)
where p and g are non-negative integers, x and y are complex
numbers satisfying Rex > 0, Rey > 0 and Re(z +y) < 1,
z is a complex number with z # —1,0.

By (40), we have
n2 2t 12 2-2t 512v/2
fo t2(2t+1)2 241 1 5719 = Toreosineanva

25363225696 — 40516875
— 1715072 (71918 — 383401n2)
—2572507% In & (1451 + 105103 — 19951n 2)
+10080In 2 (— 1644827 + 181965 In 2)
+735Oln2 2 (75713 + 315 In 2(—389 + 3151n 2))
4+25201n 2 (792151 + 351n(—79283 + 223651n 2))
110804500 (673 + 840102 — 2101n 3)

= 2.78386839392356590317908504866491626196489 - - -
(41)

IV. CONCLUSION

In this paper, the partial derivatives B, ,(z,y) of the
Beta function B(z,y) are expressed in terms of a finite
number of the Polygamma functions 1) (z),*) (y) and
w(k)(x + y), where p,q and k are positive integers, x
and y are complex numbers. Moreover, the evaluation of
many integrals associated with B(z,y) and B, 4(x,y) are
transformed into the calculation of B(z,y) and B, 4(x,y).
For the numerical calculations, the algorithm given in this
paper not only improves the accuracy but also accelerates

the speed of calculation. In Mathematica, W and
p,q

P? are proportional, where P denotes specified precision,
TNIntegrate denotes time-consuming of the numerical inte-
gration (NIntegrate) in Mathematica as Tz, , denotes time-
consuming of the algorithm given in this paper. For the
symbolic computation in Mathematica, the algorithm given in
this paper has obvious advantages. In Mathematica(Maple),
% will be increased from tens to hundreds, thousands
or even tens of thousands with the increase of p or gq.
Although integral is not the closed form sometimes, such
as Example 3.2, the algorithm given in this paper can still

(Advance online publication: 28 November 2014)
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get the closed form. In short, for the integrals associated with
B(z,y) and By, 4(x,y), the algorithm given in this paper has
obvious advantage in the numerical or symbolic computation.
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