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Abstract—This present article applies fractional complex trans-
formation to convert nonlinear fractional evolution equations
to nonlinear ordinary differential equations, and obtain the
exact solitary wave solutions of space-time fractional Sharma-
Tasso-Olever (STO) and Konopelchenko-Dubrovsky (KD) equa-
tions by using the improved ( G′

G
)-expansion function method,

respectively. The fractional derivative is defined in the sense of
modified Riemann-Liouville derivative. The results show that
the method is efficient and powerful for solving wide classes of
nonlinear fractional evolution equations.

Index Terms—fractional calculus, complex transformation,
modified Riemann-Liouville derivative, improved ( G′

G
)-

expansion function method.

I. INTRODUCTION

RECENTLY, fractional calculus has obtained consider-
able popularity and importance as generalizations of

integer-order evolution equation, and used to model problems
in physics, neurons, hydrology, viscoelasticity and rheology,
image processing, mechanics, mechatronics, finance and con-
trol theory, see [1]–[8]. Among them, a large amount of
literature has been provided to construct the numerical or
exact solution of fractional differential equations of physical
interest. Since a physical phenomenon may depend on not
only the time instant but also the previous time history
in reality, which can be modeled by using the theory of
derivatives and integrals of fractional order [9]. For better
understanding the mechanisms of the complicated nonlinear
physical phenomena, searching for exact solution of the
aforementioned nonlinear time-fractional dispersive equa-
tions are of great importance. Many powerful and efficient
methods have been proposed to construct the approximate
solutions for some space-fractional time-fractional or space-
time fractional differential equations, such as Adomian de-
composition method [10], [11], variational iteration method
[12]–[15], differential transformation method [16], [17], exp-
function method [18], [19] and so on.
STO equation has been applied to describe a wide range
of physics phenomena of the evolution and interaction to
nonlinear waves, such as fluid dynamics, aerodynamics, con-
tinuum mechanics, solitons and turbulence et al, it possesses
an infinitely many symmetries and the bi-Hamiltonian for-
mulation. If the Hamiltonian of conservative system is con-
structed using fractional derivatives, the resulting equations
of motion can be nonconservative. Therefore, in many cases,
the real physical processes could be modeled in a reliable

Manuscript received June 30, 2014; revised August 28, 2014.
Youwei Zhang is a Professor of Mathematics at the School of Mathematics

and Statistics, Hexi University, Zhangye, 734000, Gansu, China ∗e-mail:
ywzhang0288@163.com

manner using fractional-order differential equations [20].
Song et al [21] implemented variational iteration method,
Adomian decomposition method and homotopy perturbation
method to consider the time-fractional STO equation and
obtained an analytic and approximate solution for different
types of differential equations. Bulut and Pandir [22] applied
the modified trial equation method to time-fractional STO
equation by the using of the complete discrimination system
for polynomial method. Golmamadian [23] constructed the
exact complex solutions of nonlinear time-fractional STO
equation by the direct algebraic method. Other the known
methods to handle with the fractional STO equation we can
see [24]–[28]. KD equation of integer-order appears in a
great variety of contexts, such as physics, signal processing,
control theory, dynamics, has attracted much attention of
more and more scholars. For example, Lin et al [29] obtained
some new types of multi-soliton solutions of the integrable
KD equation from the trivial vacuum solution by using a
truncated Painlevé analysis and Bäcklund transformation.
Zhang et al [30] derived the periodic wave solution expressed
by Jacobi elliptic functions for KD equation via F-expansion
method. Li and Ruan [31] presented a set of generalized
symmetries with arbitrary functions for the KD equation by
using formal function series method. Zhao et al [32] pro-
vided the nonlinear transformations of the KD equation and
constructed some new special types of single solitary wave
solution and the multisoliton solutions using the homogenous
balance method. Yang and Tang [33] investigated the abun-
dant exact travelling wave solutions including solitary wave
solutions, trigonometric function solutions and Jacobi elliptic
doubly periodic function solutions for the KD equation via
extended sinh-Gordon equation expansion method. However,
few work has been done for the space-fractional, time-
fractional or space-time fractional KD equation.
Notice that (G′

G ) method [34]–[38] to apply successfully to
solve fractional evolution equations. The aim of this paper
is to apply the improved (G′

G )-expansion function method
to obtain the exact solution of space-time fractional STO
and KD equations, which have included classes of nonlinear
equations with multi-order space-time fractional derivatives.
We will discuss the methodology for the construction of some
schemes and study their performance on test problem. It
will be concluded that the improved (G′

G )-expansion func-
tion method is very powerful and efficient in finding exact
solution as well as analytical solution of many fractional
physical models. In order to investigate the local behavior of
fractional models, several local versions of fractional deriva-
tives have been proposed, among them Jumarie’s derivative is
a modified Riemann-Liouville derivative [39], [40], and has
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been successfully applied in Laplace problems [41], vibrating
string model [42], Swift-Hohenberg equation [43] and so on.
Now we state the definition and some important properties
for the modified Riemann-Liouville derivative of order α as
follows.
Assume that f(x, t) denotes a continuous R × R+ → R
function. We use the following equality for the integral with
respect to (dx)α

Iα
x f(x, t) =

1
Γ(α)

∫ x

0

(x− τ)α−1f(τ, t)dτ

=
1

Γ(α + 1)

∫ x

0

f(τ, t)(dx)α, 0 < α ≤ 1.

Jumarie’s derivative for multivariate function is defined as:

Dα
x f(x, t) =




1
Γ(−α)

∂
∂x

∫ x

0
(x− τ)−α−1(f(τ, t)− f(0, t))dτ,

α < 0,
1

Γ(−α)
∂
∂x

∫ x

0
(x− τ)−α(f(τ, t)− f(0, t))dτ,

0 < α < 1,(
∂α−n

∂xα−n f(x, t)
)(n)

, n ≤ α < n + 1, n ≥ 1,

where f(x, t) is a real continuous (but not necessarily exist
partial derivative on x or t) function. The fundamental
mathematical operations and results of Jumarie’s derivative
are given as follows

Dα
x c = 0,

Dα
x (cf(x, t)) = cDα

x f(x, t),

Dα
x xβ =

Γ(1 + β)
Γ(1 + β − α)

xβ−α,

f (α)(g(x, t)) =
df

dg
Dα

x g(x, t),
∫

(dx)β = xβ ,

where c is a constant, α, β > 0, the above forth formula, the
function f should be differentiable with respect to g. The
above results are employed in the following sections.
This paper is organized as follows: Section II presents
the methodology of the improved (G′

G )-expansion function
method for space-time fractional nonlinear evolution equa-
tion. Sections III and IV are devoted to construct the exact
hyperbolic, periodic and rational function solutions for space-
time fractional STO and KD equations, respectively. Section
V makes conclusion for the obtained results.

II. IMPROVED ( G′
G )-EXPANSION FUNCTION METHOD

To illustrate the basic idea of the improved (G′
G )-expansion

function method for the nonlinear fractional evolution equa-
tion, we consider the following space-time fractional evolu-
tion equation

F (u,Dα
t u,Dβ

xu,Dγ
yu,Dδ

zu,D2α
t u,Dα

t Dβ
xu,Dα

t Dγ
yu,

Dα
t Dδ

zu,D2β
x u,Dβ

xDγ
yu,Dβ

xDδ
zu,D2γ

y u, . . .) = 0,

0 < α, β, γ, δ ≤ 1, (1)

where u(x, t) is a field variable, (x, t) ∈ R × R+, F is
a polynomial of u and its partial fractional derivatives, in
which the highest order derivatives and the nonlinear terms

are involved. In the following, we give the main steps of the
improved (G′

G )-expansion function method.
Step 1 To find the solutions of Eq. (1), we introduce a
fractional complex transform to convert fractional differential
equations into ordinary differential equations, so all analyti-
cal methods which are devoted to the advanced calculus can
be easily applied to the fractional calculus. The solitary wave
variable

u(x, y, z, t) = U(ξ),

ξ =
bxβ

Γ(β + 1)
+

cyγ

Γ(γ + 1)
+

dzδ

Γ(δ + 1)
+

atα

Γ(α + 1)
+ ξ0,

where a, b, c and d are nonzero arbitrary constants, permits
us to reduce Eq. (1) to an ordinary differential equation of
U = U(ξ) in the following form

P (U, aU ′, bU ′, cU ′, dU ′, a2U ′′, abU ′′, acU ′′, adU ′′,

b2U ′′, bcU ′′, bdU ′′, c2U ′′, . . .) = 0, (2)

the prime denotes the derivative with respect to ξ. If possible,
we should integrate Eq. (2) term by term one or more times.
Step 2 Suppose that the solution of Eq. (2) can be expressed
as a polynomial of (G′

G ) in the form

U(ξ) =
m∑

i=−m

ki

(G′

G

)i
, (3)

where ki (i = 0,±1, . . . ,±m) (m is positive number, called
the balance number) are constants to be determined later,
while the function G = G(ξ) satisfies the following second-
order linear ODE

G′′(ξ) + λG′(ξ) + µG(ξ) = 0, (4)

with λ and µ being constants. The positive integer m can
be determined by considering the homogeneous balance
between the highest-order derivatives and nonlinear terms
appearing in Eq. (2). More precisely, we define the degree
of U(ξ) as D[U(ξ)] = m, which gives rise to the degrees of
the other expressions as follows:

D
(dqU

dξq

)
= m + q,

D
(
Up

(dqU

dξq

)s
)

= mp + s(q + m).

Therefore, we can obtain the value of m in Eq. (3).
Step 3 Substituting Eq. (3) into Eq. (2), using Eq. (4),
collecting all terms with the same order of (G′

G ) together, and
then equating each coefficient of the resulting polynomial to
zero, we obtain a set of algebraic equations for ki, a, b, c, d, λ
and µ.
Step 4 Since the general solution to Eq. (4) is well known:

G′(ξ)
G(ξ)

=




√
λ2−4µ

2

(
C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

2 ,

λ2 − 4µ > 0,√
4µ−λ2

2

(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

2 ,

λ2 − 4µ < 0,
C2

C1+C2ξ − λ
2 , λ2 − 4µ = 0,

(5)
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where C1, C2 are arbitrary constants. Then substituting
ki, a, b, c, d, λ, µ and the general solutions of Eq. (4) into
Eq. (3), we get more solitary wave solutions of the nonlinear
partial fractional derivatives of Eq. (1).

III. SPACE-TIME FRACTIONAL STO EQUATION

In this section, we use the improved (G′
G )-expansion function

method to construct the exact solutions for STO equation
with space-time fractional derivatives.

Dα
t u(x, t) + 3k(Dβ

xu(x, t))2 + 3ku2(x, t)Dβ
xu(x, t)

+ 3ku(x, t)D2β
x u(x, t) + kD3β

x u(x, t) = 0,

0 < α, β ≤ 1, (6)

where k 6= 0 is a constant, x ∈ R is a space coordinate in
the propagation direction of the field and t ∈ R+ is the time.
We can see that the fractional complex transform

u(x, t) = U(ξ), ξ =
bxβ

Γ(β + 1)
+

atα

Γ(α + 1)
+ ξ0, (7)

where a and b are constants, permits us to reduce Eq. (6)
into the following ODE:

−aU ′ + 3kb2(U ′)2 + 3kbU2U ′ + 3kb2UU ′′ + kb3U ′′′ = 0.
(8)

Considering the homogeneous balance between the highest
order derivative and the nonlinear term in Eq. (8), we deduce
that the balance number m = 1. Then (3) reduces

U(ξ) = k−1

(G′

G

)−1 + k0 + k1

(G′

G

)
, (9)

where k−1, k0, k1, a and b are arbitrary constants to be
determined later. Substituting Eq. (9) into Eq. (8), collecting
all the terms of powers of (G′

G ), and setting each coefficient
to zero, we get a system of algebraic equations. With some
calculation, we can solve this system of algebraic equations
to obtain the following sets of solutions.

Case 1

k−1 = −2µb− 2λ2b, k0 = λb, k1 = 2b,

a = 16µkb3 + 11λ2kb3, b = b (10)

or

k−1 = 0, k0 = λb, k1 = 2b,

a = 4µkb3 − λ2kb3, b = b. (11)

Substituting the result into (9) and combining with (5),
respectively, we can obtain the following exact solutions to
Eq. (6).
Family 1 If λ2 − 4µ > 0, we obtain the hyperbolic solitary
wave solutions of Eq. (8)

U1(ξ) = −4b(µ + λ2)
(√

λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
− λ

)−1

+ b
√

λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U2(ξ) = b
√

λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.
Family 2 If λ2 − 4µ < 0, we obtain the periodic solitary
wave solutions of Eq. (8)

U3(ξ) = −4b(µ + λ2)
(√

4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
− λ

)−1

+ b
√

4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U4(ξ) = b
√

4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.
In particular, if we set λ = 0, µ = b = 1, C1 6= 0, C2 = 0
in U4(ξ) with α = β = 1, the exact periodic solitary wave
solution of the STO equation

u(x, t) = −2 tan
(
x + 4kt + ξ0

)
,

which is the same exact solution in [28] via the simplest
equation method.
Family 3 If λ2 − 4µ = 0, we obtain the rational solitary
wave solutions of Eq. (8)

U5(ξ) = −2b(µ + λ2)
( C2

C1 + C2ξ
− λ

2
)−1 + λb

+ 2b
( C2

C1 + C2ξ
− λ

2
)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U6(ξ) =
2bC2

C1 + C2ξ
,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.

Case 2

k−1 = −2µb, k0 = −λb, k1 =
2µb + 2λ2b

µ
,

a = 16µkb3 + 11λ2kb3, b = b (12)

or

k−1 = −2µb, k0 = −λb, k1 = 0,

a = 4µkb3 − λ2kb3, b = b. (13)
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Substituting the result into (9) and combining with (5),
respectively, we can obtain the following exact solutions to
Eq. (6).
Family 1 If λ2 − 4µ > 0, we obtain the hyperbolic solitary
wave solutions of Eq. (8)

U7(ξ) = −4µb

(√
λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
− λ

)−1

− λb + b(1 +
λ2

µ
)
(√

λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U8(ξ) = −4µb

(√
λ2 − 4µ

×
(C1 sinh

√
λ2−4µ

2 ξ + C2 cosh
√

λ2−4µ

2 ξ

C1 cosh
√

λ2−4µ

2 ξ + C2 sinh
√

λ2−4µ

2 ξ

)
− λ

)−1

− λb,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.
Family 2 If λ2 − 4µ < 0, we obtain the periodic solitary
wave solutions of Eq. (8)

U9(ξ) = −4µb

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
− λ

)−1

− λb + b(1 +
λ2

µ
)
(√

4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U10(ξ) = −4µb

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ + C2 cos
√

4µ−λ2

2 ξ

C1 cos
√

4µ−λ2

2 ξ + C2 sin
√

4µ−λ2

2 ξ

)
− λ

)−1

− λb,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.

Family 3 If λ2 − 4µ = 0, we obtain the rational solitary
wave solutions of Eq. (8)

U11(ξ) = −2µb
( C2

C1 + C2ξ
− λ

2
)−1 − λb

+ 2b
(
1 +

λ2

µ

)( C2

C1 + C2ξ
− λ

2
)
,

where ξ = b
Γ(β+1)x

β + 16µkb3+11λ2kb3

Γ(α+1) tα + ξ0, or

U12(ξ) = −2µb
( C2

C1 + C2ξ
− λ

2
)−1 − λb,

where ξ = b
Γ(β+1)x

β + 4µkb3−λ2kb3

Γ(α+1) tα + ξ0.

IV. SPACE-TIME FRACTIONAL KD EQUATION

In this section, we use the improved (G′
G )-expansion function

method to construct the exact solutions for KD equation with
space-time fractional derivatives.




Dα
t u(x, y, t)− 6ku(x, y, t)Dβ

xu(x, y, t)
+ 3

2 l2u2(x, y, t)Dβ
xu(x, y, t)− 3Dγ

yv(x, y, t)
+ 3lDβ

xu(x, y, t)v(x, y, t)−D3β
x u(x, y, t) = 0,

Dγ
yu(x, y, t) = Dβ

xv(x, y, t),
(14)

where 0 < α, β, γ ≤ 1, k, l 6= 0 are constants, (x, y, t) ∈
R2 × R+ is a (2+1)-dimensional space-time coordinate in
the propagation direction of the field. For Dγ

yu(x, y, t) = 0,
Eq. (14) is the fractional Gardner equation. When l = 0,
Eq. (14) is the well-known fractional Kadomtsev-Petviashvili
equation and the modified Kadomtsev-Petviashvili equation
reads from (14) for k = 0.
We can see that the fractional complex transform{

u(x, y, t) = U(ξ),
v(x, y, t) = V (ξ), (15)

where ξ = bxβ

Γ(β+1) + cyγ

Γ(γ+1) + atα

Γ(α+1) + ξ0, a, b and c are
constants, permits us to reduce Eq. (15) into the following
ODE:



aU ′ − 6kbUU ′ + 3
2bl2U2U ′ − 3cV ′ + 3lbU ′V − b3U ′′′

= 0,
cU ′ = bV ′.

(16)

From the second formula of the Eq. (16), both sides of
integral on ξ yields

V =
c

b
U +

d

b
,

where d is an arbitrary constant.
Suppose that the solution of Eq. (16) can be expressed by




U(ξ) =
m1∑

i=−m1

ki

(
G′
G

)i
,

V (ξ) =
m2∑

i=−m2

li
(

G′
G

)i
.

Balancing the order of U ′′′ and U2U ′ in (16) we have m1 =
m2 = 1. So{

U(ξ) = k−1

(
G′
G

)−1 + k0 + k1

(
G′
G

)
,

V (ξ) = l−1

(
G′
G

)−1 + l0 + l1
(

G′
G

)
.

(17)

Substituting (17) into (16), using Eq. (4) and collecting all
the terms with the same power of (G′

G ) together, equating
each coefficient to zero, yields a set of algebraic equations.
Solving these equations yields:

Case 1

k−1 =
2µb

l
, k0 =

λlb2 + 2kb− lc

l2b
, k1 =

2b

l
,

l−1 =
2µc

l
, l0 =

λlb2c + 2kbc− lc2

l2b2
+

d

b
, l1 =

2c

l
,

a =
9c2 − 6lbd− 12kbc

l + 12k2b2

l2 − λ2b4 − 8µb4

2b
,

b = b, c = c.
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Substituting the result into (17) and combining with (5),
respectively, we can obtain the following exact solutions to
Eq. (14).
Family 1 If λ2 − 4µ > 0, we obtain the hyperbolic solitary
wave solutions of the Eq. (16)





U1(ξ) = 4µb
l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)−1

+ λlb2+2kb−lc
l2b + b

l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)
,

V1(ξ) = 4µc
l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)−1

+ λlb2c+2kbc−lc2

l2b2 + d
b + c

l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.
Family 2 If λ2 − 4µ < 0, we obtain the periodic solitary
wave solutions of the Eq. (16)





U2(ξ) = 4µb
l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)−1

+ λlb2+2kb−lc
l2b + b

l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)
,

V2(ξ) = 4µc
l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)−1

+ λlb2c+2kbc−lc2

l2b2 + d
b + c

l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.
Family 3 If λ2 − 4µ = 0, we obtain the rational solitary
wave solutions of the Eq. (16)




U3(ξ) = 2µb
l

(
C2

C1+C2ξ − λ
2

)−1

+ λlb2+2kb−lc
l2b

+ 2b
l

(
C2

C1+C2ξ − λ
2

)
,

V3(ξ) = 2µc
l

(
C2

C1+C2ξ − λ
2

)−1

+ λlb2c+2kbc−lc2

l2b2 + d
b

+ 2c
l

(
C2

C1+C2ξ − λ
2

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.

Case 2

k−1 = −2µb

l
, k0 = −λlb2 − 2kb + lc

l2b
, k1 = −2b

l
,

l−1 = −2µc

l
, l0 = −λlb2c− 2kbc + lc2

l2b2
+

d

b
,

l1 = −2c

l
,

a =
9c2 − 6lbd− 12kbc

l + 12k2b2

l2 − λ2b4 − 8µb4

2b
,

b = b, c = c.

Substituting the result into (17) and combining with (5),
respectively, we can obtain the following exact solutions to
Eq. (14).
Family 1 If λ2 − 4µ > 0, we obtain the hyperbolic solitary
wave solutions of the Eq. (16)





U1(ξ) = − 4µb
l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)−1

− λlb2−2kb+lc
l2b − b

l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)
,

V1(ξ) = − 4µc
l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)−1

− λlb2c−2kbc+lc2

l2b2 + d
b − c

l

(√
λ2 − 4µ

×
(

C1 sinh

√
λ2−4µ

2 ξ+C2 cosh

√
λ2−4µ

2 ξ

C1 cosh

√
λ2−4µ

2 ξ+C2 sinh

√
λ2−4µ

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.
Family 2 If λ2 − 4µ < 0, we obtain the periodic solitary
wave solutions of the Eq. (16)





U2(ξ) = − 4µb
l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)−1

− λlb2−2kb+lc
l2b − b

l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)
,

V2(ξ) = − 4µc
l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)−1

− λlb2c−2kbc+lc2

l2b2 + d
b − c

l

(√
4µ− λ2

×
(−C1 sin

√
4µ−λ2

2 ξ+C2 cos

√
4µ−λ2

2 ξ

C1 cos

√
4µ−λ2

2 ξ+C2 sin

√
4µ−λ2

2 ξ

)
− λ

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.
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Family 3 If λ2 − 4µ = 0, we obtain the rational solitary
wave solutions of the Eq. (16)




U3(ξ) = − 2µb
l

(
C2

C1+C2ξ − λ
2

)−1

− λlb2−2kb+lc
l2b

− 2b
l

(
C2

C1+C2ξ − λ
2

)
,

V3(ξ) = − 2µc
l

(
C2

C1+C2ξ − λ
2

)−1

− λlb2c−2kbc+lc2

l2b2 + d
b

− 2c
l

(
C2

C1+C2ξ − λ
2

)
,

where ξ = b
Γ(β+1)x

β + c
Γ(γ+1)y

γ

+
9c2−6lbd−12 kbc

l +12 k2b2

l2
−λ2b4−8µb4

2bΓ(α+1) tα + ξ0.
Remark 1 The established solutions above for the space-
time fractional (2+1)-dimensional KD equations are new
exact solutions that we have never seen before within our
knowledge. The method can be applied to other nonlinear
fractional evolution equations in mathematical physics.

V. CONCLUSION

We use the improved (G′
G )-expansion function method to

solve the exact solutions for the space-time fractional STO
and KD equations. This method is reliable, simple and
gives many new hyperbolic, periodic and rational solitary
wave solutions for the fractional STO and KD equations,
respectively. Based on certain fractional variable transfor-
mation, such fractional evolution equations can be turned
into ordinary differential equations of integer order, the
solutions of which can be expressed by a polynomial in (G′

G ).
This method is very efficient and powerful in finding the
exact solutions for the nonlinear fractional evolution equation
without any assumption and restriction.
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