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Abstract

A linear k-forest is a graph whose components are paths
of length at most k. The linear k-arboricity of a graph G,
denoted by lak(G), is the least number of linear k-forests
needed to decompose G. In this paper, it is obtained that
la4(Kn,n) = d5n/8e for n ≡ 0( mod 5).
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1 Introduction

In this paper, all graphs considered are finite, undirected,
and simple (i. e., loopless and without multiple edges).
We refer to [20] for terminology in graph theory. In re-
cent years, many parameters and classes of graphs were
studied. For example, in [11], different properties of the
intrinsic order graph were obtained, namely those deal-
ing with its edges, chains, shadows, neighbors and de-
grees of its vertices, and some relevant subgraphs, as
well as the natural isomorphisms between them. In [18],
the n-dimensional cube-connected complete graph was
studied. In [24, 25], the hamiltonicity, path t-coloring,
and the shortest paths of Sierpiński-like graphs were re-
searched. In [26], the vertex arboricity of integer distance
graph G(Dm,k) was obtained.

A decomposition of a graph is a list of subgraphs such
that each edge appears in exactly one subgraph in the
list. If a graph G has a decomposition G1, G2, · · · , Gd,
then we say that G1, G2, · · · , Gd decompose G, or G can
be decomposed into G1, G2, · · · , Gd. A linear k−forest
is a forest whose components are paths of length at most
k. The linear k−arboricity of a graph G, denoted by
lak(G), is the least number of linear k−forests needed to
decompose G. Let x be a real number, denoted by bxc
the maximum integer no more than x, and denoted by
dxe the minimum integer no less than x. For any integers
a < b, let [a, b] denote the set of integers {a, a+1, · · · , b}
for simplicity. For any positive integer λ, let Pλ be a
path on λ vertices which has length λ− 1.

The notion of linear k−arboricity was first introduced by
Habib and Peroche [13], which is a natural generalization
of edge coloring. Clearly, a linear 1-forest is induced by
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a matching, and la1(G) is the edge chromatic number,
or chromatic index, χ′(G) of a graph G. Moreover, the
linear k−arboricity lak(G) is also a refinement of the or-
dinary linear arboricity la(G)(or la∞(G)) [14] of a graph
G, which is the case when every component of each for-
est is a path with no length constraint. In 1982, Habib
and Peroche [12] proposed the following conjecture for
an upper bound on lak(G).

Conjecture 1.1. If G is a graph with maximum degree
∆(G) and k ≥ 2, then

lak(G) ≤


d∆(G)·|V (G)|

2b k·|V (G)|
k+1 c

e, if ∆(G) =| V (G) | −1,

d∆(G)·|V (G)|+1

2b k·|V (G)|
k+1 c

e, if ∆(G) <| V (G) | −1.

For k =| V (G) | −1, it is the Akiyama’s conjecture [1].

Conjecture 1.2. [1] la(G) ≤ d∆(G)+1
2 e.

So far, quite a few results on the verification of Con-
jecture 1.1 have obtained in the literature, especially for
graphs with particular structures, such as trees [5, 6, 13],
cubic graphs [4, 16, 19], regular graphs [2, 3], planar
graphs [17], balanced complete bipartite graphs [8, 9, 10],
balanced complete multipartite graphs [22] and complete
graphs [5, 7, 8, 9, 21]. It is obtained that the linear 2-
arboricity, the linear 3-arboricity and the low bound of
linear k-arboricity of balanced complete bipartite graph
in [8, 9, 10], respectively. In [23], Xue and Zuo ob-
tained the linear (n − 1)-arboricity of complete multi-
partite graph Kn(m). In [15], the linear 6-arboricity of
the graph Km,n was obtained. All the results are co-
herent with the corresponding cases of Conjecture 1.1.
But for the general graph, this conjecture has not been
proved yet.

As for a lower bound on lak(G), it is obvious that the
following result holds.

Lemma 1.3. For any graph G with maximum degree
4(G), then

lak(G) ≥ max{d∆(G)

2
e, d |E(G)|
bk|V (G)|

k+1 c
e}.

2 Main results

Note that in the following the index of each vertex is
modulo n. Our main result is the following theorem.
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Let Kn,n = G(A,B) be a balanced complete bipartite
graph with partite sets A and B, where A = {a0, a1, · · · ,
an−1} and B = {b0, b1, · · · , bn−1}. It is defined that
the bipartite difference of an edge apbq in [9] as the
value (q − p)( mod n). The edge set of Kn,n can be
partitioned into n pairwise disjoint perfect matchings
M0,M1, · · · ,Mn−1, where Mj is exactly the set of edges
of bipartite difference j in Kn,n for j ∈ [0, n− 1].

Theorem 2.1. la4(Kn,n) = d5n/8e for n ≡ 0( mod 5).

Proof. Clearly, by Lemma 1.3,

la4(Kn,n) ≥ dn2/b4 · 2n/5ce = d5n/8e,

so we need only to prove the upper bound.

It is easy to see that the following Claim 1 holds.

Claim 1. For each t ∈ [0, bn/8c−1], the edges ofM8t+2q∪
M8t+2q+1 other than that in ct,q can form one linear 4-
forest, where

ct,q = {a2+2t+5(i−1)b2+2t+5(i−1)+8t+2q,
a4+2t+5(i−1)b4+2t+5(i−1)+8t+2q+1|i ∈ [1, n/5]}

for q ∈ {0, 2}, and

ct,q = {a3+2t+5(i−1)b3+2t+5(i−1)+8t+2q,
a5+2t+5(i−1)b5+2t+5(i−1)+8t+2q+1|i ∈ [1, n/5]}

for q ∈ {1, 3}.

For example, if n = 40, the edges of M0 ∪M1 other than
that in

c0,0 = {a2+5(i−1)b2+5(i−1),
a4+5(i−1)b4+5(i−1)+1|i ∈ [1, 8]}

can form one linear 4-forest (please see Fig. 1). Similarly,
the edges of M2 ∪M3 other than that in

c0,1 = {a3+5(i−1)b3+5(i−1)+2,
a5+5(i−1)b5+5(i−1)+3|i ∈ [1, 8]}

can form one linear 4-forest. The edges ofM4∪M5 other
than edges in

c0,2 = {a2+5(i−1)b2+5(i−1)+4,
a4+5(i−1)b4+5(i−1)+5|i ∈ [1, 8]}

can form one linear 4-forest. The edges ofM6∪M7 other
than edges in

c0,3 = {a3+5(i−1)b3+5(i−1)+6,
a5+5(i−1)b5+5(i−1)+7|i ∈ [1, 8]}

can form another linear 4-forest, and so on.

Claim 2. la4(Kn,n) ≤ 5n/8 for n ≡ 0( mod 8) and
n ≡ 0( mod 5).

By Claim 1, we have obtained n/2 linear 4-forests in
total. Thus we have to estimate the number of linear
4-forests induced by the union of ct,q.

It is easy to verify that all edges of ∪3
q=0ct,q can form

n/5 pairwise disjoint paths P5

{b5+2t+5(i−1)+8t+3a5+2t+5(i−1)b5+2t+5(i−1)+8t+7

a5+2t+5(i−1)+7b2+2t+5(i−1)+8t+4+10|i ∈ [1, n/5]}

and n/5 pairwise disjoint 4-cycles

{a3+2t+5(i−1)b3+2t+5(i−1)+8t+2a4+2t+5(i−1)

b4+2t+5(i−1)+8t+5a3+2t+5(i−1)|i ∈ [1, n/5]},

for each t ∈ [0, n/8− 1]. Moreover, for each t ∈ [0, n/8−
1], we obtain one linear 4-forest by deleting edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8tl+9|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q, and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l − 1) + 3] and l ∈ [1, n/40].

Hence, la4(Kn,n) ≤ n/2 + n/8 = 5n/8 in the case of
n ≡ 0( mod 40).

For example, if n = 40, for t = 0, the edges of ∪3
q=0c0,q

can form 8 pairwise disjoint paths P5

{b5i+3a5ib5i+7a5i+7b5i+11|i ∈ [1, 8]}

and 8 pairwise disjoint 4-cycles

{a5i−2b5ia5i−1b5i+4a5i−2|i ∈ [1, 8]}.

(Please see Figure 2. Note that the paths P5 of ∪3
q=0c0,q

have not been displayed in the figure.) Moreover, for
t = 0, we obtain one linear 4-forest by deleting edges in

{a4+5(i−1)b4+5(i−1)+1|i ∈ [1, 8]}

of 4-cycles of ∪3
q=0c0,q and adding edges of

{a4+2+5(i−1)b4+2+5(i−1)+8+1|i ∈ [1, 8]}

to the remained edges of ∪3
q=0c0,q. Similarly, for t = 1,

we obtain one linear 4-forest by deleting edges in

{a4+2+5(i−1)b4+2+5(i−1)+8+1|i ∈ [1, 8]}

of 4-cycles of ∪3
q=0c1,q and adding edges of

{a4+2·2+5(i−1)b4+2·2+5(i−1)+8·2+1|i ∈ [1, 8]}

to the remained edges of ∪3
q=0c1,q. For t = 2, we obtain

one linear 4-forest by deleting edges in

{a4+2·2+5(i−1)b4+2·2+5(i−1)+8·2+1|i ∈ [1, 8]}

of 4-cycles of ∪3
q=0c2,q and adding edges of

{a4+2·3+5(i−1)b4+2·3+5(i−1)+8·3+1|i ∈ [1, 8]}
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Figure 1. M0 ∪M1 with c0,0 broken
and others normal
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Figure 2. broken edges: the edges
deleted from 4-cycles of ∪3

q=0c0,q

heavy edges: the edges adding to
the remained edges of ∪3

q=0c0,q
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to the remained edges of ∪3
q=0c2,q. For t = 3, we obtain

one linear 4-forest by deleting edges in

{a4+2·3+5(i−1)b4+2·3+5(i−1)+8·3+1|i ∈ [1, 8]}

of 4-cycles of ∪3
q=0c3,q and adding edges of

{a4+2·4+5(i−1)b4+2·4+5(i−1)+8·4+1|i ∈ [1, 8]}

to the remained edges of ∪3
q=0c3,q. For t = 4, we obtain

one linear 4-forest by deleting edges in

{a4+2·4+5(i−1)b4+2·4+5(i−1)+8·4+1|i ∈ [1, 8]}

of 4-cycles of ∪3
q=0c4,q and adding edges of

{a4+5(i−1)b4+5(i−1)+1|i ∈ [1, 8]}

to the remained edges of ∪3
q=0c4,q.

Hence la4(K40,40) ≤ 25.

Claim 3. la4(Kn,n) ≤ d5n/8e for n ≡ 2( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−2 ∪Mn−1 other than that in

{a4+5(i−1)b2+5(i−1), a1+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest. Now we have obtained
bn/8c · 4 + 1 = n/2 linear 4-forests in total by Claim
1. Next we will estimate the number of linear 4-forests
induced by the edges that are not used in Kn,n.

It is not difficult to verify that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{b5+2t+5(i−1)+8t+3a5+2t+5(i−1)b5+2t+5(i−1)+8t+7

a5+2t+5(i−1)+7b2+2t+5(i−1)+8t+4+10|i ∈ [1, n/5]}

and n/5 pairwise disjoint 4-cycles

{a3+2t+5(i−1)b3+2t+5(i−1)+8t+2a4+2t+5(i−1)

b4+2t+5(i−1)+8t+5a3+2t+5(i−1)|i ∈ [1, n/5]},

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 2], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8tl+9|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−1,
we obtain one linear 4-forest by deleting edges in

{al+5(i−1)bl+5(i−1)+8(bn/8c−1)+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q for l = 4+2(bn/8c−1). It

is easy to verify that the remained edges, i.e., all edges
of

{al+5(i−1)bl+5(i−1)+8(bn/8c−1)+1, a4+5(i−1)b2+5(i−1),
a1+5(i−1)b5(i−1)|i ∈ [1, n/5]}

with l = 4 + 2(bn/8c − 1) can form one linear 4-forest.

Hence, la4(Kn,n) ≤ n/2 + (bn/8c − 1) + 1 + 1 = n/2 +
dn/8e = d5n/8e.

For example, if n = 10, then the edges of M0 ∪M1 other
than that in

c0,0 = {albl, a2+lb2+l+1|l = 5i− 3, i ∈ [1, 2]}

can form one linear 4-forest. The edges ofM2∪M3 other
than that in

c0,1 = {albl+2, a2+lb2+l+3|l = 5i− 2, i ∈ [1, 2]}

can form one linear 4-forest. The edges ofM4∪M5 other
than that in

c0,2 = {albl+4, a2+lb2+l+5|l = 5i− 3, i ∈ [1, 2]}

can form one linear 4-forest. The edges ofM6∪M7 other
than that in

c0,3 = {albl+6, a2+lb2+l+7|l = 5i− 2, i ∈ [1, 2]}

can form one linear 4-forest. Clearly, the edges of
∪3
q=0c0,q produce two disjoint paths P5

{bl+3albl+7al+7bl+11|l = 5i, i ∈ [1, 2]}

and two disjoint 4-cycles

{atbt+2a1+tb1+t+5at|t = 5i− 2, i ∈ [1, 2]}.

We obtain one linear 4-forest by deleting edges

{a4+5(i−1)b4+5(i−1)+1|i ∈ [1, 2]}

of 4-cycles of ∪3
q=0c0,q. Moreover, the edges of M8 ∪M9

other than that in

{a4+5(i−1)b2+5(i−1), a1+5(i−1)b5(i−1)|i ∈ [1, 2]}

can form one linear 4-forest. It is not difficult to verify
that the remained edges, i.e., all edges of

{a4+lb4+l+1, a4+lb2+l, a1+lbl|l = 5(i− 1), i ∈ [1, 2]}

can form one linear 4-forest. Hence, la4(K10,10) ≤ 7.

Claim 4. la4(Kn,n) ≤ d5n/8e for n ≡ 4( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−4 ∪Mn−3 other than that in

{a6+5(i−1)b2+5(i−1), a3+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest, and the edges of Mn−2 ∪
Mn−1 other than that in

{a4+5(i−1)b2+5(i−1), a1+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form another one. Now we have obtained bn/8c ·
4 + 2 = n/2 linear 4-forests in total by Claim 1. In the
following we will estimate the number of linear 4-forests
induced by the edges that are not used in Kn,n.
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It is not difficult to verify that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{bl+3al−8tbl+7al−8t+7bl+11|l = 10t+ 5i, i ∈ [1, n/5]}

and n/5 pairwise disjoint 4-cycles

{albl+8t+2a1+lbl+8t+6al|l = 2t+ 5i− 2, i ∈ [1, n/5]}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 3], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8(tl+1)+1|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−2,
we obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−15|u = 2bn/8c+ 5(i− 1), i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−2),q and adding edges of

{a1+5(i−1)b5(i−1)|i ∈ [1, n/5]}

of Mn−1 that have not been used. For t = bn/8c− 1, we
also obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−6|u = 2bn/8c+ 5i− 4, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q and adding edges of

{a3+5(i−1)b5(i−1)|i ∈ [1, n/5]}

of Mn−3 that have not been used. It is obvious that the
remained edges, i.e., all edges of

{aubu+8(bn/8c−2)+1, a4+5(i−1)b2+5(i−1),
a6+5(i−1)b2+5(i−1), au−1bu+8(bn/8c−2)+1|
u = 2bn/8c+ 5(i− 1), i ∈ [1, n/5]},

can form one linear 4-forest.

Hence, la4(Kn,n) ≤ n/2 + (bn/8c − 2) + 1 + 1 + 1 =
n/2 + dn/8e = d5n/8e.

Claim 5. la4(Kn,n) ≤ d5n/8e for n ≡ 6( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−6 ∪Mn−5 other than that in

{a8+5(i−1)b2+5(i−1), a5+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest, the edges of Mn−4 ∪Mn−3

other than that in

{a7+5(i−1)b4+5(i−1), a5+5(i−1)b1+5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest, and the edges of Mn−2 ∪
Mn−1 other than edges in

{a4+5(i−1)b2+5(i−1), a1+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form another one. Now we have obtained bn/8c ·4 +
3 = n/2 linear 4-forests in total by Claim 1. Thus we
have to estimate the number of linear 4-forests induced
by the edges that are not used in Kn,n.

It is not difficult to see that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{bu+8t+3aubu+8t+7au+7bu+8t+11|
u = 2t+ 5i
i ∈ [1, n/5]

}

and n/5 pairwise disjoint 4-cycles

{aubu+8t+2au+1bu+8t+6au|
u = 2t+ 5i− 2
i ∈ [1, n/5]

}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 4], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8(tl+1)+1|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q and adding edges of

{aubu+8(5l−5)+1|u = 10l + 5i− 11, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−1,
we obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−7|u = 2bn/8c+ 5i− 3, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q and adding edges of

{a5+5(i−1)b5(i−1)|i ∈ [1, n/5]} of Mn−5 that have not
been used. For each t ∈ {bn/8c − 2, bn/8c − 3}, we
obtain one linear 4-forest by deleting edges in

{aubu+8t+1|u = 2t+ 5i− 1, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q and adding edges of

{aubu+8(t+1)+1|u = 2t+ 5i+ 1, i ∈ [1, n/5]}

that have been deleted from ∪3
q=0c(t+1),q. It is easy to

verify that the remained edges, i.e., all edges of

{aubu+8(bn/8c−3)+1, a7+5(i−1)b4+5(i−1),
a8+5(i−1)b2+5(i−1), a5+5(i−1)b1+5(i−1),
a1+5(i−1)b5(i−1), a4+5(i−1)b2+5(i−1)|
u = 2bn/8c+ 5i− 7, i ∈ [1, n/5]},

can form one linear 4-forest.

Hence, la4(Kn,n) ≤ n/2 + (bn/8c − 3) + 1 + 1 + 1 + 1 =
n/2 + dn/8e = d5n/8e.

Claim 6. la4(Kn,n) ≤ d5n/8e for n ≡ 1( mod 8) and
n ≡ 0( mod 5).

Now we have obtained bn/8c·4 = bn/2c linear 4-forests in
total by Claim 1. Note that the edges of Mn−1 also have
not been used. Thus we have to estimate the number of
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linear 4-forests induced by the edges that are not used
in Kn,n.

It is obvious that all edges of ∪3
q=0ct,q can form n/5 pair-

wise disjoint paths P5

{bu+3au−8tbu+7au−8t+7bu+11|
u = 10t+ 5i
i ∈ [1, n/5]

}

and n/5 pairwise disjoint 4-cycles

{aubu+8t+2au+1bu+8t+6au|
u = 2t+ 5i− 2
i ∈ [1, n/5]

}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 4], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8(tl+1)+1|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q, and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−1,
we obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−7|u = 2bn/8c+ 5i− 3, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q. For each t ∈ {bn/8c −

2, bn/8c − 3}, we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q and adding edges of

{aubu+8(t+1)+1|u = 2t+ 5i+ 1, i ∈ [1, n/5]}

that have been deleted from ∪3
q=0c(t+1),q. It is easy to

verify that the remained edges, i.e., all edges of

{aubu+8bn/8c−23|
u = 2bn/8c+ 5i− 7
i ∈ [1, n/5]

} ∪Mn−1,

can form another one.

Hence, la4(Kn,n) ≤ bn/2c+ (bn/8c−3) + 1 + 1 + 1 + 1 =
dn/2e+ bn/8c = d5n/8e.

Claim 7. la4(Kn,n) ≤ d5n/8e for n ≡ 3( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−3 ∪Mn−2 other than that in

{a5+5(i−1)b2+5(i−1), a2+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest. Now we have obtained
bn/8c · 4 + 1 = bn/2c linear 4-forests in total by Claim
1. Note that the edges of Mn−1 also have not been used.
Next we will estimate the number of linear 4-forests in-
duced by the edges that are not used in Kn,n.

It is not difficult to verify that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{bu+8t+3aubu+8t+7au+7bu+8t+11|
u = 2t+ 5i
i ∈ [1, n/5]

}

and n/5 pairwise disjoint 4-cycles

{aubu+8t+2au+1bu+8t+6au|
u = 2t+ 5i− 2
i ∈ [1, n/5]

}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 5], we obtain one linear 4-forest by deleting
edges in

{aubu+8t+1|u = 2t+ 5i− 1, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8(tl+1)+1|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−1,
we obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−7|u = 2bn/8c+ 5i− 3, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q and adding edges of

{a2+5(i−1)b5(i−1)|i = 1, 2, · · · , n/5} of Mn−2 that have
not been used. For each t ∈ [bn/8c − 2, bn/8c − 4], we
obtain one linear 4-forest by deleting edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q and adding edges of

{aubu+8(t+1)+1|u = 2t+ 5i+ 1, i ∈ [1, n/5]}

that have been deleted from ∪3
q=0c(t+1),q. It is easy to

verify that the remained edges, i.e., all edges of

{aubu+8bn/8c−31, a5ib5i−3|
u = 2bn/8c+ 5i− 9, i ∈ [1, n/5]} ∪ Mn−1,

can form another linear 4-forest.

Hence, la4(Kn,n) ≤ bn/2c + (bn/8c − 4) + 1 + 3 + 1 =
dn/2e+ bn/8c = d5n/8e.

Claim 8. la4(Kn,n) ≤ d5n/8e for n ≡ 5( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−5 ∪Mn−4 other than that in

{aubu+n−5, au+2bu+n−2|u = 5i− 3, i ∈ [1, n/5]}

can form one linear 4-forest, the edges of Mn−3 ∪Mn−2

other than that in

{aubu+n−3, au+2bu+n|u = 5i− 2, i ∈ [1, n/5]}

can form one and the edges of Mn−1 can form another
one. Now we have obtained bn/8c · 4 + 3 = dn/2e linear
4-forests in total by Claim 1. Thus we have to estimate
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the number of linear 4-forests induced by the edges that
are not used in Kn,n.

It is not difficult to verify that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{bu+3au−8tbu+7au−8t+7bu+11|
u = 10t+ 5i
i ∈ [1, n/5]

}

and n/5 pairwise disjoint 4-cycles

{aubu+8t+2au+1bu+8t+6au|
u = 2t+ 5i− 2
i ∈ [1, n/5]

}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 1], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8tl+9|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q, and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l − 1) + 3] and l ∈ [1, bn/8c/5] (note that bn/8c ≡
0( mod 5) in this case). It is easy to verify that the
remained edges, i.e., all edges of

{aubu+n−5, au+2bu+n−2, au+1bu+n−2, au+3bu+n+1|
u = 5i− 3, i ∈ [1, n/5]},

can form another linear 4-forest.

Hence, la4(Kn,n) ≤ dn/2e+ bn/8c+ 1 = d5n/8e.

Claim 9. la4(Kn,n) ≤ d5n/8e for n ≡ 7( mod 8) and
n ≡ 0( mod 5).

The edges of Mn−7 ∪Mn−6 other than that in

{a9+5(i−1)b2+5(i−1), a6+5(i−1)b5(i−1)|i ∈ [1, n/5]}

can form one linear 4-forest, the edges of Mn−5 ∪Mn−4

other than that in

{a5i+3b5i−2, a5(i+1)b5i+1|i ∈ [1, n/5]}

can form one, and the edges of Mn−3 ∪Mn−2 other than
that in

{a3+5(i−1)b5(i−1), a5+5(i−1)b3+5(i−1)|i ∈ [1, n/5]}

can form another one. Note that the edges of Mn−1

have not been used. Now we have obtained bn/8c · 4 +
3 = bn/2c linear 4-forests in total by Claim 1. In the
following we will estimate the number of linear 4-forests
induced by the edges that are not used in Kn,n.

It is not difficult to obtain that all edges of ∪3
q=0ct,q can

form n/5 pairwise disjoint paths P5

{bu+8t+3aubu+8t+7au+7bu+8t+11|
u = 2t+ 5i
i ∈ [1, n/5]

}

and n/5 pairwise disjoint 4-cycles

{aubu+8t+2au+1bu+8t+6au|
u = 2t+ 5i− 2
i ∈ [1, n/5]

}

for each t ∈ [0, bn/8c − 1]. Moreover, for each t ∈
[0, bn/8c − 2], we obtain one linear 4-forest by deleting
edges in

{a4+2t+5(i−1)b4+2t+5(i−1)+8t+1|i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0ct,q, adding edges of

{aubu+8(tl+1)+1|u = 2tl + 5i+ 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0ctl,q, and adding edges of

{aubu+8(5l−5)+1|u = 2(5l − 5) + 5i− 1, i ∈ [1, n/5]}

to the remained edges of ∪3
q=0c(5l−1),q, where tl ∈ [5(l−

1), 5(l−1) + 3] and l ∈ [1, bbn/8c/5c]. For t = bn/8c−1,
we obtain one linear 4-forest by deleting edges in

{aubu+8bn/8c−7|u = 2bn/8c+ 5i− 3, i ∈ [1, n/5]}

of 4-cycles of ∪3
q=0c(bn/8c−1),q, and adding edges of

{a6+5(i−1)b5(i−1)|i ∈ [1, n/5]}

of Mn−6 that have not been used. It is obvious that all
edges of

{aubu+8bn/8c−7|
u = 2bn/8c+ 5i− 3
i ∈ [1, n/5]

} ∪Mn−1

can form one linear 4-forest, and the remained edges, i.e.,
all edges of

{a5i+4b5i−3, a5i+3b5i−2, a5(i+1)b5i+1,
a5i−2b5(i−1), a5ib5i−2|i ∈ [1, n/5]},

can form another one.

Hence, la4(Kn,n) ≤ bn/2c + (bn/8c − 1) + 1 + 1 + 1 =
dn/2e+ dn/8e = d5n/8e.

Combining Claims 2 − 9, the theorem is proved com-
pletely.
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