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Abstract—We study the M/G/2 queuing system
with an exponential server (server-1) and a general
server under a controlled queue discipline. Such a
queuing model depicts a service system where servers
are allocated to customers rather than chosen as
in many telecommunications and computer business
centers across the globe. The First Come First Served
(FCFS) queue discipline is violated to achieve the
least waiting time of customers in the system. Us-
ing the remaining service time of the customer on
server-2 (the slower server) as a supplementary vari-
able and given that every customer who first finds
server-1 busy is allocated server-1, we derived the
steady state distribution for the number of customers
in the system. Furthermore, closed form expressions
for the mean waiting time, the mean queue length
and the blocking probability for the queuing system
are derived. Finally, mean performance measures are
computed numerically and results compared with ex-
isting models.

Keywords: The M/G/2 queue, the M/M,G/2 queue,

queue discipline, controlled queue discipline.

1 Introduction

We study the M/G/2 queuing system modeled as the
M/M,G/2 queue with an exponential server (server-1)
and a general server (server-2) whose queueing order is
controlled. The aim is to study the queue length and
the waiting time processes of a service system having
two heterogeneous servers that are allocated as in banks,
hospitals, telecommunications and several business cen-
ters instead of chosen by customers. Customers arrive
according to a Poisson process at a rate λ for service
on either of the two servers in the system. The servers
have the tendency to serve the same type of job1 as in
the case of two digital typing jobs or different jobs as in
the case of a digital typing job and a printing job. We
suppose that the nature of servers anytime is not new
to service providers. Thus, if a customer arrives when
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1Though, at distinct server rates

both servers are idle, he is asked to take service from
server-1 being the faster server. Similarly, if upon arrival
a customer finds server-1 busy, he is asked to wait for
the unfinished service of the customer on server-1.
Furthermore, if server-1 is busy and a waiting customer
is present, an arriving customer is asked to take service
from server-2. Subsequent customers join the queue and
wait for their service turn. This schedule is renewed each
time there are three or more customers in the system.
The service time distribution of customers depends on
the server that provides service. For customers served by
server-1, the service time T1 is exponential with a rate
μ i.e. F1(t) = P (T1 < t) = 1 − e−μ t with probabil-

ity density function (PDF) f1(t) = dF1(t)
dt and Laplace-

Stiltjes Transform (LST) f∗
1 (s) =

∫∞
0

e−stdF1(t). Sim-
ilarly, for customers serviced by server-2, their service
time distribution B(t) = P [T2 < t] is general with
PDF b(t), a mean β = E[T2] and a LST b∗(s) given
by b∗(s) =

∫∞
0

e−stdB(t). We suppose that the stabil-

ity condition λ < μ + 1
β holds and that the hazard rate

denoting the departure rate of customers is given by

r(t) = μ+
B′(t)

1−B(t)
, t → ∞. (1)

Our interest is on the stationary behavior and perfor-
mance of the M/M,G/2 model under the controlled
queue schedule described above: i.e, how does waiting for
the unfinished job on server-1 (the faster server) ahead
of taking service from server-2 affects the entire wait-
ing time distribution and expectations of customers in
the system given that server-2 (the slower server) is idle
and ready for job. More precisely, the operational perfor-
mance of the model relative to the model in Krishnamoor-
thy [2] where some mass of customers finding server-1
busy may choose to receive service from server-2 if the
server is free2.We are motivated by the many applica-

2The Krishnamoorthy [2] queue discipline is customer depen-
dent. There are many service systems where the choice of servers
is entirely controlled by the service providers. For instance in some
ATM centers, hospitals, call business centers etc, customers are di-
rected by agents working for the service provider in the direction
of the faster machine, doctor, mobile line etc. The other one is put
to use only if a certain customer size is waiting ahead of the faster
server.
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tions of the M/M,G/2 model working under a controlled
service schedule for instance in telecommunication cen-
ters and other service systems such as banks, hospitals,
shops, etc. A realistic application for this kind of queu-
ing system is a service station with two machines, servers,
clerks, etc; a reliable one (exponential server) and a less
reliable one (general server) in the presence of a control-
ling staff. Upon arrival of a customer, the staff directs the
usage of the machines according to a set of pre-defined
rules that ensures the smooth ordering of the system.
There are many reasons why owners of such business out-
fits (banks, hospitals, telecommunications and computer
business centers) may require the analysis presented in
this work. For instance, for profit reasons an owner of a
commercial call center using two heterogeneous network
lines for business may require the understanding of the
customer distribution in his center when a certain cus-
tomer group is to be served by the faster network line.
This category of customers is called the control group.
The business owner may wish to understand the impact
of assigning this customer category to the faster server
on the entire waiting time distribution and expectations
of customers in the system. Similarly, for quality assur-
ance purposes, a bank manager may require the under-
standing of the number of customers steadily remaining
in the queue if a certain customer group is attached to
be served by a unique faster counter clerk in the pres-
ence of a slowly working clerk even if the slow clerk is
idle. An office executive may need to understand the im-
pact a certain staff is making on the client’s distribution
given that he is preferred to give service compared with
other staff. The above problems come down to model-
ing a service system with heterogeneous servers in the
presence of a controlled customer class attached to the
faster server. The control here generally implies that
servers are allocated and therefore free from customers’
preferential choice, their knowledge of servers and other
variables attached to customers. A control policy design
completely free from customers’ preferential choices etc
may improve a lot of variables such as business satis-
faction, motivation and patronage, owner based service
approach and most importantly, business returns. Con-
sequently, our intended analysis will provide solution to
these kind of inquiries whose aim is to simplify problems
connected with customer distributions and expectations
for better management and business practices, standard-
izations, improvements, etc.

2 Existing Literature

The literature on heterogeneous queuing systems under
various policies3 has been extensively studied, Emrah et
al [1]. The bulk of the literature consists of models whose
servers follows the exponential or phase-type distribu-
tion working under the first come first served (FCFS)

3Both the M/M/2 and the M/G/2/ models

queue discipline. A model of the general type distribu-
tion under non FCFS is to our knowledge scarce in the
literature. More precisely, models with general type dis-
tribution with control queue schedules bias to the busi-
ness owner4 is totally lacking. For a survey of the FCFS
aligned models; Yue et al [9], Kumar et al [14], Fiems
et al [8], Boxma et al [16], Hoksad [17], etc. First, the
adoption of the FCFS may not be realistic in modeling
service systems with heterogeneous structures. For in-
stance, if counter clerks in a bank provide services with
varying speeds (essentially, no two servers can work at
the same rate for several reasons), then customers might
prefer to choose the fastest clerk for service. On the
other hand, if one chooses the slowest clerk randomly
then customers that entered the system after him may
clear out earlier by obtaining service from a clerk with a
faster working rate. Apparently in this case, the FCFS
queue discipline is violated due to heterogeneity in
service speeds of the clerks. This and similar real life
scenarios make the assumption of the FCFS queue disci-
pline really unrealistic in queuing systems with embedded
heterogeneity because of the high probability of viola-
tion. Hence, there is the need for designing alternative
queue disciplines that can reduce the impact of the vi-
olation so that the resulting waiting times of customers
are almost identical or even better compared with that
of the FCFS. Similarly, quite a large number of service
systems5 for instance in banks, telecommunication call
centers, ATM machines, hospitals, etc allocate servers to
customers and so models where customers choose servers
may be unsuitable to describe such systems because of
the absence of variables such as customer preferences, na-
ture, knowledge of servers etc therein. Owner controlled
schedules are completely devoid of most or all variables
attached to customers and are relatively scarce in the
literature. Moreover, it is well known that control prob-
lems are difficult to solve. Particularly, their analytical
solutions are in many cases out of the question; see Mo-
hammad and Ali [15]. Consequently, it is interesting to
study this class of physical systems for better manage-
ment practice. This stand is key to studying controlled
queuing systems under new queuing disciplines generally.
To buttress further on the need to study queuing systems
with controlled policies, Ekamura et al [10] indicated that
queuing control is one of the most important problems in
the research field of operations research and management
science. Efrosinin and Sztrik [7] proved that performance
wise, if a service process of a queuing system with em-
bedded inhomogeneity is controlled such that the slower
server is initiated for service only if a certain threshold
value is crossed then, the system performance becomes
better and faster. This was earlier highlighted by Krish-
namoorthy [2] who proposed a non FCFS queue discipline
that controlled the service process flexibly by assigning a
threshold policy under which the slow server is to be put

4Not the customer.
5With finite or infinite buffer sizes
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to use without necessarily imposing stronger conditions
on the controlled class. This discipline is a viable al-
ternative for reducing waiting time expectations in such
systems. For more on the benefits of threshold control
policies see Efrosinin and Rykov [6], [5] and Efrosinin
and Breuer [4]. In a recent work 6 on the M/G/2 queue
with a violation of the FCFS queue discipline and a flex-
ible customer dependent control policy, we have shown
that one can obtain the equivalent of the FCFS waiting
time expectations when the violation is minimal owing to
some degree of control on the service and queuing disci-
plines7. This work together with those of Krishnamoor-
thy [2] and Efrosinin and Sztrik [7] motivate us to further
still investigate the M/G/2 queuing system in the light of
a complete control policy of the customer routines in the
system to study the impact of the policy on the waiting
time expectations for the benefit of service systems.8 As
stated in section 1, the model presented in this work is
called theM/M,G/2 queue with one exponential and one
general server working under a controlled service process.
We initiate a control service policy under which the gen-
eral server can be put to use to study the performance of
the M/M,G/2 queuing model for use in owner-controlled
service systems. Our contributions could be summarized
as follows:

1. Designing the M/M,G/2 model with an owner con-
trolled service schedule.

2. Deriving the stationary behavior of the model and
relevant generating functions.

3. Performance measures for the queuing systems in
question.

4. Comparative analysis test.

2.1 The Queue Discipline

If a customer arrives and find:

1. Both servers free: He is asked to take service from
server-1.

2. Server-1 is busy and server-2 is idle: The cus-
tomer is asked to wait for the unfinished job on
server-1.

3. Server-1 is busy, one customer is waiting for
server-1, and server-2 is idle: The customer is
asked to take service from server-2.

4. Both servers are engaged: the customer is asked
to join the queue and wait for his service turn as a

6European Journal of Operational Research (EJOR), 240, 140-
146.

7See the parallel queue discipline in Sivasamy et al [18].
8In a two-server heterogeneous retrial queue with threshold pol-

icy.

second waiting customer. This schedule is renewed
each time there are three or more customers in the
system9.

3 The Stationary Distribution under 2.1

The goal of this section is to compute the generating
function for the stationary number of customers in the
system. To accomplish this goal, we use the supplemen-
tary variable technique on a process {X(t), ζ(t)}t≥0. For
the application of this technique to the M/G/1 queuing
system, see Cohen [13].

Suppose that a process {X(t), ζ(t)}t≥0 is given where
X(t) denotes the number of customers in the system at
time t and ζ(t) is the past service time of a customer on
server-2. Looking at the system at departure instants
when a service is completed on server-2, then the
bi-variate process {X(t), ζ(t)}t≥0 is a Markov process.
Suppose also that the service time of customers is
continuous and that the system is empty at time zero,
then one can apply the supplementary variable technique
to analyze the process {X(t), ζ(t)}t≥0. Now, define for
t ≥ 0 :

R0,0(t) = P (X(t) = 0)

R1,0(t) = P (X(t) = 1, server − 2 idle)

R1,1,0(t) = P (X(t) = 2, server − 2 idle)

Rj(t, η)dη = P (X(t) = j, η ≤ ζ(t) < η + dη), η >
0, j = 3, 4, ...

Given that λ < μ + 1
β holds, then as t → ∞, R0,0(t),

R1,0(t), R1,1,0(t) and Rj(t, η) will converge to R0,0,
R1,0, R1,1,0 and Rj(η) respectively10. More precisely,
{X(t), ζ(t)}t≥0 → {X, ζ}. Let Rj denote the station-
ary probability that there are j customers in the system.
Given that every departure is followed by an arrival in
that order so that the rate-equality principle holds, then
one can conclude that R0 = R0,0, R1 = R1,0, R2 = R1,1,0.
And for j ≥ 3 customers, Rj(η) gives the stationary prob-
ability that there are j customers in the system when
both servers are busy. By the arguments of ergodicity
satisfied by the process {X, ζ}, the stationary probabili-
ties R0,0, R1,0, R1,1,0 and Rj(η) will satisfy the following
differential equations

λR0,0 = μR1,0; j = 0 (2)

9Thus, it is apparent that the whole service schedule here is
controlled. Moreover, the unit and the second customer classes
receive service from server-1 only.

10In steady state, every Rj(η) → Rj . This ensures that the asso-
ciated Markov chain for the process {X, ζ} is ergodic. Henceforth,
whenever Rj(η) comes into picture, it implies a stationary proba-
bility for a j when both servers are busy only.
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(λ+ μ)R1,0 = λR0,0 + μR1,1,0; j = 1 (3)

(λ+ μ)R1,1,0 = λR1,0 +

(
μ+

1

β

)
R1,1,1(η); j = 2 (4)

For j = 3 we have(
λ+ μ+

1

β

)
R1,1,1(η) = λR1,1,0 +

(
μ+

1

β

)
R4(η) (5)

Generally for j ≥ 3(
λ+ μ+

1

β

)
Rj(η) = λRj−1(η) +

(
μ+

1

β

)
Rj+1(η) (6)

From which

R1 = R1,0 =

(
λ

μ

)
R0,0 =

(
λ

μ

)
R0 (7)

R2 = R1,1,0 =

(
λ

μ

)2

R0 (8)

To solve for Rj ; j ≥ 3, let

Qj(η) =
Rj(η)

1−B(η)
, (9)

where Rj(η) is the probability that there are j customers
in the system when η ≤ ζ ≤ η + dη and 1 − B(η) is the
complementary distribution of service times on server-2
during this service period 11such that

Q∗
j (s) =

∫ ∞

0

e−sηQj(η)dη (10)

Define

Q̃j(η) = βR̃j(η) (11)

where

R̃j(η) =

∫ ∞

0

Qj(η)dB(η) (12)

If Q∗
j (s) is evaluated as s → 0, then by the following

lemma the resulting integral in (10) is equivalent to (11).
Thus, under this added condition, one can take Qj(η) to
Rj when there are three or more customers in the system.

Lemma 3.1 Given that the traffic condition λ < μ + 1
β

holds, then in a busy period

Q∗
j (0) = Q̃j , j = 3, 4, ...., (13)

11Strictly, for j ≥ 3 when server-2 is busy only.

Proof Suppose that a busy period is in progress such
that the time Tn between any two successive departures
on server-2 is given by Tn = tn− tn−1, n = 1, 2, 3, 4, . . .
Then for n ≥ 1, the service period is a probabilistic repli-
cation of the initial period T1 starting at t = 0. Now, if the
queue length process12 at t is N(t) such that N(0) ≥ 3,
then N(t) would reach steady state13 starting at t = 0.
Consequently, N(t) is a regenerative process over t on
state space S = 3, 4, ... and Tn = tn − tn−1 is the un-
derlying renewal process at time epoch tj each time a
departure occurs on server-2. Now, given that λ < μ+ 1

β
holds, then upon service completion on server-2, the state
probability Rj(t) can be expressed as

Rj(t) = P [N(t) = j, j = 3, 4, . . .]. (14)

In addition, if η units of service time elapsed in a busy
period at any time t, then the conditional probability that
there are j customers in the system is equal to

Rj(t, η) = P [N(t) = j | t = η, j = 3, 4, . . .] (15)

Let

Qj(t, η) =
Rj(t, η)

1−B(t, η)
(16)

so that

Qj(t)(1−B(t)) = Rj(t) = P [N(t) = j | t1 > t] (17)

then

∞∑
j=3

Qj(t) = P [t1 > t] = 1−B(t) (18)

and

Qj(t) =

∫ ∞

0

P [N(t) = j | t1 > t]dB(η) =

∫ ∞

0

AdB(η) (19)

14 which simplifies to the expression

Qj(t) =

∫ ∞

η

P [N(t) = j | t1 = η]dB(η) (20)

and Rj(t) now will equal to the equation

Rj(t) =

∫ ∞

0

P [N(t) = j, t1 = η]dB(η) (21)

Thus, by conditioning on T1 under steady state condi-
tions, it can be shown that the following renewal equation
below is satisfied

Rj(t) = Qj(t) +

∫ t

0

Rj(t− x)dB(x). (22)

12N(t) is equivalent to X(t)
13Precisely at (0+)
14A = P [N(t) = j, t1 > t | t1 = η]
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This renewal equation has a unique solution of the form

Rj(t) = Qj(t) +

∫ t

0

Qj(t− x)dM(x) (23)

where M(x) is the renewal function of a renewal process
with inter-renewal time distribution B(t). Thus, the ap-
plication of the key-renewal theorem yields that

lim
t→∞Rj(t) → 1

β

∫ ∞

0

Q(x)dx (24)

The integral in (24) is the probabilistic version of Q̃j when
the mean service time on server-2 is β. Thus,

R̃jβ = Q̃j = Q∗
j (0) (25)

Thus, the lemma holds.

3.1 The Stationary Probability Distribution

To solve (5) and (6), apply the Laplace operator on the
transformed differential equations (48) and (50) coupled
with the initial conditions (49) and (51). One obtains
that15

sQ∗
1,1,1(s) + (λ+B)Q∗

1,1,1(s) = μQ∗
4(s) + λR1,1,0 +

1

β
Q̃4 (26)

And j ≥ 4 we have

sQ∗
j (s) + (λ+B)Q∗

j (s) = λQ∗
j−1(s) + μQ∗

j+1(s) +
1

β
Q̃j+1 (27)

Application of lemma 3.1 together with equations (10)
and (11) as s → 0, coupled with the Markov property of
the system, Rj , j ≥ 3 simplifies to the equations below

R3 = R1,1,1 =

(
λ

μ+ 1
β

)(
λ

μ

)2

R0 (28)

R4 =

(
λ

μ+ 1
β

)2(
λ

μ

)2

R0 (29)

Generally, if j ≥ 2, then any Rj can be evaluated from
(30) below

Rj =

(
λ

μ+ 1
β

)(j−2)(
λ

μ

)2

R0 (30)

where R0 is the idle state probability. Put λ
μ+ 1

β

= ρ1 and

λ
μ = ρ and apply the normalization condition, then

15We write B =
(
μ+ 1

β

)
in longer equations

1 = R0,0 +R1,0 +R1,1,0 +
∞∑
j=3

Rj (31)

Upon further simplification, one obtains that

R0 = R0,0 =
(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2
(32)

Inserting (32) in (7) and (30), one obtains the station-
ary probability Rj for the M/M, /G/2 queue under the
control service process here. Thus

R1 = R1,0 =
ρ(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2
(33)

And for j ≥ 2 customers, we have

Rj =
ρ
(j−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2
(34)

Lemma 3.2 Suppose j = K ∈ � denote maximum wait-
ing capacity of the M/G/2 queue in question. Then the
stationary blocking probability is given by

RK =
ρ
(K−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
(35)

Proof Sum the right hand side of (31) over K < ∞.
Upon simplification, one obtains that

R0 = R0,0 =
(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
(36)

Inserting (36) in (30), Rj for the K-capacity M/M,G/2
queue under the controlled queue discipline here is ob-
tained. This is given by

R1 = R1,0 =
ρ(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
, K = 1 (37)

and16 for 2 ≤ j ≤ K customers we have

Rj =
ρ
(j−2)
1 ρ2(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2(1− ρK1 )
(38)

Finally, the lemma follows if every j in (38) is replaced
by K.

Lemma 3.3 Suppose server-2 breaks down such that
ρ1 → ρ in (38). Then the stationary blocking probabil-
ity RK reduces to

RK =
(1− ρ)ρK

1− ρ.ρK+1
(39)

16K = 0 is unrealistic.
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Proof ρ1 → ρ implies that a certain service of mean β →
∞ is in progress on server-2 such that the mean service
rate 1

β → 0. This reduces the system to a uni server

M/M/1/K. Trivially, the lemma holds if ρ substitutes
ρ1 in (35) upon simplification.

Remark The blocking probability in (39) corresponds
to the reduced form of the well known blocking probabil-
ity for the M/M/1/K model in MacGregor [12] for finite
values of K and ρ < 1. Comparing (39) with the one for
the M/M/1/K in MacGregor [12], the percentage reduc-
tion in the size of RK is typically about seven percent
in favor of the model here for ρ ≤ 0.5 and up to twenty
percent as ρ → 1. However, for smaller values of ρ the
difference between the two probabilities is insignificant.

3.2 Generating Functions & Expectations:

Now, denote by V (z) = Σ∞
j=0Rjz

j the generating func-
tion for the number of customers j (including the service
customer) with stationary probability Rj such that17

V (z) = Σ∞
j=0Rjz

j = R0 +R1z +R2z
2 +R3z

3 + .... (40)

then

V ′(z) = R1 + 2R2z +
d

dz
Σ∞

j=3Rjz
j

so that

V ′(z) = R1 + 2R2z +
d

dz

[
R3z

3

(1− ρ1z)

]

and at z = 1, we have

V ′(1) = R1 + 2R2 +
R3(3− 2ρ1)

(1− ρ1)2

Here, V ′(1) = E[X], gives the stationary expected
number of customers in the system upon departure
instances.

Simplifying further, one obtains that

E[X] =

(
(1− ρ1)

(1 + ρ)(1− ρ1) + ρ2

)(
ρ+ 2ρ2 +

ρ1ρ2(3− 2ρ1)

(1− ρ1)2

)
(41)

Application of Little’s law gives the expected waiting
time E[W]. That is

E[W ] =

(
(1− ρ1)

λ[(1 + ρ)(1− ρ1) + ρ2]

)(
ρ+ 2ρ2 +

ρ1ρ2(3− 2ρ1)

(1− ρ1)2

)
(42)

17Here, the departure probability Rj is used assuming that
server-2 is exponentially distributed so that PASTA property holds.

Lemma 3.4 Suppose j ≤ 2 customers in every service
epoch. Then, the stationary probability Rj of the infinite
capacity M/M,G/2 queuing system converges to that of
the M/M/1 queuing system.

Proof Intuitively, the stationary customer process (X, ζ)
is saddled on server-1. Given that λ < μ + 1

β holds, it

is trivial that λ < μ for the M/M/1 is implied. Suppose
that a long service of mean β is in progress on server-2
such that 1

β = 0 : more precisely, β → ∞ onto ρ1 =
λ

μ+ 1
β

where ρ1 is the occupation rate of the two servers

in the M/M,G/2 model. Then ρ1 = λ
μ . Denote by ρ

the occupation rate of the classical M/M/1 model. By
definition ρ = λ

μ . This means that ρ1 = ρ. Hence, the
stationary customer distribution for such customer size
of the M/M,G/2 is that of the M/M/1 queue.

4 Designing Optimal Buffers

If we relax the integrality of the buffer K, we can express
it in terms of RK for fixed values of ρ and ρ1. Then,
one will arrive at a closed-form expression for optimal
queuing space size/buffer for the model in question. This
corresponds to the largest integer K as follows:

K = 2 +
ln
{

RK [(1+ρ)(1−ρ1)+ρ2]
RK(ρρ1)2+ρ2(1−ρ1)

}
ln ρ1

(43)

The value for K in (43) above could be used in designing
appropriate queuing space/buffers for known values of the
occupation rates under the probabilistic assumption of a
finite customer size expected in the system18. The table
below summarizes some optimal K values for λ = 15.81,
μ1 = 18.5 and 1

β = 7.4.

Table-1: Optimal Buffers for selected RK .

RK K

10−2 8.05
10−3 13.65
10−4 17.4

10−5 21.99

10−6 26.65

Lemma 4.1 For the queuing system in question, the
minimum buffer size Kmin exists.

Proof Suppose RK → ρ2(1−ρ1)
[(1+ρ)(1−ρ1)+ρ2]−(ρρ1)2

, where RK

is the stationary probability that the system is full to

18K = 1 is a telephone kiosk. Similarly, K = 2 is a special case
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capacity for such K ∈ Z and ρ, ρ1 are the occupation
rates of server-1 and the joint servers in the system. This
ensures that the other component to the right of (43) goes
to zero. Consequently, the lemma holds.

Lemma 4.2 If K is minimal then RK(M/M,G/2/K)
goes to RK(M/M/1/2).

Proof By lemma 4.1, K is minimal if

RK =
ρ2(1− ρ1)

[(1 + ρ)(1− ρ1) + ρ2]− (ρρ1)2
(44)

The minimality condition in (44) ensures that ρ1 → ρ.
Substituting ρ for ρ1 in (44) for K = 2 and comparing
with that computed from (39) proves the lemma.

5 Numerical Simulations & Discussions

In this section, we provide numerical simulation for
the M/M,G/2 queuing system given that every second
customer is controlled to wait for the on-going service on
server-119. For operational sake, we similarly compare
and contrast the performance of the model with that of the
M/M/2 under the Krishnamoorthy [2] queue discipline
when some mass of the second customer category decide
to take service on server-2. For 15.11 ≤ λ ≤ 15.81,
μ = 8.4 and 1

β = μ2 = 7.5, the simulated values for ρ, ρ1

corresponding to E(N)fl., W̄fl., E(X)ctr. and W̄ctr. are
summarized20 in the table below

Table-2: Expectations E(N), E[X] and W̄

λ ρ ρ1 E(N)fl. E(X)ctr. W̄fl. W̄ctr..

15.11 1.80 0.950 19.95 20.28 1.32 1.34

15.21 1.81 0.957 23.21 23.20 1.53 1.53*

15.31 1.82 0.963 27.41 27.11 1.79 1.77
15.41 1.83 0.970 33.15 32.62 2.15 2.12
15.51 1.85 0.976 41.68 40.94 2.68 2.64
15.61 1.86 0.982 55.92 55.01 3.58 3.52
15.71 1.87 0.988 84.93 83.87 5.41 5.34
15.81 1.88 0.994 178.05 176.86 11.26 11.19

Table-2 gives a summary of mean performances of the
M/M,G/2 queue when every second customer takes ser-
vice from server-1 (controlled) and the case when some
mass of second customers take service from server-2 (flex-
ible). Referenced to these results, the following conclu-
sions can be drawn.

19Under our queue discipline.
20fl. stands for flexible, ctr. for controlled.

1 Existence of a turning point

This is implied from the case when λ = 15.11. Look-
ing at the means corresponding to this arrival rate,
it can be seen that both the mean queue length
and the mean waiting time numbers for the con-
trolled case are greater than that of the flexible case.
This phenomenon might have evolved from an ar-
rival point located far from the combined service rate
where both means for the flexible case are station-
ary smaller than that of the controlled case. Inter-
estingly, as λ approaches 15.11 + ε; ε > 0, the be-
havior of the models change steadily in favor of the
controlled case21. This is evident in the size of the
mean numbers for the controlled case in comparison
to the flexible case somewhere above λ = 15.11. Con-
sequently, it can be concluded that the said arrival
rate is a turning point when it is operationally better
to exercise more control on the servers in the system
by redirecting a given customer category to wait in
total for the unfinished job on the faster server than
allow the customer go to the slower server. This can
be explained by the fact that even with 1

β close to μ
as in the values used for the numerical approxima-
tions, the supremacy of the controlled case is clear
after the turning point.

Lemma 5.1 Operationally, it is beneficial to control a
given customer category in high speed systems.

Proof This is observed from the fact that as λ → (μ+ 1
β ),

the M/M,G/2 model under the controlled customer cat-
egory has stationary smaller values for both the mean
queue length and waiting times compared to the flexible
case. More so, the disparity between the means keeps
increasing significantly in favor of the controlled case.
This can be observed from the table above that when
λ = 15.81, the difference in the mean queue length be-
tween the means is approximately 3 customers. Thus
the controlled model under the stated queue discipline
is a better alternative for reducing both the mean queue
length and the mean waiting time in high speed systems.

Lemma 5.2 Suppose two M/M,G/2 queuing models are
given one with a controlled customer category and the
other of flexible customer category. Under heavy traf-
fic conditions,22 the mean performance of the controlled
model is higher than that of the flexible model.

Proof This is expressed by the numerical approxima-
tions above. Similarly, By lemma 4.1. Thus, it can be
deduced that at a point when ρ1 is sufficiently close to
one, the disparity of the means between the models will

21∗ indicates that the next digit is smaller in the control than in
the flexible.

22ρ1 → 1
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attain a global maximum. This maximum defines the
supremacy of controlling a unique customer category over
the flexible case.

Lemma 5.3 Buffer size decreases with increase in ca-
pacity probability.

Proof This is evident from the numerical approxima-
tions expressed in table 1 which shows that the buffer size
K increases significantly with decreasing capacity proba-
bility RK .

The relationship in the lemma above holds equivalently
for the M/M/1 and the M/D/1 queuing systems as in
Macgregor [12]. Thus, to minimize loss of resources,
knowledge of RK is necessary for constructing buffers
for queuing systems with finite waiting spaces generally.
More specifically, by minimizing unnecessary spaces aris-
ing from poor understanding of the capacity probability.

As a scope for further work on this model, one may wish
to analyze the asypmtotics for various ranges of the ar-
rival rate λ compared with the service rate of the ex-
ponential server. This will define a bound under which
the slow server should be initiated, left idle, replaced, etc
for a better joint system performance similar to what is
found in Boxma et al [16]. Similarly, one can provide a
similar analysis for r-customers (r ≤ j) waiting for service
on server-1 ahead of taking service on server-2.

6 Conclusion

In this article, the M/M,G/2 queuing system with het-
erogeneous servers and a controlled customer service
schedule is proposed. The stationary customer distribu-
tion is analyzed and performance measures computed.
Furthermore, numerical results are compared with those
derived for the M/M/2 queuing system under the Krish-
namoorthy [2] queuing discipline. Our simulation shows
that under similar arrival condition, the model performs
better compared with the one proposed in Krishnamoor-
thy [2]. Hence, a good alternative for use in problems
connected with customer distributions for better practice.
The work affirms that more control on the initiation of
the slow server minimize the waiting time expectations
as in Efrosinin and Sztrik [7].
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7 APPENDIX

7.1 RATE EQUATIONS FOR THE
M/M,G/2 WITH CONTROL POL-
ICY

d

dt
R0(t) = −λR0(t) + μR1,0(t) (45)

d

dt
R1,0(t) = −(λ+ μ)R1,0(t) + λR0(t) + μR1,1,0(t) (46)

d

dt
R1,1,0(t) = −(λ+ μ)R1,1,0(t) + λR1,0(t) +

1

β
Q̃1,1,1(η) (47)

Q′
1,1,1(η) = −

(
λ+ μ+

1

β

)
Q1,1,1(η) + μQ4(η) (48)

Q1,1,1(0+) = λR1,1,0 +
1

β
Q̃4, j = 3 (49)

For j ≥ 4, we have

Q′
j(η) = −

(
λ+ μ+

1

β

)
Qj(η) + λQj−1(η) + μQj+1(η) (50)

Qj(0+) =
1

β
Q̃j+1, j ≥ 4 (51)

7.2 STATIONARY BALANCED EQUA-
TIONS FOR THE M/M,G/2 WITH
CONTROL POLICY

λR0 = μR1,0 (52)

λR1,0 = μR1,1,0 (53)

λR1,1,0 =

(
μ+

1

β

)
R1,1,1 (54)

λR1,1,1 =

(
μ+

1

β

)
R4 (55)

For j ≥ 3 we have

λRj =

(
μ+

1

β

)
Rj+1 (56)

IAENG International Journal of Applied Mathematics, 45:1, IJAM_45_1_04

(Advance online publication: 17 February 2015)

 
______________________________________________________________________________________ 



7.3 STATIONARY BALANCED AND
RATE EQUATIONS FOR THE M/M/2
WITH FLEXIBILITY23

λR0 = μR1,0 +

∫ ∞

0

R0,1(η)
dB(η)

1−B(η)
(57)

(λ+ μ)R1,0 = λR0 + μR1,1,0 +

∫ ∞

0

R1,1(η)C (58)

R′
0,1(η) = − (λ+ μ+ C)R0,1(η) + μR1,1(η) (59)

R0,1(0+) = 0, j = 1 (60)

(λ+ μ)R1,1,0 = λR1,0 +

∫ ∞

0

R1,1,1(η)C (61)

R′
1,1(η) = − (λ+ μ+ C)R1,1(η) + λR0,1(η) + μR1,1,1(η) (62)

R1,1(0+) = 0, j = 2 (63)

R′
1,1,1(η) = −(λ+ μ+ C)R1,1,1(η) + λR1,1(η) + μR4(η) (64)

R1,1,1(0+) = λR1,1,0 +

∫ ∞

0

R4(η)
dB(η)

1−B(η)
, j = 3 (65)

For j ≥ 4 , we have

R′
j(η) = − (λ+ μ+ C)Rj(η) + λRj−1(η) + μRj+1(η) (66)

Rj(0+) =

∫ ∞

0

Rj+1(η)
dB(η)

1−B(η)
(67)
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