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Transreal Calculus

Tiago S. dos Reis and James A.D.W. Anderson, Member, I[AENG,

Abstract—Transreal arithmetic totalises real arithmetic by
defining division by zero in terms of three definite, non-finite
numbers: positive infinity, negative infinity and nullity. We
describe the transreal tangent function and extend continuity
and limits from the real domain to the transreal domain.
With this preparation, we extend the real derivative to the
transreal derivative and extend proper integration from the
real domain to the transreal domain. Further, we extend
improper integration of absolutely convergent functions from
the real domain to the transreal domain. This demonstrates
that transreal calculus contains real calculus and operates at
singularities where real calculus fails.

Index Terms—transreal arithmetic, transreal tangent, tran-
sreal continuity, transreal limit, transreal derivative, transreal
integral, transreal calculus.

I. INTRODUCTION

RANSREAL [6] and transcomplex [3][7] arithmetic are

developments of Computer Science that are now being
normalised in Mathematics [9]. They define division in terms
of operations on the lexical reciprocal. This lexical definition
contains the usual definition of division, as multiplication
by the multiplicative inverse, but also defines division by
zero. Consequently transreal and transcomplex arithmetic are
supersets of, respectively, real and complex arithmetic. There
is a machine proof [6] and a human proof [7] that tran-
sreal arithmetic is consistent if real arithmetic is. The hand
proof also demonstrates that transreal arithmetic contains
real arithmetic and establishes a similar relationship between
transcomplex arithmetic and complex arithmetic.

Transreal arithmetic uses a subset of the algorithms of
real arithmetic so the general reader will be able to follow
any computation in transreal arithmetic but will have little
chance of deriving a valid, non-finite, computation until the
axioms [6] or algorithms [3] of transreal arithmetic have
been properly learned. The reader is further cautioned that
the relational operators of transreal arithmetic, less-than (<),
equal-to (=), greater-than (>), together with their negations,
form a total, irredundant set of independent operations,
unlike their real counterparts. These relational operators are
described in [4] but there are some typographical errors in
that paper. These are corrected in Appendix B below. In
order to assist the reader, we explain the special properties
of transreal arithmetic where they are first used in a proof.

We begin by describing the transreal tangent [S] so that
non-finite tangents are well defined when we use them
in the development of the transreal, differential calculus.
The trigonometric, tangent function is geometrically defined
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everywhere but it is undefined, in real arithmetic, when it
takes on an “infinite” value at multiples of the angle 7/2. In
the next section we describe the transreal tangent which is
defined everywhere. We then develop transreal limits [5] as a
generalisation of real limits. The main results are: wherever
infinities occur as symbols in extended-real limits, they
occur identically in transreal limits but as definite numbers;
wherever the transreal number nullity occurs in transreal
limits, the corresponding real limit is undefined. We then
develop the transreal derivative [8] so that it contains the
real derivative and operates at singularities where the real
derivative is undefined. We extend the proper integral of real
functions to the transintegral of transreal functions and the
improper integral of absolutely convergent, real functions, to
the transintegral of absolutely convergent, transreal functions.
Thus the transintegral contains all of these real integrals and
extends them to operate at singularities. However, this is a
rather restricted set of functions. Since the preparation of this
integral, a much wider extension of the real integral to the
transreal integral has been developed. That material has been
submitted for publication elsewhere.

All of the proofs given here are developed in terms of
topology, however in Appendix A we appeal to Urysohn’s
theorem to show that there are metrics on the set of transreal
numbers that are compatible with their topology. Further-
more, we construct one such metric.

II. TRANSREAL TANGENT

+7/2
-3n/2

y

A

+7 > x 0

-1t/2
+37/2

Fig. 1. Geometrical Construction of the Tangent

Figure 1 shows the well known geometrical construction
of the tangent, in which a point, p, lies on a circle, with
a unit radius forming the hypotenuse of a right triangle,
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whose internal angle is #. When the sides of the triangle are
measured in Cartesian co-ordinates, the tangent is defined as
tanf = y/x. Part of the graph of this function, for real 6,
is shown in Figure 2, where the discs, e, show where the
tangent arrives exactly at a signed infinity and the annuli, o,
show where the tangent asymptotes to a signed infinity, that
is where it approaches the infinity but does not arrive at it.

+27

Fig. 2. Graph of the Transreal Tangent

The reader should examine Figure 2. The abscissa shows
the angle in radians; the ordinate shows the value of the
tangent function. At zero radians the value of the tangent is
tan = y/x = 0/1 = 0. As the angle increases: the value
increases until it passes exactly through positive infinity at
tan(mw/2) = 1/0 = oo; the value then jumps discontinuously
so that it passes through all negative, real numbers, each
of which is finite, until it arrives at tanm = 0/1 = 0; the
value continues to increase, asymptoting to positive infinity
at 37 /(2—¢) for small, positive ¢, then jumps discontinuously
to negative infinity at tan(37/2) = —1/0 = —oo; the value
of the tangent then increases to zero at tan2w = 0/1 = 0.
Notice that the graph has a least, that is principal, period
of 2w, not m as is commonly understood. The results for
negative angles are similar. For integral k the value of the
tangent is positive infinity at § = 2k7 + 7/2 and negative
infinity at § = 2km — 7/2. The usual graph for the tangent,
computed as the limit of a power series, is similar to Figure
2 but with the difference that the tangent is undefined at
2km £+ w/2 for all integral k. Thus the finite values of
the geometrical tangent have period 7 but the extended-real
values have period 27.

As we lack a geometrical construction for the non-finite,
transreal angles, we define that the value of the transreal
tangent, at non-finite angles, is the limit of the usual power
series, evaluated in transreal arithmetic, so that tan(—oo) =
tanoco = tan® = ®. This is justified by Observation 16 in
Section III-B Transreal Sequences below.

We then take the arctangent as usual, for finite values of
the tangent, and augment this with arctan(—oo) = —n/2,
arctanoco = /2, arctan® = ®. This defines the principal
range of the arctangent for all transreal angles.

III. TRANSREAL LIMIT AND CONTINUITY

In this section we augment the topology of transreal space,
derived transarithmetically from e-neighbourhoods [2], with

the usual topology of measure theory and integration theory.
Amongst other results, we show that transreal space is
a compact, separable, Hausdorff space. We then develop
transreal sequences and establish the transreal infimum and
supremum. We present fundamental results on the limits and
continuity of transreal functions. Taken together this implies
that transreal calculus contains real calculus.

A. Transreal Topology

Transreal arithmetic implies a topology [2], Figure 3, that
gives a definite, numerical value to the result of dividing any
real number by zero. Infinity, oo, is the unique number that
results when a positive number is divided by zero; negative
infinity, —oo, is the unique number that results when a
negative number is divided by zero; nullity, ®, is the unique
number that results when zero is divided by zero. Nullity is
not ordered, all other transreal numbers are ordered. Infinity
is the largest number and negative infinity is the smallest
number. Any particular real number is finite; co and —oo
are infinite; ® is non-finite. The infinite numbers are also
non-finite. The real numbers, R, together with the infinite
numbers, —oo and oo, make up the extended-real numbers,
RE; the real numbers, together with the non-finite numbers,
—00,00 and @, make up the transreal numbers, RT,

In summary the arithmetic and order relation defined in
RT is such that, for each =,y € R, it follows that [6]:

) —® =P, —(00) =—00 and —(—00) = o0,

ii) 071 =00, 1=, 00! =0and (—o0)"! =0,
¢ | ifze{—o0,®}

i) P+ =P, o+ = . and
oo, otherwise
—oo+x:{ o 71fx6:{oo,<1>} ’
—oo , otherwise
P , if z € {0,D}
iv) D x oz =, c0oXxx = —x L, ifz<0 and
%) ,ifx >0

—o0o X = —(00 X ),
V)  —y=x+ (—y) and
vi) zry=xxy L
vii) If z € R then —oc0 < z < oc.
viii) The following does not hold x < ® or ® < .

°
(O

® T T 1
21 0 1 2

—oc0

Fig. 3. Transreal Number-Line

We now define a topology for the whole of RT =
R U {—00,00,®} which contains the usual topology on
RE = {—00} URU {oco} that is used in measure theory and
integration theory. Specifically we note that {—oco}, {oo} and
{®} are singleton sets that are not finitely path connected
to any other numbers. This retains compatibility with an
older view of the topology of the transreal numbers, based
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on computing e-neighbourhoods using transreal arithmetic
[2]. In our new topology we have that {—oco} and {oo} are
closed and not open, while {®} is both closed and open.
We impose neighbourhoods on {—oc} and {oo} so that
the usual topology of measure theory and integration holds,
with the possibility that real and extended-real functions
have limits of —oo and oco. The number & is then left
as the unique, isolated point, reflecting its status as the
unique, unordered number, ®, in transreal arithmetic. We
then rehearse various theorems of sequences, limits and
continuity, all of which show that wherever —oco and oo
occur as limits in transreal calculus they occur identically
in (extended) real-calculus, with the difference that —oo
and co are abstract symbols in (extended) real calculus and
are numbers in transreal arithmetic and transreal calculus.
Furthermore 0/0 is undefined in (extended) real calculus but
in transreal arithmetic ® = 0/0 is a definite number and, in
transreal calculus, it is the limit, for example, of constant,
transreal functions of the form f(x) = ®. Thus real calculus
is extended to transreal calculus.

Definition 1: Let A C RT. We say that z € R” is a
transinterior point related to A if and only if one of the
following conditions holds:

1) z € R and there is a positive € € R such that (z —

g,x+e¢) CA,

2) x = —oo and there is b € R such that [—00,b) C A,

3) @ = oo and there is a € R such that (a,o00] C A or

4) x = and {P} C A.

We denote the set of all transinterior points related to A
as transintA. We say that a set A C R” is transopen if and
only if A = transintA.

Notice that for every A C RT it is the case that
transintA C A.

Theorem 2: The class of all transopen sets in R” is a
topology on R”. That is to say:

1) 0,RT are transopen,

2) Any union of transopen sets is a transopen set and

3) A finite intersection of transopen sets is a transopen
set.

Proof:

1) Notice that transintd = @) and R” C transintR” follow
directly from the definition of a transopen set.
2) Let I be any set and A = U A,, where A, is

transopen foralla € I. If z € Aatehlen x € A, for some
«a € I, whence x € transintA,. We have several cases:
x € R, whence there is a positive ¢ € R such that
(r—e,x4+¢€) C Ay C A; or x = —o0, whence there
is b € R such that [—00,b) C A, C A; or = o0,
whence there is a € R such that (a,00] C A, C A; or
x = ®, whence {®} C A, C A. In every case, x €
transintA, whence A C transintA.

3) Let Ay, Ay C RT be transopen sets. If x € A; N Ay
then x € A; and © € A, whence x € transintA;
and x € transintAs. If x € R then there are positive
€1,62 € R such that (x — ey, + &1) C A; and
(x — eg,x + €3) C Aj. Taking ¢ = min{e, &2}, we
have (x —e,x +¢€) C A1 N Az. If z = —oo then
there are by,by € R such that [co,b;) C A; and
[-00,b1) C Aj. Taking b = min{by, b2}, we have

[—00,b) C A1 N Ay. If £ = oo then there are aq, a5 €
R such that (a1,00] C Ay and (ag,o0] C A;. Taking
a = max{a,as}, we have (aoco] C A; N As. Finally
if = ® then {®} C A; and {®} C As, whence
{®} C A1 N As. In any case z € transint(A4; N Az),
whence A; N Ap C transint(A; N As).

|

Reverting now to ordinary terminology, we call a tran-
sopen set an open set, we call a transinterior point an interior
point, and we denote transintA by int-A.

Observation 3: Notice that the class of sets of the form
(a,b),[—00,b), (a,00] and {®} make a basis! for the topol-
ogy of RT.

We recall that a subset of topological space is closed if
and only if its complement is open.

Example 4: The sets {®}, (—o0,z), (z,00), [—00,x),
(x,00], (—00,00) = R, [—00, 0], [—00,00), (—00,00] and
(x,7) are open on R” where z,y € R and z < y.

Example 5: The sets {—oc}, {0}, {x}, [—00, 2], [z, 0],
(—o0, 1], [x,00), (x,9], [x,y) and [z, y] are not open on RT
where z,y € R and = < y.

Example 6: The sets {®}, {—o0}, {o0}, {2}, [—00, 0],
[—o0, 2], [z, 00] and [z,y] are closed on RT where z,y € R
and x < y. In fact, RT \ {®} = [~o0, 00], RT \ {00} =
RU (1,00] U {®}, RT\ {0} = RU[~00,1) U {®}, RT\
{z} = [~o0,2) U (z,00] U {®}, RT \ [~o0,00] = {0},
R7\ [—o0, 2] = (2, 00] U{®}, R \ [z, 00] = [~o0,2) U{®}
and R” \ [z,y] = [~00,2) U (y, 00] U {®} are open.

Example 7: The sets (—oo, ), (x,00), [—00,z), (z,00],
(—oc,00) = R, [~00,00), (-00,00], (—00,al, [,0),
(z,y), (z,y] and [x,y) are not closed on RT where z,y € R
and z <y .

Proposition 8: R” is a Hausdorff? space.

Proof: Let there be distinct z,y € RT. If 2 or y is ®,
say x = ®, then it is enough to take A = {®}, with B
a neighbourhood® of y, such that ® ¢ B. If one of them
is equal to —oo and the other is equal oo, say * = —o0
and y = oo, it is enough to take a,b € R such that a < b,
A = [—00,a) and B = (b, oo]. If one of them is equal to —oo
and the other is a real number, say x = —oo and y € R, it is
enough to take a positive € € R, b € R such that b < y — ¢,
A = [-00,b) and B = (y — ¢,y + ¢). If one of them is
equal to oo and the other is a real number, say z = oo and
y € R, it is enough to take a positive € € R, a € R such that
y+e<a, A=(a,00]and B=(y—¢,y+e). If x,y € R,
it is enough to take a positive € € R such that 2¢ < |z — y|,
A= (zx—¢,z+¢)and B = (y — e,y + ¢). In every case,
A is a neighbourhood of z, B is a neighbourhood of y and
ANB=0. ]

Proposition 9: The topology on R, induced by the topol-
ogy of R, is the usual topology of R. That is if A c R”
is open on R” then A NR is open (in the usual sense) on
R and if A C R is open (in the usual sense) on R then A is
open on R”',

A basis for a topological space X is a class B of open subsets of X
such that for every open set A of X and z € A there is a element B from
B such that x € B and B C A.

2A topological space, X, is a Haussdorf space if and only if for any
distinct x,y € X, there are open sets U,V C X suchthatz € U,y € V
and U NV = (. See [10].

3 A subset U, of a topological space, is a neighbourhood of z if and only
if x € U and U is open.
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Proof: Let A C R” be an open set on R”. If 2 €
ANR then z € intA because z € A. This fact, together
with z € R, implies that there is a positive € € R such that
(xr—e,x+€) C A, whence (z—¢,x+¢) C ANR. Thus = €
int(A NR), where int(A NR) denotes the interior of A NR
in the usual topology on R.

Now let A C R be open (in usual sense) on R. If x € A
then there is a positive € € R such that (z — e,z +¢) C A.
Thus z € intA. u

Corollary 10: If A C R” is closed on R” then ANR is
closed (in the usual sense) on R.

Proposition 11: RT is disconnected®.

Proof: In fact RT = [—00,00] U {®} and the sets
[—00, 0] and {®} are open. |

Notice that ® is the unique isolated point® of R

Proposition 12: R is a separable® space.

Proof: QU {®} is dense in R”. ]

Proposition 13: RT is compact’.

Proof: Let I be any set and {A,; o € I} be an open
covering of R”. We have that ®, —c0, 00 € U A,. Thus

I
00 € Ag,
and co € A,,. So {®} C A,, and there are a,b € R
with @ < b such that [—00,a) C A, and (b,00] C Ag,.

U Aa, whence [a,b] C (U A )

acl ael
R= U (Aoa NR). So {A,NR; a € I'}is an open covering
acl
of [a,b] on R. As [a, b] is compact on R, there are n € N and

n

ag
there are a,aq,a3 € I such that @ € A,,, —

Furthermore [a,b] C

Qy,...,q, such that [a,b] C U(A NR) (UA"“)
=4
R C | J Aa,. Thus RT = ([—o00, a)Ula, b]U(b, oc] U{®}) C

=4

=1
Corollary 14: Let A C RT. It follows that A is compact
if and only if A is closed.

Proof: Let A c RT. If A is compact, since R” is
Hausdorff space, A is closed. See [10], Theorem 26.3. If
A is closed, since RT is compact, A is compact. See [10],
Theorem 26.2. [ |

B. Transreal Sequences

We use the usual definition for the convergence of a se-
quence in a topological space. That is a sequence, (2, )nen C

4A topological space, X, is disconnected if and only if there are non-
empty, open sets U,V C X suchthat UUV = X and UNV = (. See
[10].

5An element, z, of a topological space, X, is said to be an isolated point
if and only if there is a neighbourhood U C X of = such that UNV = ()
for all open V' C X with V' # U.

A topological space, X, is said to be separable if and only if it has a
dense, countable subset. A subset D, of a topological space, X, is dense in
X if and only if all element of X are elements or limit points of D. See
[10].

7A topological space, X, is said to be compact if and only if, for all
classes of open subsets of X, {Un; o € I} (where I is an arbitrary set)
such that X C U Uk, there is a finite subset {Uq,; 1 < k < n} (for

acl

n
some n € N) of {Un, « € I} such that X C U Ua,, - See [10].
k=1

R”, converges to 2 € RT if and only if for each neighbour-
hood, V C RT of z, there is ny € N such that z,, € V for
all n > ny.

Notice that since R” is a Hausdorff space, the limit of a
sequence, when it exists, is unique.

Observation 15: Let (x,)nen C R and let L € R. Notice
that lim z,, = L in RT if and only if lim z, = L in

n—oo n—oo

the usual sense in R. Furthermore, (x,,)nen diverges, in the
usual sense, to negative infinity if and only if nl;ngc Ty = —00

in RT. Similarly (x,)nen diverges, in the usual sense, to
infinity if and only if nlgr;@ x, = oo in RT.

Observation 16: Let (x,)nen € RT. Notice that
lim z, = ® if and only if there is k£ € N such that z,, = ®
for all n > k.

Proposition 17: Every monotone sequence of transreal
numbers is convergent.

Proof: Suppose (,,)neny C R7 is increasing. The case
for decreasing, transreal (x,, ) pen C RT is similar. If zj, = @,
for some £ € N, then z,, = ®, for all n € N, because
2; <O < xjforall i < kandj > k, whence hm z, = .
If x, = —o0o, foralln € N, then lim z, = —oo Ifxn #+ O,
for all n € N, and zp # —o0, fg;}soco)me k € N, then z,, >
—oo for all n > k, whence there is s = sup{z,; n € N}
and s € RU {oo}. If s = oo then, for each a € R, there
is n, € N such that z,,, > a. Since z,, < x,4; for all
n €N, x, € (a,o0| for all n > n,, whence li_>m Ty = 00.
If s € R then (Zx4n)nen IS @ monotone, bourrlldeog sequence
of real numbers, thus it is convergent. Hence (x,,)nen is
convergent. [ |

Theorem 18: Every sequence of transreal numbers has a
convergent subsequence.

Proof: Let (z)nen C RT.If {n; x, # ®} is a finite
set then clearly hm xyn = ®. If {n; z,, # P} is an infinite
set then denote, by (yk) keN, the subsequence of (x,,)nen Of
all elements of (x,,)nen that are distinct from ®. Let J =
{k; yr > ym for all m > k}. If J is a infinite set, we write
J ={ki,ko,...},withky < ky < ---. Since for each i € N,
k; € J, we have that yy, > yy, for all i < j. Thus (y, )ien
is a decreasing subsequence of (x,,)nen. If J is finite, let k4
be greater than all of the elements of J. Since k; & J, there
is ko > ki such that y,, > yg,. Since ks > k;, it follows
that ko & J. So there is k3 > ks such that yi, > yg,. By
induction we build an increasing subsequence (yg,)ien Of
(zn)nen- In both cases, in agreement with Proposition 17,

(yk, )ien is convergent. [ |

Proposition 19: Let x,y € R”T  and et

(Tn)nen, (Yn)nen € RT such that lim x, = z and
n—oo

lim g, = y. It follows that:
n—oo

1) If 2,y € {—o00,00} and = + y = ® do not occur
simultaneously then lim (z, +y,) =z + y;
n—oo
2) If z,y € {0,00,—occ} and zy = ® do not occur
simultaneously then lim (z,y,) = zy;
n—oo
3) If y # 0 then lim (y,') =y ' and
n—oo
4) If y = 0 and there is £ € N such that y,, < 0 for
all n > k then hm ( ) = —(y™). If y = 0 and
there is £ € N, such that v, > 0 for all n > k, then
lim (y, ') =y~

n—oo
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Theorem 20 (Sandwiches): Let L € RT and let
(ITI/)TLENv (%L)neNy (Zn)neN C RT such that nhﬁngo Tn, = L
and lim z, = L. If thereis N € N, such that z,, <y, < z,
for a’iﬁ'fz N, then lim y, = L.

n— o0
Proof: Let L € R, let (2)nen, (Yn)nens (2n)nen C
T and let N € N such that lim z, = L, lim z, = L

— 00 n— oo

and x, <y, < z, for all n > 7JLV
If L = ®, the result follows immediately from Observation
16.
If L € R, let there be an arbitrary, positive ¢ € R. Since
lim z, = hm zn = L, there are N1, Ny € N such that

n—oo

L—e<uz, foralln>N1 and z, < L+ ¢ for all n > Ns.
Taking N3 = max{N, Ny, No}, we have that L — e < z,, <
Yn < 2 < L+ € for all n > Ns.

If L = —oo, let there be an arbitrary b € R. Since
lim z, = L, there is N7 € N such that z, € [—o00,b)

n—oo

for all n > Nj. Taking No = max{N, N}, we have that

Yn < zp < b for all n > Ny, whence y,, € [—00,b) for all
n Z N2.

If L = oo, the result follows similarly to the previous case.

|

If 2,y € RT, we write 2 « y, if and only if 2 < y does
not hold and we write = % y, if and only if x > y does
not hold. Notice that £ is not equivalent to >. For example
® £ 0 but & > 0 does not hold. See [4] and Appendix B.

Definition 21: Let there be a set A C RT. We say that
u € RT is the supremum of A and we write © = sup A if
and only if one of the following conditions occurs:

i) A={u} or

ii) u £ x for all z € A and for each positive € € R there
is x € A such that u — e < .

And we say that v € R” is the infimum of A and we write
v = inf A if and only if one of the following conditions
occurs:

iii) A = {v} or

iv) z £ v for all z € A and for each positive € € R there
is x € A such that z < v + €.

Definition 22: Let (2, )nen C RT. Let v, = inf{ay, k >
n} and let u,, = sup{xy, k > n}. We define and denote the
lower limit and the upper limit of (x,)nen, respectively, by

liminf x,, := lim v, and limsupx, := lim u,.
n—oo n—oo n—o00 n— o0

Notice that v, 74 Upt1 and u, £ unqq for all n € N,

whence hm v, = sup{v,} and hm Uy = inf {un}
neN
Therefore the notations sup Igf {xk} and 1nf sup{xk} de-
neN

note, respectively, the lower limit and the upper 11m1t
Proposition 23: Let (2,,)nen C R, Tt follows that there

is a limit lim x,, if and only if lim inf x,, = lim sup z,,. In
n—roo n—roo n—oo
hm T, = liminf x,, = limsup z,,.
n—00 n—00

this case,

C. Limit and Continuity of Transreal Functions

We remember that if X is a topological space then
x9 € A C X is a limit point of A if and only if for every
neighbourhood V' of zq it follows that V N (A \ {zo}) =0
The set of all limit points of A is denoted as A’.

We use the usual definition of the limit of functions in a
topological space. That is, if A is a subset of R”, f: A —

R is a function, z( is a limit point of A and L is a transreal
number, we say that hm f(x) = L if and only if, for each

neighbourhood V' of L there is a neighbourhood U of z(
such that f(ANU\ {zo}) C V.
Observation 24: Notice that given xo, L € R, the tran-

sreal limit lim f(x) = L in R” exists if and only if the real
Tr—rTo

limit lim f(z) = L exists in the usual sense in R. The same
T—T

can be said about lim f(x) = =00, lim f(z) = oo,
Tr—rT0o Tr—To

lim f(z)=L, lim f(z)=—o0, lim f(z)= o0,
T——00 r——00 T—r—00

lim f(z) =L, lim f(z)=-o00 and lim f(z) = oc.
T—00 T—00 T—>00

Observation 25: Let xo € RT, notice that lim f(z) = ®
T—rT0
if and only if there is a neighbourhood U of zy such that
f(z) =@ forall z € U \ {xo}.
Proposition 26: Let ACRT, f: A - RT, o € A’ and
L € RT. The following two statements are equivalent:

D lim f(z) =

T—T0
D) g, flen) =

lim x, = .
n— oo

Proof:Let ACRT, f: A RT, 29 € A’ and L € RT.
Suppose that lim f(z) = L. Let (zp)nen C A\ {zo} such
that hm Ty = ch Let V' be an arbitrary neighbourhood of

L. Then there is a neighbourhood, U, of xg such that f(AN
U\{zop}) C V. Since lim z, = xg there is an ny such that
—

wn € U forall n > nyr. Thus f(an) € F(ANU\ {zo}) € V
for all n > ny.
Now suppose hm f(xz) # L. Then there is a neigh-
T

bourhood, V, of L such that, for eachln € N, there is
x, € A such that 0 < |z, — 29| < — (if 29 € R) or

L for all (zp,)nen C A\ {zo} such that

Ty € (—00, —n) (if zg = —00) or z,, € (n,0) (if xg = c0),
and f(zy,) ¢ V. Hence (zp)nen C A\ {20}, lim z, =20
n—oo

and lim f(z,) # L. [ |
n— oo
Proposition 27: Let L, M € RT, A ¢ RT, with functions
f,g: A— RT and ro € A’ such that lim f(x) = L and
T—rTo
lim g(z) = M. It follows that:

r—rxo

1) If L, M € {—o0,00} and L + M = ® do not occur
simultaneously then lim (f + g)(x) = L + M,
T—x0

2) If L, M € {0,00,—0c0} and LM = & do not occur

simultaneously then lim (fg)(z) = LM;
Tr—rT0o
. 1 1
3) If M # 0 then IILHU}O <f (x) = i and

4) If M = 0 and there is a neighbourhood, U, of z,
such that g(z) < O for all z € U \ {zo}, then
lim | —

(x) = —=(M~YH. If M =
z—=z0 \ ¢
a neighbourhood, U, of ¢, such that g(x) > 0 for all
. 1 _
x €U\ {xo}, then mli}rgo (g) (z) = M1

0 and there is

We use the usual definition of continuity in a topological
space. That is if A C R”, f : A — R” is a function and
xg € A, we say that f is continuous in z if and only if, for
each neighbourhood V' of f(x¢), there is a neighbourhood
U of z such that f(ANU) C V.

Observation 28: Notice that given zy € R, f is continu-
ous in x¢ in RT if and only if f is continuous in x( in the
usual sense in R.
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Observation 29: Notice that if ® € Dm(f) (Dm(f) de-
note the domain of f) then f is continuous in ®.

Proposition 30: Let AC RT, f: A — R” and 2y € A.
The following two statements are equivalent:

1) f is continuous in xg,
2) lim f(x,) = f(zo) for all (z,)ney C A and
n— 00

lim x, = .
n— oo

Proposition 31: Let ACRT; flg: A—=RT andzgc A
such that f and g are continuous in z¢. It follows:
1) If f(xg),g(xo) € {—00,00} and (f + g)(zp) = P do
not occur simultaneously then f + g is continuous in
Zo;
2) If f(x0),g9(x0) € {0,00,—00} and (fg)(zo) = ® do
not occur simultaneously then fg is continuous in zg;

3) If g(xg) # 0 then — is continuous in xy and
4) If g(xg) = 0 and a neighbourhood, U, of z(, has

g(x) >0 for all x € U, then — is continuous in .
g
Notice that if g(zp) = 0 and there is no neighbourhood,

1
U, of g, such that g(z) > 0 for all € U, then — is not
g

continuous in .

Proposition 32: Let A, B C RT, f : A — R and ¢ :
B — RT such that f(A) C B. If f is continuous in zo and
g is continuous in f(x¢) then g o f is continuous in xg.

Proposition 33: Let A be an open set such that A C R”
and let f: A — R7T. It follows that f is continuous in A if
and only if f~1(B) is open, for all open B C RT.

IV. TRANSREAL DERIVATIVE AND INTEGRAL

In this section we extend the concepts of derivative and
integral from the domain of real numbers, R, to the domain
of transreal numbers, R”, largely replacing earlier work on
this topic [1]. We draw heavily on the results in [4][5][8].

A. Transreal Derivative

Definition 34: Let A C RT, f: A — R” and 2y € A.
Here A’ denotes the set of limit points of A.

i) If xg € RN A, we say [ is differentiable at x
on RT if and only if f is differentiable at xy in
the usual sense. And in this case, f'(x¢) is called
the derivative of f at xo on R” and it is denoted as
T D’@T (xO)-

i) If 2o € {—00,00} N D’ (where D denotes the set
of points in A at which f is differentiable in the
usual sense), we say f is differentiable at zq on R”
if and only if the following limit exists

lim f'(z).

Tr—xo

And if this limit exists then it is called the derivative
of f at o on R™ and it is denoted as ffr (o).

i) If 9 ¢ A’ we define the derivative of f at xy on
RT as fir(zo) := @.

Note that we choose an intuitive way of defining the
derivative on R” as the slope of the tangent line. So the
derivative, on R”, at a real number is the usual derivative
at that number. And we have the intuitive view that if the
limit of slopes of the tangent lines at x, when z tends to

00 (or —0), is L € R then the slope of the tangent line
at oo (or —oo) is L. Because of this we choose to define

fir(o0) = lim f(z) (fpr(—o0) = lm_f'(x)).
Observe that it is not possible to define the derivative at
xg ¢ A’ by way of a limit because, as is known, if we try

to apply the limit definition at x¢ ¢ A’, any L € RT could
be the limit lim f(x). In fact, since xg ¢ A’, there is a
T—xTQ

neighbourhood U of z such that ANU = (), hence for any
neighbourhood V of L, f(x) € V forall z € ANU. Because,
vacuously, there is no z € ANU such that f(x) ¢ V. Rather
than accept the indeterminacy of the derivative at xo ¢ A’,
we choose to define fgr(x9) = ®. This will presently lead
us to the position where the exponential is identically its own
derivative with e’(z) = e(x) so that the usual properties of
this important function hold when extended to R”'.

Example 35: Let f(x) = e*. It follows from Definition 34
that f(z) = e” for all z € RT. Particularly, f}(—oc0) =
0, frr(oco) =00 and fir(®)= .

Observation 36: Note that differentiability on R” does
not imply continuity. For example let f : RT — R”, where

et Lifx#oo
f(“””)_{ 1, ifr=o00
Clearly f is not continuous at oo but lim f'(z) = oo,
T—0o0

whence f is differentiable at oo on R”'. For the definition of
e® in RT see [1].

The usual derivative is generally defined as a rate of
change of a function. That is, if g € R then f'(zg) =
Lo (@) = fwo)
r — X
itly, but the derivative, on RT, at oo or —o0, is also a rate of
change of a function. This is shown in propositions 38 and
39. First we need the following definition.

Definition 37: Let ACRT, f: Ax A—=RT, x5 A
and L € R”. We say that

lim f(z,y) =L

T—xg
y—rzQ

. Our definition may not show it explic-
rT—rxo

if and only if, given an arbitrary neighbourhood V' of L there
is a neighbourhood U of z( such that f(z,y) € V whenever
x#yand z,y € ANU\ {xo}.

Note that mli_pg(J flx,y) # f(x,y), where

m
o (z,y)—(z0,70)
f(z,y) denotes the limit, in the usual sense, of a

y—ax
lim
(z,y)—(z0,70) ) .
function of two variables. In other words, these are different
limiting processes.
Proposition 38: Leta € Rand f : (a,00] — R” such that

f is differentiable in (a, 0o0). It follows that f is differentiable

at oo if and only if there exists lim M And in
—e  TTY
this case, ) — £()
/ = lim "W
frr(00) = lim ——"— )

Proof: Let a € R and f : (a,00] — R7T such that f
is differentiable in (a,00). Observe that f is continuous in
(a,0).

First let us suppose that fH’QT(oo) = L € RT, that is
li)n;o fwr(z) = L. Let V be an arbitrary neighbourhood of
L. Then there is M > a such that fgr(z) € V for all
z € (M,00). Let 2,y € (M,o0) such that x # y. Say

(Advance online publication: 17 February 2015)



TAENG International Journal of Applied Mathematics, 45:1, [JAM 45 1 06

x < y. Since f is continuous in [z,y] and differentiable in
(z,y), by the Mean Value Theorem, there is z € (x,y) such

that f(:c;:;/”(y) = fgr(2). Since z € (z,y) C (M, <) we

have

flz) = fy)

T -y
f@) = fw) _,

r—y

= f]},gT(Z) eV

Thus lim
T —r oo
y—r 00

f@) = ) = L. Note that L #

® for fir(2) € R for all z € (a,00). If L € R, let there be
an arbitrary € € R™. Then there is M > a such that f% <

flz) = fy)

T —

Now suppose that lim

—L< g whenever z,y € (M, 00) and = # y.

For each x € (M, 00), taking the limit in the inequality with
y tending to x, we obtain —e < - < lim M —
y—r Yy —T

L < < < &, whence —¢ < fir(x) — L < ¢, therefore
lim fgr(z) = L.If L = oo, let there be an arbitrary N €

xr—r0o0
R*. Then there is M > a such that 2N < [(@) = fly)
x

)
whenever x,y € (M, 00) and x # y. For each z € (M, 00),
taking the limit in the inequality with y tending to z, we

obtain N < 2N < lim M whence N < f'(x),
y—e Yy —
therefore lim fgr(z) = co. If L = —oo the result follows
T—>00
similarly. [ ]

Proposition 39: Let a € R and [—oc0,a) — RT such that
f is differentiable in [—o0, a). It follows that f is differen-

tiable at —oco if and only if there exists lim M.
oo Ty
And in this case,
o) = nm L@ =)
Jfpr (=00) ATy

Proof: The proof is similar to the proof of Proposition
38. ]

What about the limit ylimo M for zg € R?
voeg  TTY
Propositions 40 and 42 show that it is still the case that

flz) = fy)
y

Jir (xo) = lim but additional conditions must

=T _
y—zg x

be satisfied.
Proposition 40: Let A C R, f : A — R and 2y €
ANA' If f is continuous at xg and there exists the limit

lim0 M then f is differentiable at xo and
vom 7Y
firteo) = Jig, FEOT0,

y—rzg

Proof: Let f be continuous at z such that there exists a

flz) = f(y) v lim flz) = f(y)

limit IILIQ ————=, say lim = a. Since
Yz =Yy Yooy rT—y

f is continuous at zp, lim f(y) = f(xp). Let there be an
Y—To

arbitrary e € R™. Then there is a § € R™ such that for each
x € AN (xg— 9,20 +9) \ {zo}, it follows that
e fl@) - fly) €

< —— —a<
2 T —y “ 2

forall y € AN (zo — 3,20 +9) \ {zo}.
Taking the limit in the above inequality with y tending to

To, we obtain _Z < M —a< E. Thus
2 T — xg 2

e @S e
2 r — X 2

for all x € AN (g — 6,20+ ) \ {z0}, whence fir(xo) =
lim f(z) — f(z0) _ -
T—To Tr — X

Observation 41: Notice that in Proposition 40, the hy-

pothesis of the continuity of f is, in fact, needed. For instance
let f: R — R, where

_Jx ,ifx#0
f(x)_{ 1, ifz=0
Clearly f is not differentiable at 0, but lin% M =
o vy

1.

Proposition 42: Let ACR, f: A— Randxzg € ANA’.
If f is continuously differentiable in xy (which means f is
differentiable in zo and ff&T is continuous in zg), then there

exists lim M and
o TTY
:h:r?g f(-T;Z : ;(y) — f]{gT (1'0)

Proof: Let ACR, f: A— R and z9g € AN A’ such
that f is continuously differentiable in x(. Let us denote, as
a, the derivative of f at x, that is, f},r(20) = a. Let there
be an arbitrary ¢ € R*. Since [ is continuous at xg, there
isa d € RY such that fyr(2) € (a —¢e,a+¢) whenever z €
AN(zg—9,20+9). Now let z,y € AN(xg—0,20+9)\{zo}
such that x # y. Say = < y. Since f is continuous in [z, y]
and differentiable in (z,y), by the Mean Value Theorem,

there is z € (z,y) such that w = fgr(2). Since
z € (x,y) C AN (xg— b, 20 + ), we have
7“:2 = Zj(y) = fir(z) € (a—e,a+e).
Thus lim M =aq. [ ]
T T—y

Observgltion 43: Notice that in Proposition 42, the hy-
pothesis of the continuity of fD’QT is, in fact, needed. Let
f: R —= R, where

fz) = 22 sin <zlt> ,ifx#0
0 ,ifx=0
fy)

r—=y

Note that f7,,(0) =0 but lim fl@) = fy)

I—}IO
y—zg

Indeed given an arbitrary 6 € R™, let us take a positive,

does not exist.

even integer, n, that is sufficiently large that — € (=4, ).
nm

1 1 1
Denotingz = —,y= ——and 2 = —————, we
nw nT+ 5 (n+1)m+ 7%
— 4
have z,y,z € (—6,0) and 1@~ 1) = - " and
T —y 2nm+m

fl@)=f(z) __ 4n

T —z T 6nr+ 971
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If we make the definition of

i @) = ()
vy TTY
withdraw the hypothesis of the continuity of f},; in Propo-
sition 42. This is explained in the following proposition.
Proposition 44: Let ACR, f: A —- Rand zp € AN
A" NA!_If fis differentiable at o then, given an arbitrary
neighbourhood V' of fir(x0), there is a neighbourhood U

fz) = fy)

some changes to

then, under suitable conditions, we can

of xg such that €V, whenever x,y € ANU

and x < xo < y.

Proof: Let ACR, f: A—Rand 2 € ANA” NA/,
such that f is differentiable at x. Let us denote as a the
derivative of f at g, that is fpr(z0) = a.

Let V = (a — ¢,a + ¢) for some ¢ € RT. Then

there is a § € RT such that Mfa < <

T — X9 3

whenever © € AN (zg — §,20) and M — a‘ <
Y — o

 whenever y € AN (xg,xz0 + 9).
( Tg — 0, xo + 6) such that z < zp < y. Observe

Now let z,y €

that &) = 1) _ Y~ 0 ﬂw—fu@_a>_
T — y—x Yy — xg
Yy — To (f f (o) _a>+<f($)_f(x0)_a> and
T — X0 Tr — X
that yyi < 1. Hence
‘f(w)—f(y)_ ) ‘ y— a0 ’f () | .
x—y Y — To
Y— 2o f(x)—f(ﬂfo)_a’+
y—x T — X
7]"(@ = J{@o) - E+E+§ = €. Thus 7‘“%) — ) €
T — T 3 3 3 7 T —y
|

Observation 45: Notice that the converse of Proposition
44 is false. Indeed, let f be the function in Observation 41.
For all neighbourhood V' of 1, there is a neighbourhood U

of 0 such that M

r—y
x < 0 <y, but fis not differentiable at 0. This means that,

even with the change to the definition of hm0 M,
T—xT T — y

y—xq

the hypothesis of the continuity of f in Proposition 40 cannot
be withdrawn.

€ V, whenever z,y € ANU and

B. Transreal Integral

Definition 46: Let a,b € RT. We define:

a) (a,b) ;== {z € RT; a <z < b}, (a,b] := (a,b) U {b},
[a,b) ;== {a} U (a,b) and [a,b] := {a} U (a,b) U{b}. We say
that A, with A  RT, is an interval if and only if A is one
of these four types of sets.

Notice that we could define [a,b] = {x € RT; a <z <
b}, but, in this way, we would have [a, ®] = (). However,
from our definition, we have that [a, ®] = {a, ®}. Note also
that (a,®) =0 = (®,a), (a,?] = {®} =[P,qa), [a,P) =
{a} = (®,a] and [®,a] = {®,a} for all a € RT.

b) If I € {(a,b), (a,b],[a,b),[a,b]}, we define the length

of I as
0 Lif T =0
|I|:={ k—Fk , if I ={k} for some k € RT
b—a , otherwise

Notice that we could define, simply, |I| = b — a. But
|| would not be well defined. Because we would have, for
[a,®)] = ® —a = ® and |[a,a)] = a—a =0,
but [a,®) = {a} = [a,a). And, thus, we would have the
absurdity ® = |[a, ®)| = |[a,a)| = 0.

c) Let A C RT. We say that X, is the characteristic
function of A if and only if

1 ,ifzeA

X“@—{(),ﬂx¢A
d) Let [a, b] be an interval. A set P is said to be a partition
of [a,b] if and only if there are n € N, zg,...,x, € [a,]]

such that P = (xo,...,x,) where 9y = a, x,, = b and,
furthermore, if n = 2, xg < zy and if n > 2, 29 < 21 <
Ll Tyl < Ty
Notice that we could require, simply, a = zo < z; <
- < xp_1 < x, = b but then the interval [a, ], for a € R
would not have any partitions because a < ® does not hold.
Note also that, in the case n = 2, we require xy < x1 in order
for P = (a, a, ®) to be a partitions of [a, P]. This allows us to
define step functions on [a, ], ¢ = ©(a)X{(q,q)+©(P)X(a,q]-
e) We say that ¢ : [a,b] — R is a step function on [a, b]
if and only if there is a partition P = (xq,...,2,) of [a,]]
and ¢, ..., ¢, € RT such that

o= X,
=1

where [; = (z;_1,2;] for all j € {1,...,n}.
We denote as S([a, b]) the set of step functions on [a, b]
and note that the description of a step function is not unique.

Z c; X1, be a step

j=1

function on [a, b]. We define the integral in RT of o on [a, b]
> gl

as ,
/ o(x) dx =
a j=1

T
R 35 ej#0

Definition 47: Let a,b € RT and ¢ =

n

Notice that the integral of a step function is independent
of the particular description used.

Definition 48: Let a,b € R and let there be a function
f :[a,b] — RT. We say that f is integrable in RT on [a, b]
if and only if

b
inf / p(x) dz; ¢ € S([a,b]) and p £ f » =

RT

b
sup / o(z) dz; o € S([a,b]) and f £ o
R

And in this case the integral of fin R” on [a, b] is defined as
b
|ty da =
RT

b
inf / o(x) dz; ¢ € S([a,b]) and ¢ £ f
T

See Definition 21 to recall sup and inf.
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Notice that if ¢ is a step function on [a, b] then definitions
47 and 48 give the same result.

Proposition 49: a) Let a,b € R and let there be a bounded
function f : [a,b] — R. It follows that f is Riemann
integrable in Rb if and only if Z is integrable in R, And

f@)de= | f@)de
a RT(I

b) Let « € R and let f : [a,00] — R be a function
that is Riemann integrable on every cloigd subinterval of

|f](z) dx exists

in this case,

[a, 00). The improper Riemann integral

if and only if f is integrable in R7. And in this case,

/f da:—/a F(x) da.

RT
c) Let b € R and let f : [—00,b] — R be a function
that is Riemann integrable on every closed S})Jbinterval of

(—o00,b]. The improper Riemann integral / |f|(z) dx

exists if and only if f is integrable in R And in this case,

/_boo F@) dz = /_boo F(z) da.

d) Let f : [-00,00] — R be a function that is Riemann
integrable on every closed subinterval of (—oo0,00). The

improper Riemann integral |f|(x) dz exists if and only

— 00

if f is integrable in R”. And in this case, / flz) de =

[ O; f(z) da
o

e) Let a,b € R and let f : [a,b] — R” be a function such
that f((a,b]) C R, f(a) = oo and f is Riemann integrable
on any subinterval in (a, b]. The improper Riemann integral

b

/ |f|(z) dx exists if and only if f is integrable in R And

/ab f(z) dx

R
f) Let a,b € R and let f : [a,b] — R” be a function such
that f([a,b)) C R, f(b) = oo and f is Riemann integrable
on any subinterval in [a, b). The improper Riemann integral
b

x) ax exists 1f and only 1 1S 1ntegrable 1n . An
[ 1516 dr exiss it and only it 7 i inegrable in . And

/ab f(z) da

R
Proof: a) It is sufficient to observe that, since [a,b] C R

b
and f : [a,b] — R, the integral / f(z) dx is precisely

b
in this case / f(z) de =

b
in this case / f(x) de =

RT
the Darboux integral, which is known to be equivalent to the

Riemann integral.

b), ¢), d), e) and f) It is sufficient to note that if
[a,0] C [~o0,00] and f : [a,b] — [—o00,00] is a non-
negative function that is Lebesgue integrable then the integral

/ f(z) dz is equal the Lebesgue integral of f on (a,b).
gr"
See [12], Section 2.1 and use the Theorems 37, 38, 45 and

46 in [11]. [ |
Example 50: Let f : RT — R7T and let there be an

aribtrary a € RT. It follows that:

a) If a € R and f(a) € R then /a f(z) dz

Because / f(z) de =
RT

b) If a € {—00, 00, P} then / f(z) de = ®. Because

[ e ¥

fla)l(a,a]| = f(a) x ® = ;
c) / f(z

-/ " @) d
X

P
see this, let ¢ € S([a,P]). Whence / p(x) de =

R
fa)[(a,a]| = f(a) x 0 =0;

r = &. In order to

p@)@all + o@) —
f(z) de = .

(a)l(a,
¢(a)l(a,

ll + p@)(a9]] =
al| + ® = ®. Thus

T

The reader will appreciatﬂg that it would be possible to
define the integral in R” in a more general way, for example
by defining it in a manner analogous to the Lebesgue integral,
if we replace step functions with single functions. However,
in this paper, we had the more modest aim of giving the
first, detailed definition of the integral in R”. We choose a
definition that extends the concept of the integral to R” in a
simple way. We then found that it is totally coincident with
the Riemann integral when the domain and codomain of a
function are subsets of the real numbers: Dm(f) C R and
CDm(f) C R.

V. DISCUSSION

The transintegral, as described above, is the first mathe-
matical structure that has been defined for which the trans
version is less general than the usual one. (We now know
that there is a more general definition of the transintegral
that contains the real integral. A paper on that subject has
been submitted for publication elsewhere but we press on,
here, with a notational device that admits all of the results
of real calculus to transreal calculus. We mention it because
this notational approach may be of more widespread use.)

One possibility for defining the transintegral, so that it
contains the usual integral, is that we should define the
transintegral asymptotically toward the infinities, as usual,
and then observe that the the infinities are singleton points
which make no additional contribution to the transintegral.
The resulting transintegral differing from the usual one only
in that it is defined over functions of transnumbers.

While a difference in integrals remains, we may handle the
difference notationally. Consider the symbols for the usual
integral: f; f(x) dx. We describe a notation to indicate
whether a limit of integration, say a, is exact, * = a, or
asymptotic, * — a, for transreal a, z. We specify the reading
of an isolated symbol, a, so that a is a shorthand for x = a
when ¢ € RU {®} and «a is a shorthand for x — a when
a € {—00,00}. When the shorthand does not apply we write
the limit explicitly. For example the fragment fooo indicates
the integral from exactly zero, asymptotically toward infinity,
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as usual, and the new fragment f;jgo indicates the integral
asymptotically from zero, exactly to infinity. This notation
preserves the whole of the usual notation for integrals,
preserves all of the results of real integration and introduces
new, non-finite results.

We believe it is important to examine many possible
definitions of the transintegral and their uses before coming
to a judgement on what the standard definition should be.
This is entirely normal in a new area of mathematics, as re-
capitulated in the various revisions of the transmathematical
structures developed to date.

The transreal derivative is and, in future, the transreal inte-
gral will be, supersets of their real counterparts. They differ
from their real counterparts only in being more powerful:
they give solutions at singularities where real calculus fails.
Hence software that implements transreal calculus is more
competent than software that implements real calculus.

However, both kinds of calculus and software are partial.
There are occasions when both a real limit and a transreal
limit fail to exist, say where the function oscillates, unbound-
edly, toward both positive and negative infinity. In these
cases a solution can be had mathematically by operating
on solution sets. Where the limit, derivative, integral, or
whatever does not exist the solution is the empty set. In
general it is impractical for a computer to operate on arbitrary
sets but it may be feasible simply to return a flag to say that
the limit, etc. does not exist.

It is already known that the methods just developed are
sufficient to extend Newtonian Physics to a Trans-Newtonian
Physics that operates at singularities. We hope the present
series of paper will build confidence in transmathematics to
the point where such results are accepted for publication.

VI. CONCLUSION

We add the usual topology of measure theory and inte-
gration theory to the space of transreal numbers and prove
that this space is a compact, separable, Hausdorff space.
Using these results we extend the limit and continuity of real
functions to transreal functions. We extend real derivatives
and integrals so that they hold over functions of transreal
numbers. This gives us a transmathematics which operates
at mathematical singularities.

In the following Appendix A we also prove that the
space of transreal numbers is metrisable and we derive a
real-numbered metric for the transreal numbers. Hence the
transreal numbers are a metric space.

Separately we show that the usual geometrical construction
of the tangent is defined for infinite values of the func-
tion when it is calculated using transreal arithmetic. We
describe the transreal tangent and transreal arctangent as
total functions of transreal numbers. We show that while
the finite values of the transreal tangent have a primitive
period of m, the function has a primitive period of 2w
when the infinite values are considered because the transreal
tangent alternately asymptotes to and arrives at an infinity
on alternate periods of 7.

APPENDIX A
METRICS

All of the proofs, given above, are developed in terms of
topology but the Urysohn Metrisation Theorem[13]® shows
that metrics exist for the set of transreal numbers which are
compatible with their topology. Indeed the set of transreal
numbers is compact (Proposition 13), hence regular®. Fur-
thermore the class of sets of the form (a,b), [—00, b), (a, <]
and {®}, where a,b € Q, make a countable basis (Observa-
tion 3) for R”, hence, by the Urysohn Metrisation Theorem,
it is metrisable.

In addition to the existential assurance given by the
Urysohn Metrisation Theorem, we can explicitly construct
a metric in RT. This construction follows below. We note,
in passing, the earlier definition of a transmetric which gives
the distance between any two transreal numbers in terms of
a transreal number [2].

Let ¢ : [—00,00] — [—1, 1] be defined as

-1 , if x = —00
T .
@(m): ]_—|—|:L'| s if r e R
1 if r =0

)

Notice that ¢ is a increasing function and ¢ is a homeomor-
phism'®. Now let d : R” x RT — R” be defined as

dlz,y) =4 2, if ot =® orelse y = .
lp(z) — o(y)|, otherwise

Proposition 51: RT is metrisable. More specifically, d, as
defined above, is a metric on R which induces the topology
of RT.

Proof: Let us see that d is, in fact, a metric on RT,
Clearly, for all z,y € RT, d(z,y) = 0 if and only if x = y,
d(z,y) = d(y,x) and d(z,y) > 0. If z,y,2 € [—00, 0]
then d(z,2) = [p(z) — ()| = lp(x) - ©(y) + o(y) —
e(2)| < le(x) — o) + |e(y) — ¢(2)] = d(z,y) + d(y, 2).
The reader can verify that triangular inequality is also true
when z,y, z € [—00, 0] does not hold.

Now let us see that the topology induced by d and the
transreal topology are the same. Recall that, in metric spaces,
B(x,r) denotes the ball of centre x and radius r, that is,
B(z,r) = {y € RT; d(y,z) < r}. Let us see that every
open set in the transreal topology is also open in the topology
induced by d. Let U be an arbitrary open set in the transreal
topology and z € U. If x = ® then we take B(x,1) and
so B(z,1) = {®} C U. If = # ®, since p~! is continuous,
there is § € R with 0 < § < 2 such that y € U whenever
lo(y) — ¢(x)] < 6. So B(x,0) C U.

Now let us see that every ball on metric d is an open set in
the transreal topology. Let = be an arbitrary transreal number,
z € RT, and let r be an aribitrary, positive, real number,

v

8Urysohn Metrisation Theorem: Every regular space X with a countable
basis is metrisable ([10], Theorem 34.1).

A topological space is regular if and only if all singleton sets are closed
and, for each pair consisting of a point = and a closed set B disjoint from
{x}, there exist disjoint open sets containing = and B, respectively.

A topological space is metrisable if and only if it possesses a metric
which is compatible with their topology.

9Every compact space is regular ([10], Theorem 32.3).

10A homeomorphism is a continuous bijective function whose inverse is
continuous.
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r € R.If ¢ = ®, we take the neighbourhood U = {®}
of @, hence U C B(x,r). If x # ®, since ¢ is continuous,
there is a neighbourhood U of x such that |p(y) —¢(z)| < r
whenever y € U. So U C B(x, ). [ |

As RT is metrical, all results on metric spaces hold.

Corollary 52: RT is a complete, metric space.

Proof: Every compact, metric space is complete and R”

is compact and metric. ]

As RT' is complete, all results on complete, metric spaces
hold.

APPENDIX B
TRANSREAL RELATIONAL OPERATORS

This appendix corrects typographical errors in [4]. As
the transreal relational operators are used throughout the
present paper so it is essential that they are given correctly.
The heading rows of tables now correctly show rsy; in the
not-equal table and the not-less-or-equal table the last row
correctly shows T, T, T, F; in the not-less-or-greater table the
last row correctly shows F, F, F, F.

There are three basic, transreal, relational operators: Iess
than (<), equal to (=), grater than, (>). These operators are
mutually exclusive so they can be combined in 2® = 8 ways.
All 8 combinations are distinct and meaningful, including the
empty operator with no occurrences of the basic operators.
All 8 combinations can be combined with the logical nega-
tion operator (!). This yields 2 x 22 = 2% = 16 distinct
and meaningful operators. The multiplication table for each
operator is given here.

The relational operators can be formalised as production
rules of the form a ¢ b — ¢, where e is the operator.
Hence “a e b” is replaced by “c”. The empty operator is
indicated by epsilon (€) so “aeb” is identical to “ab” whence
the empty operator implements the identity concatenation
ab — ab. This is shown in the first multiplication table,
entitled Epsilon. This operator occurs, trivially, in all written
languages, including computer languages. Combining the
empty operator with the logical negation operator yields
“aleb” which is identical to “a!b” and, following custom, we
take the operator “!” as a unary, right associative operator, so
that, for example, “X!T” is replaced by “XF” where T stands
for True, F stands for False and X stands for an arbitrary
symbol. This is shown in the second multiplication table,
entitled Not Epsilon. This operator, with a possibly different
glyph, occurs in most high-level, computer languages. The
remaining multiplication tables are truth tables. The labels
on the rows and columns indicate the arguments: negative
infinity (—o0), an arbitrary real number (r;), positive infinity
(c0), nullity (®). As usual T stands for True and F stands
for False. In a departure from the usual notation, an asterisk
(*) stands for a conditional truth value. For example, in the
third table, entitled Less, the asterisk in the row labeled r
and column labeled 75 is to be replaced by the truth value of
r1 < 79, and similarly in the other tables. This recruitment
of the real relation, less than, to define the corresponding
transreal relation, is a context-sensitive reading of the sym-
bol <. Computer scientists are generally comfortable with
context-sensitive readings but many mathematicians regard
them as an abuse of notation; even so, such notations are
very common and are easily understood.

It can be seen, by inspection, that the multiplication tables
are distinct. The labour of inspecting the tables can be
reduced by exploiting symmetries. It is sufficient to notice
that the first two elements, respectively FT, TF, FF of the
first row of the tables Less, Equal, Greater are distinct and,
similarly, TT, FT, TF of Less or Equal, Less or Greater,
Greater or Equal are distinct.

Epsilon
e| b
a | ab

Not Epsilon

'e| F T
a | aT aF
Less

< —00 19 oo P
—00 F T T F
T F * T F
F F F F

P F F F F

Equal
= -0 rg oo P
—00 T F F F
71 F * F F
00 F F T F
P F F F T
Greater

> —00 rp o0 P
—00 F F F F
71 T * F F
00 T T F F
P F F F F

Less or Equal

<= |-00 1, o P
—00 T T T F
T F * T F
00 F F T F
P F F F T
Less or Greater
<> | -0 19 o0 @
—00 F T T F
1 T * T F
00 T F F
P F F F F
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Greater or Equal

>= | —o00 1, o P
—00 T F F F
T T * F F

T T F

P F F T

Less or Equal or Greater

<=>| - 19 00 P
—00 T T T F
Ty T T T F
T T T F

P F F F T

Not Less
l< | —0 193 00 @
—00 T F F T
71 T * F T
00 T T T
P T T T
Not Equal
l= | —0 r5 o0 @
—00 F T T T
] T * T T
00 T F T
P T T F
Not Greater
I'> | —0 r5 o0 @
—00 T T T T
T F * T T
00 F F T T
P T T T
Not Less or Equal

l<=| -0 19 o0 @
—00 F F F T
71 T * F T
00 T T F T
P T T T F

Not Less or Greater

l<>| -0 rp oo @
—00 T F F T
1 F * F T
F F T T

) T T T T

Not Greater or Equal

I>= | -0 13 o0 @
—00 F T T T
1 F * T T
o) F F F T
) T T T F

Not Less or Equal or Greater

l<=>| -0 r, oo @

—00 F F T

ry F F F T

F F F T

P T T T F
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