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Abstract—A first-order partial differential equation is de-
rived for the cumulative distribution function of the terminal
state value in a scalar linear continuous-time system with
random disturbance and noise corrupted measurements. The
system is subject to a saturated linear control strategy. The cu-
mulative distribution functions of the initial state, the estimator
error and the disturbance are assumed to be known. Illustrative
examples are presented.

Index Terms—linear continuous-time system, robust trans-
ferring strategy, noisy measurements, random disturbance,
terminal state distribution.

I. INTRODUCTION

Various real life control problems (including navigation
and interceptor guidance) can be formulated as a problem of
transferring a controlled system by bounded control from a
set of initial positions to a prescribed target set in the state
space at a prescribed time in the presence of noise corrupted
state measurements and unknown bounded disturbance [1],
[2], [3], [4], [5], [6], [7]. In many cases, such a problem can
be transformed by a scalarizing transformation [8], [9] to a
problem of robust transferring to the point (final time, zero)
in the (time, state) plane.

Several classes of deterministic feedback control strategies
that robustly transfer a scalar system from some domain of
initial positions to the point (final time, zero) are known,
assuming perfect state information. The family of robust
transferring strategies includes various linear, saturated linear
and nonlinear strategies [10], [11], [12], [13], [14], [15], [7],
as well as a differential game based bang-bang strategy [16],
[17].

In real life applications, the state information is corrupted
by measurement noise and only part of the state variables can
be directly measured. These facts can lead to significant dete-
rioration in the performance of theoretically robust transfer-
ring strategies. Thus, an estimator, restoring and filtering the
state variables, becomes an indispensable component of the
control loop [4], [5]. Due to the noisy measurements and the
uncertain (random) disturbance the control function receives,
instead of the accurate state value, a random estimator output.
Thus, if a nonlinear transferring control strategy is applied,
the scalar state variable is governed by a nonlinear stochastic
differential equation. Along with navigation and interceptor
guidance problems, stochastic differential equations arise in
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economics, finance and some other applications (see, e.g.,
[18], [19] and references therein).

Since the state variable is a solution of a stochastic
differential equation, its terminal value becomes a random
variable with an a-priori unknown probability distribution.
In order to appreciate the performance deterioration of a
deterministic robust transferring strategy by using such a
stochastic data, the probability distribution of the terminal
state value has to be found.

Analysis and solution of nonlinear stochastic differential
equations are extremely difficult (see, e.g., [20], [21]). There-
fore, in the current practice, the solution of such equations is
obtained by Monte Carlo simulations [22]. In particular, this
approach was applied for evaluating the state probability dis-
tribution in the interception problem with any given system
dynamics, estimator/control strategy combination, specified
disturbance and noise models [5], [6]. Although such a-
posteriori test is absolutely necessary for validation purpose,
it is not useful for an insightful control system design. As a
part of an integrated control system design there is a need
for an a-priori estimate of the system performance. In a
previous work [23] of the authors, the system dynamics was
modeled by a discrete-time scalar linear equation controlled
by a saturated linear transferring control strategy. The use
of saturated linear control strategy was motivated by two
of its features: (i) this strategy has (as a rule) the maximal
transferrable set; (ii) using this strategy eliminates control
chattering. Assuming that the probability distributions of
initial state value and the measurement noise are given,
the distributions of the disturbance in the dynamics and
the estimation error are known as the function of time, a
recurrence formula for the probability distribution of the
terminal state value was obtained. In [24], [25], a first-
order linear partial differential equation for the probability
distribution function of the state value was derived for the
case of a continuous-time disturbance-free system, assuming
known probability distributions of initial state value, the
measurement noise and the estimation error as the function
of time.

In this paper, the method of [24], [25] is extended to
the case where the system dynamics is affected by random
disturbance.

II. PROBLEM STATEMENT

Let z(t) be the state of the continuous-time system

ż = h1(t)u+ h2(t)v, (1)

where the control u is chosen in the form

u = u(t, z) = sat
(
K(t)z

)
, (2)
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sat(y) =

 1, y > 1,
y, |y| ≤ 1,
−1, y < −1,

(3)

and v(t) is a random disturbance.
Actually, the state z(t) is not measured accurately, i.e.

u = sat
(
K(t)(z(t) + η(t)

)
, (4)

where η(t) is a random estimation error. Let fz(x, t) denote
the probability density function of z(t). In [23], this probabil-
ity density function was approximated by f̂z(tn+1)(x), where
z(tn+1) = zn+1 is the state of the discrete-time system

zn+1 = zn + bnun + cnvn, (5)

and t0 = 0, tn = t0 + n∆t, n = 1, . . . , N ,

un = u(tn) = sat
(
kn(zn + ηn)

)
, (6)

bn = ∆th1(tn), cn = ∆th2(tn), kn = K(tn), (7)

vn = v(tn), ηn = η(tn). It is assumed that vn is independent
of zn.

Due to [23], for n = 0, 1, . . . , N − 1,

f̂z(tn+1)(x) =

+∞∫
−∞

fw1(tn)(x− ξ)fw2(tn)(ξ)dξ, (8)

where

w1(tn) , z(tn) + ∆th1(tn)u(tn), (9)

w2(tn) , ∆th2(tn)v(tn). (10)

fw1(tn)(x) = f̂z(tn)(x− bn)

+f̂z(tn)(x+ bn)

−x−1/kn−bn∫
−∞

fη(tn)(y)dy−

f̂z(tn)(x− bn)

−x+1/kn+bn∫
−∞

fη(tn)(y)dy+

1

bnkn

x+bn∫
x−bn

[f̂z(tn)(s)fη(tn)(−Ans+Bn(x))]ds, (11)

An = 1 +
1

bnkn
, Bn(x) =

x

bnkn
, (12)

fw2(tn)(x) =
1

∆th2(t)
fv(tn)

(
x

∆th2(t)

)
, (13)

the probability density function f̂z(0)(x) = fz0(x) of the ini-
tial value of z and the probability density functions fη(tn)(x)
of the estimation error and fv(tn)(x) of the disturbance are
known.

The objective of the present paper is deriving an equation
for fz(x, t).

III. SOLUTION

A. Analytical derivation

Similarly to [24], we derive a partial differential equation
for fz(x, t). For this purpose, let us denote tn = t, tn+1 =
t+∆t.

First, let us show that

lim
∆t→0

f̂z(t+∆t)(x) = f̂z(t)(x). (14)

By virtue of (13), the convolution equation (8) can be
rewritten as

f̂z(t+∆t)(x) =

1

∆th2(t)

+∞∫
−∞

fw1(t)(x− ξ)fv(t)

(
ξ

∆th2(t)

)
dξ, (15)

where, by (11) – (12),

fw1(t)(x) = f̂z(t)(x−∆th1(t))+

f̂z(t)(x+∆th1(t))

α(t,x,∆t)∫
−∞

fη(t)(y)dy−

f̂z(t)(x−∆th1(t))

β(t,x,∆t)∫
−∞

fη(t)(y)dy−

1

γ(t,∆t)

α(t,x,∆t)∫
β(t,x,∆t)

[
f̂z(t)

(
δ1(t, x,∆t, y)

γ(t,∆t)

)
fη(t)(y)

]
dy ,

g(x, t,∆t), (16)

α(t, x,∆t) , −x− 1/K(t)−∆th1(t), (17)

β(t, x,∆t) , −x+ 1/K(t) + ∆th1(t), (18)

γ(t,∆t) , ∆th1(t)K(t) + 1, (19)

δ1(t, x,∆t, y) , x−∆th1(t)K(t)y. (20)

By changing the variable of integration in the integral of
(15)

ζ =
ξ

∆th2(t)
, (21)

this equation becomes as:

f̂z(t+∆t)(x) =

+∞∫
−∞

fw1(t)

(
x−∆th2(t)ζ

)
fv(t)(ζ)dζ. (22)

Due to [24],

lim
∆t→0

fw1(t)(x) = f̂z(t)(x). (23)

Therefore, for any ζ ∈ (−∞,+∞),

lim
∆t→0

fw1(t)

(
x−∆th2(t)ζ

)
=

lim
∆t→0

g(x−∆th2(t)ζ, t,∆t) = f̂z(t)(x). (24)

Assuming that

lim
∆t→0

+∞∫
−∞

fw1(t)

(
x−∆th2(t)ζ

)
fv(t)(ζ)dζ =
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+∞∫
−∞

lim
∆t→0

fw1(t)

(
x−∆th2(t)ζ

)
fv(t)(ζ)dζ, (25)

and by virtue of (22), (24), as well as by the property of the
probability density function, one has

lim
∆t→0

f̂z(t+∆t)(x) = f̂z(t)(x)

+∞∫
−∞

fv(t)(ζ)dζ = f̂z(t)(x).

(26)
This proves (14).

Now, let us subtract f̂z(t)(x) from both sides of (22) and
divide the result by ∆t:

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

+∞∫
−∞

fw1(t)(x−∆th2(t)ζ)fv(t)(ζ)dζ − fz(t)(x)

∆t
. (27)

Let us calculate the limit of both sides of (27) for ∆t → 0:
due to (16), this leads to

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

lim
∆t→0

+∞∫
−∞

g(x−∆th2(t)ζ, t,∆t)fv(t)(ζ)dζ − fz(t)(x)

∆t
.

(28)
Due to (14), there is an uncertainty of the

0

0
type in the

limit in (28). By using the L’hôpitalle rule, the limit in the
right-hand side is calculated as

lim
∆t→0

+∞∫
−∞

g(x−∆th2(t)ζ, t,∆t)fv(t)(ζ)dζ − f̂z(t)(x)

∆t
=

lim
∆t→0

+∞∫
−∞

dg(x−∆th2(t)ζ, t,∆t)

d∆t
fv(t)(ζ)dζ. (29)

Note that
dg(x−∆th2(t)ζ, t,∆t)

d∆t
=

−h2(t)ζ
∂g(x−∆th2(t)ζ, t,∆t)

∂x
+
∂g(x−∆th2(t)ζ, t,∆t)

∂∆t
.

(30)
Due to [24],

lim
∆t→0

∂g(x, t,∆t)

∂∆t
=

∂

∂x

[
a(x, t)f̂z(t)(x)

]
, (31)

where
a(x, t) ,

= h1(t)

 −x−1/K(t)∫
−∞

fη(t)(y)dy +

−x+1/K(t)∫
−∞

fη(t)(y)dy+

K(t)

−x−1/K(t)∫
−x+1/K(t)

(x+ y)fη(t)(y)dy − 1

 . (32)

Therefore, for any ζ ∈ (−∞,+∞),

lim
∆t→0

∂g(x−∆th2(t)ζ, t,∆t)

∂∆t
=

∂

∂x

[
a(x, t)f̂z(t)(x)

]
. (33)

Now, let us calculate lim
∆t→0

∂g(x, t,∆t)

∂x
. Due to (16) –

(20):

lim
∆t→0

∂g(x, t,∆t)

∂x
=

∂f̂z(t)(x)

∂x
+

∂f̂z(t)(x)

∂x

−x−1/K(t)∫
−∞

fη(t)(y)dy−f̂z(t)(x)fη(t)(−x−1/K(t))−

∂f̂z(t)(x)

∂x

−x+1/K(t)∫
−∞

fη(t)(y)dy+f̂z(t)(x)fη(t)(−x+1/K(t))+

f̂z(t)(x)fη(t)(−x−1/K(t))− f̂z(t)(x)fη(t)(−x+1/K(t))−

∂f̂z(t)(x)

∂x

−x−1/K(t)∫
−x+1/K(t)

fη(t)(y)dy. (34)

Note that
−x−1/K(t)∫

−∞

fη(t)(y)dy −
−x+1/K(t)∫

−∞

fη(t)(y)dy−

−x−1/K(t)∫
−x+1/K(t)

fη(t)(y)dy = 0, (35)

which, along with (34), leads to

lim
∆t→0

∂g(x, t,∆t)

∂x
=

∂f̂z(t)(x)

∂x
. (36)

Therefore, for any ζ ∈ (−∞,+∞),

lim
∆t→0

∂g(x−∆th2(t)ζ, t,∆t)

∂x
=

∂f̂z(t)(x)

∂x
. (37)

Assuming that

lim
∆t→0

+∞∫
−∞

dg(x−∆th2(t)ζ, t,∆t)

d∆t
fv(t)(ζ)dζ =

+∞∫
−∞

lim
∆t→0

dg(x−∆th2(t)ζ, t,∆t)

d∆t
fv(t)(ζ)dζ, (38)

and by virtue of (28) – (30), (33) and (37), one gets

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

−h2(t)
∂f̂z(t)(x)

∂x

∞∫
−∞

ζfv(t)(ζ)dζ +
∂

∂x

[
a(x, t)f̂z(t)(x)

]
.

(39)
As in [24], it is reasonable to set

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

∂fz(x, t)

∂t
. (40)
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Thus, by using (39),(40), replacing in (39) f̂z(t)(x) with
fz(x, t) and taking into account the definition of mathemat-
ical expectation E,

∂fz(x, t)

∂t
=

∂

∂x
[a(x, t)fz(x, t)]− E{v(t)}h2(t)

∂fz(x, t)

∂x
.

(41)
This equation is subject to the initial condition

fz(x, 0) = fz0(x). (42)

Similarly to [24], the integration of the equation (41) with
respect to x from −∞ to an arbitrary value x ∈ (−∞,+∞)
yields the corresponding equation for the cumulative distri-
bution function Fz(x, t) of z:

∂Fz(x, t)

∂t
=
(
a(x, t)− E{v(t)}h2(t)

)∂Fz(x, t)

∂x
. (43)

The initial condition (42) for fz(x, t) yields the initial
condition for Fz(x, t)

Fz(x, 0) =

x∫
−∞

fz0(y)dy. (44)

Remark 1: Commutativity assumption relating to limiting
and integration, applied in (25) and (38), can be replaced
by the assumption that v(t) is a random variable with
bounded support. In this case, the integrals in (25) and (38)
become proper and the operations of limiting and integration
commute.

B. Examples

In this subsection, we present two examples, which were
considered in [23] in discrete time.

1) Constant disturbance: In this case, the evader employs
the constant (deterministic) strategy v(t) ≡ α = const, and
the probability function of w2(tn), given by (10), is

Fw2(tn)(x) =

 0, x ≤ αcn,

1, x > αcn,
(45)

yielding
fw2(tn)(x) = δ(x− αcn), (46)

where δ(x) is the Dirac delta function at x = 0. Thus, due
to (8),

f̂z(tn+1)(x) = fw1(tn)(x− αcn). (47)

By using the equalities n∆t = tn = t, tn+1 = t + ∆t,
N∆t = tf , and the equation (7), the equation (47) can be
rewritten as

f̂z(t+∆t)(x) = fw1(t)(x− α∆th2(t)). (48)

Now, based on (48), let us derive the partial differential
equation for fz(x, t).

Calculating limit for ∆t → 0 of both part in (48), and
using (24) for ζ = α directly yield the limit equality (14).
Based on this observation, let us calculate the limit

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

lim
∆t→0

1

∆t

[
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
. (49)

Due to (48) and (14), there is an uncertainty of the
0

0
type

in the limit in (49). By using the L’hôpitalle rule and the
equation (16), the limit in the right-hand side of (49) is
calculated as

lim
∆t→0

1

∆t

[
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
=

lim
∆t→0

[
dg(x− α∆th2(t), t,∆t)

d∆t

]
. (50)

By virtue of (30), (33) and (37) for ζ = α, the limit equality
(50) becomes

lim
∆t→0

1

∆t

[
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
=

∂

∂x

[
a(x, t)f̂z(t)(x)

]
− αh2(t)

∂f̂z(t)(x)

∂x
. (51)

Now, by using (40), (49), (51) and by replacing f̂z(t)(x) with
fz(x, t), one directly has the differential equation

∂fz(x, t)

∂t
=

∂

∂x

[
a(x, t)fz(x, t)

]
− αh2(t)

∂fz(x, t)

∂x
. (52)

Note that
E{v(t)} = α, (53)

i.e. the equation (52) has the form of (41) being its particular
case.

The corresponding equation for the cumulative distribution
function Fz(x, t) has the form

∂Fz(x, t)

∂t
=

(
a(x, t)− αh2(t)

)
∂Fz(x, t)

∂x
, (54)

which (due to (53)) is a particular case of the equation (43).

−5 0 5
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0.6
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1

x

Fz(x, tf )

 

 

Theoretic
Monte Carlo

Fig. 1. Fz(x, tf ): theoretic vs. Monte Carlo for constant disturbance

In Fig. 1, the cumulative distribution of z(tf ), obtained
by 1000 Monte Carlo runs of the discrete-time system
(5) for v(t) ≡ 0.1, is compared with the solution of
the partial differential equation (43) by using an implicit
finite difference method. In this example, tf = 0.6 s,
h1(t) = amax

p τp[exp(−(tf − t)/τp) + (tf − t)/τp − 1],
h2(t) = amax

e τe[exp(−(tf − t)/τe) + (tf − t)/τe − 1],
amax
p = 200 m/s2, τp = 0.2 s, amax

e = 70 m/s2, τe = 0.2 s,
K(t) = 0.01/(tf − t)3; z0 ∼ N(1, 2), η(t) ∼ N(0, 20− 5t).
In the numerical solution of the partial differential equation,

IAENG International Journal of Applied Mathematics, 45:2, IJAM_45_2_01

(Advance online publication: 24 April 2015)

 
______________________________________________________________________________________ 



x ∈ [−5, 5], the discretization step w.r.t x: ∆x = 0.05, the
discretization step w.r.t t: ∆t = 0.0003.

It is seen that two curves match very accurately.
2) Bang-bang disturbance with a random switch time: In

this example, the disturbance v(t) has the form

v(t) =

 α, t ∈ [0, tsw],

−α, t ∈ (tsw, tf ),
(55)

where the switch time tsw is random, uniformly distributed
over the interval [0, tf ]. In the discrete model (5), it is
assumed that tsw = ∆tnsw, where nsw can accept any value

from the set {0, 1, . . . , N − 1} with the probability p =
1

N
.

Let calculate the probability

p+n , P (w2(tn) = cn). (56)

Due to (55),

p+n = P (n ≤ nsw) = 1− Fnsw(n), (57)

where Fnsw(x) is the probability function of nsw:

Fnsw
(x) =



0, x ≤ 0,

1

N
, 0 < x ≤ 1,

2

N
, 1 < x ≤ 2,

. . .

1, x > N − 1,

(58)

yielding

Fnsw(n) =
n

N
, n = 0, 1, . . . , N − 1, (59)

and, by (57),
p+n = 1− n

N
. (60)

Therefore, the disturbance term w2(tn) is a random value

w2(tn) =

 αcn, p = p+n ,

−αcn, p = 1− p+n ,
(61)

where p is the probability.
Thus, the probability function of w2(tn) is

Fw2(tn)(x) =



0, x ≤ −αcn,

n

N
, −αcn < x ≤ αcn,

1, x > αcn.

(62)

By differentiating (62), the probability density function is

fw2(tn)(x) =
n

N
δ(x+ αcn) +

(
1− n

N

)
δ(x− αcn), (63)

where δ(x) is the δ-function of Dirac at x = 0.
Equation (8) along with (63) yields

f̂z(tn+1)(x) =

n

N
fw1(tn)(x+ αcn) +

(
1− n

N

)
fw1(tn)(x− αcn). (64)

By using the equalities n∆t = tn = t, tn+1 = t + ∆t,
N∆t = tf , and the equation (7), the equation (64) can be
rewritten as

f̂z(t+∆t)(x) =
t

tf
fw1(t)(x+ α∆th2(t))+(

1− t

tf

)
fw1(t)(x− α∆th2(t)). (65)

Now, based on (65), let us derive the partial differential
equation for fz(x, t).

Calculating limit for ∆t → 0 of both part in (65), and
using (24) for ζ = −α and ζ = α directly yield the limit
equality (14). Based on this observation, let us calculate the
limit

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

lim
∆t→0

1

∆t

[
t

tf
fw1(t)(x+ α∆th2(t))+(

1− t

tf

)
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
. (66)

Due to (65) and (14), there is an uncertainty of the
0

0
type

in the limit in (66). By using the L’hôpitalle rule and the
equation (16), the limit in the right-hand side of (66) is
calculated as

lim
∆t→0

1

∆t

[
t

tf
fw1(t)(x+ α∆th2(t))+(

1− t

tf

)
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
=

lim
∆t→0

[
t

tf

dg(x+ α∆th2(t), t,∆t)

d∆t
+(

1− t

tf

)
dg(x− α∆th2(t), t,∆t)

d∆t

]
. (67)

By virtue of (30), (33) and (37) for ζ = −α and ζ = α, the
limit equality (67) becomes

lim
∆t→0

1

∆t

[
t

tf
fw1(t)(x+ α∆th2(t))+(

1− t

tf

)
fw1(t)(x− α∆th2(t))− f̂z(t)(x)

]
=

t

tf

(
∂

∂x

[
a(x, t)f̂z(t)(x)

]
+ αh2(t)

∂f̂z(t)(x)

∂x

)
+

(
1− t

tf

)(
∂

∂x

[
a(x, t)f̂z(t)(x)

]
− αh2(t)

∂f̂z(t)(x)

∂x

)
=

∂

∂x

[
a(x, t)f̂z(t)(x)

]
− α

tf − 2t

tf
h2(t)

∂f̂z(t)(x)

∂x
. (68)

Now, by using (40), (66), (68) and by replacing f̂z(t)(x) with
fz(x, t), one directly has the differential equation

∂fz(x, t)

∂t
=

∂

∂x

[
a(x, t)fz(x, t)

]
− α

tf − 2t

tf
h2(t)

∂fz(x, t)

∂x
. (69)
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Note that

E{v(t)} =

(
1− t

tf

)
· α+

t

tf
· (−α) = α

tf − 2t

tf
, (70)

i.e. the equation (69) has the form of (41) being its particular
case.

The corresponding equation for the cumulative distribution
function Fz(x, t) has the form

∂Fz(x, t)

∂t
=

(
a(x, t)− α

tf − 2t

tf
h2(t)

)
∂Fz(x, t)

∂x
, (71)

which (due to (70)) is a particular case of the equation (43).
In Fig. 2, the cumulative distribution of z(tf ) for a random

switch disturbance (55) with α = 0.1, obtained by 5000
Monte Carlo simulation runs, is compared with the solution
of the partial differential equation (43). All other system and
simulation parameters are the same as in Example 1. It is
seen that two curves match enough accurately.
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Fig. 2. Fz(x, tf ): theoretic vs. Monte Carlo for random switch disturbance

3) Random value disturbance: In this example, it is
assumed that for any t ∈ [0, tf ], the disturbance v(t) is a
random value, uniformly distributed on the interval [−α, α]:
v(t) ∼ U [−α, α]. Thus, in the discrete model (5), the distur-
bance term w2(tn) is uniformly distributed on the interval
[−αcn, αcn], yielding the probability density function

fw2(tn)(x) =


1

2αcn
, x ∈ [−αcn, αcn],

0, x /∈ [−αcn, αcn].

(72)

The latter, along with (8), leads to

f̂z(tn+1)(x) =
1

2αcn

αcn∫
−αcn

fw1(tn)(x− ξ)dξ, (73)

or, by using the notation n∆t = tn = t, tn+1 = t+∆t, and
the equation (7),

f̂z(t+∆t)(x) =
1

2α∆th2(t)

α∆th2(t)∫
−α∆th2(t)

fw1(t)(x− ξ)dξ. (74)

Now, based on (74), let us derive the partial differential
equation for fz(x, t). First of all, let us establish the limit
equality (14). Due to (16), limiting ∆t → 0 in both sides of
(74) and applying the L’hôpitalle rule lead to

lim
∆t→0

f̂z(t+∆t)(x) =

1

2αh2(t)

[
lim

∆t→0
W1(x, t,∆t) + lim

∆t→0
W2(x, t,∆t)

]
, (75)

where

W1(t, x,∆t) ,
α∆th2(t)∫

−α∆th2(t)

[
dg(x− ξ, t,∆t)

d∆t

]
dξ, (76)

W2(x, t,∆t) ,

αh2(t)
[
g(x− α∆th2(t), t,∆t) + g(x+ α∆th2(t), t,∆t)

]
.

(77)
Due to (76),

lim
∆t→0

W1(x, t,∆t) = 0. (78)

By using (24) for ζ = −α and ζ = α

lim
∆t→0

W2(x, t,∆t) = 2αh2(t)f̂z(t)(x), (79)

which, by (75), directly yields (14).
Having (14) and based on (74) and (16), let us calculate

the limit

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

lim
∆t→0

α∆th2(t)∫
−α∆th2(t)

g(x− ξ, t,∆t)dξ − 2α∆th2(t)f̂z(t)(x)

2α(∆t)2h2(t)
,

(80)
representing the

0

0
uncertainty. By applying the L’hôpitalle

rule,

lim
∆t→0

f̂z(t+∆t)(x)− f̂z(t)(x)

∆t
=

lim
∆t→0

W1(x, t,∆t)

4α∆th2(t)
+ lim

∆t→0

W2(x, t,∆t)− 2αh2(t)f̂z(t)(x)

4α∆th2(t)
.

(81)
Note that both limits in (81) represent the

0

0
uncertainty. By

using the Mean Value Theorem,

W1(t, x,∆t) = 2α∆th2(t)
dg(x− ξ, t,∆t)

d∆t

∣∣∣∣
ξ=ξ̄(∆t)

, (82)

where
lim

∆t→0
ξ̄(∆t) = 0. (83)

Due to (76) and (82),

lim
∆t→0

W1(x, t,∆t)

4α∆th2(t)
=

1

2
lim

∆t→0

dg(x− ξ, t,∆t)

d∆t

∣∣∣∣
ξ=ξ̄(∆t)

.

(84)
Due to (83) – (84), and by virtue of (30), (33) and (37) for
ζ = 0,

lim
∆t→0

W1(x, t,∆t)

4α∆th2(t)
=

1

2

∂

∂x

[
a(x, t)f̂z(t)(x)

]
. (85)

Due to (77), by the second application of the L’hôpitalle
rule,

lim
∆t→0

W2(x, t,∆t)− 2αh2(t)f̂z(t)(x)

4α∆th2(t)
=

1

4
lim

∆t→0

[dg(x− α∆th2(t), t,∆t)

d∆t
+
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dg(x+ α∆th2(t), t,∆t)

d∆t

]
. (86)

By virtue of (30), (33) and (37) for ζ = −α and ζ = α,

lim
∆t→0

[dg(x−∆th2(t), t,∆t)

d∆t
+

dg(x+∆th2(t), t,∆t)

d∆t

]
=

2
∂

∂x

[
a(x, t)f̂z(t)(x)

]
, (87)

i.e.

lim
∆t→0

W2(x, t,∆t)

4α∆th2(t)
=

1

2

∂

∂x

[
a(x, t)f̂z(t)(x)

]
. (88)

Now, by using (40), (80) – (81), by combining (85) and
(88), and by replacing f̂z(t)(x) with fz(x, t), we obtain the
differential equation

∂fz(x, t)

∂t
=

∂

∂x

[
a(x, t)fz(x, t)

]
. (89)

Note that
E{v(t)} = 0. (90)

Thus, the equation (89) has the form of (41) being its par-
ticular case. The corresponding equation for the cumulative
distribution function Fz(x, t) has the form

∂Fz(x, t)

∂t
= a(x, t)

∂Fz(x, t)

∂x
, (91)

which (due to (90)) is a particular case of the equation (43).
Remark 2: In all examples, the differential equation for

fz(x, t) was obtained independently of the general derivation
presented in Section III-A. The commutativity of limiting and
integration (assumed in (25) and (38)) was not employed.

In Fig. 3, the cumulative distribution of z(tf ), obtained
by 5000 Monte Carlo runs of the discrete-time system (5)
for v(t) ∼ U [−0.1, 0.1], is compared with the solution of
the partial differential equation (43). All the system and the
simulation parameters are the same as in Example 2. It is
seen that two curves match enough accurately.
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Fig. 3. Fz(x, tf ): theoretic vs. Monte Carlo for random value disturbance

IV. CONCLUSIONS

In this paper, a scalar continuous-time uncertain controlled
system, modeling real life navigation and interception prob-
lems, is considered. The uncertainty (an additive disturbance)
is a random function with a known probability density func-
tion. The state-feedback control is chosen as the saturation

of a linear function of the state variable with a given time-
varying gain. It is also assumed that the state measurement
is corrupted by a random error with known distribution, and
the initial state distribution is known. Thus, the considered
system can be represented by a nonlinear stochastic differen-
tial equation, meaning that the state variable of this equation
is a stochastic function. Assuming that the estimation error
is known as the function of time, the problem of obtaining
the cumulative distribution function of this state variable is
solved.

The solution of this problem is based on previous results
of the authors for a discrete-time system, where a recur-
sive formula for the state probability density function was
derived. In the present paper, by a proper transformation
of this recursive formula and by limiting the time step to
zero, a linear homogeneous partial first-order differential
equation for the state cumulative distribution function is
derived. The coefficients of this equation depend on the
probability density function of the measurement error and
the mathematical expectation of the random disturbance. The
latter is a remarkable feature of the differential equation
for the state cumulative distribution function, meaning that
for two different disturbances with the same mathematical
expectation, we obtain the same cumulative distribution
function of the state variable in the considered stochastic
differential equation. Moreover, if for all time moments, the
disturbance is zero-mean, then the distribution of the state
variable is independent of the disturbance.

Three examples of the system were considered. In the first
example, the disturbance is constant (deterministic). In the
second example it is the bang-bang function with a random
switch moment,uniformly distributed over a prescribed time
interval. In the third example, the disturbance for any time
moment is a random uniformly distributed value. In all
examples, the differential equation for the state cumulative
distribution function is obtained independently of the general
case. It is shown that this equation coincides with the
one obtained from the general case equation by replacing
there the mathematical expectation of the disturbance with
its expression in each of these examples. The numerical
solutions of these equations were compared with the Monte
Carlo simulation results, showing a good enough matching.
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