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Abstract—In this paper, a new numerical method for solving
a linear system of fractional integro-differential equations is
presented. The fractional derivative is considered in the Caputo
sense. The proposed technique is based on the new operational
matrices of triangular functions. The suggested method reduces
this type of system to the solution of system of linear algebraic
equations. To demonstrate the accuracy and applicability of the
presented method some test examples are provided. Numerical
results show that this approach is easy to implement and
accurate when applied to integro-differential equations. We
show that the solutions approach to classical solutions as the
order of the fractional derivatives approach 1.

Index Terms—Fractional calculus; Operational Matrix; Tri-
angular Functions; System of Integro-differential Equations.

I. INTRODUCTION

D IFFERENTIAL and integro-differential equations of
fractional order arise in many physical and engineer-

ing problems such as fluid mechanics, viscoelasticity, dif-
fusion processes, biology and so on [1-14]. Thus, a es-
pecial attention has been devoted to the solution of frac-
tional ordinary differential equations, integral equations, and
fractional integro-differential equations of physical interest.
Some of these numerical methods are Adomians decompo-
sition method, variation iteration method, homotopy analysis
method, differential transform method, operational matrices
and nonstandard finite difference scheme [15-31]. In this pa-
per, we present numerical solution of an integro-differential
equations with fractional derivative of the type:

Dαiyi(t) = fi(t) +
n∑

j=1

(aij(t)yj(t) +

∫ t

0

kij(t, s)yj(s)ds),

(1)

i = 1, ..., n,

with supplementary conditions

y
(k)
i (0) = bik, k = 0, 1, ...⌈α⌉ − 1.

The main purpose of this work is to extend the operational
matrices of TFs to solve the system of fractional integro
differential equations numerically. This paper is organized
as follows,
In Section 2, a brief review of TFs and fractional calculus
is presented. In Section 3, operational matrices of TFs for
fractional integration are derived. Section 4 is devoted to the
formulation of system of fractional integro-differential equa-
tions. In Section 5, some numerical examples are provided.
Finally, Section 6 gives a brief conclusion.
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II. BASIC DEFINITIONS

In the following we present some basic definitions and
properties of the fractional calculus [32,33] and TFs [34-37].

Definition II.1. Let f ∈ L1, α ∈ R+. The Riemman-
Liouville fractional integral of f of order α is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, α > 0, t > 0.

Definition II.2. The Caputo fractional derivative is given by

Dαf(t) =

{
In−αf (n)(t) n− 1 < α < n,
dn

dtn f(t). α = n.

Some properties of the fractional operator are mentioned:

1)Dαxβ =

{
Γ(β+1)

Γ(β+1−α)x
β−α, β ≥ ⌈α⌉,

0, β < ⌈α⌉.
2)DαIαf(t) = f(t),

3)IαDαf(t) = f(t)−
∑n−1

i=0 f (i)(0+) t
k

k! , t > 0, , n− 1 ≤
α < n,
4)IαIβf(t) = Iα+β ,
5)IαIβf(t) = IβIα.

The triangular functions are defined on the interval [0,1)
as follows,

T1i(t) =

{
1− t−ih

h ih ≤ t < (i+ 1)h,
0 elsewhere,

T2i(t) =

{
t−ih
h ih ≤ t < (i+ 1)h,

0 elsewhere,

where, i = 0, ...,m− 1, h = T
m .

m-set TF vectors are defined as,

T1(t) = [T10(t), ..., T1m−1(t)]
T ,

T2(t) = [T20(t), ..., T2m−1(t)]
T ,

and
T (t) = [T1(t), T2(t)]T .

A square integrable function f(t) may be expanded in terms
of m-set TF series as,

f(t) ≃ F1TT1(t) + F2TT2(t) = FTT (t), (2)

where, F1i = f(ih) and F2i = f((i+1)h) for i = 0, ...,m−
1. The vectors F1 and F2 are called the 1D-TF coefficient
vectors and 2m-vector F is defined as:

F = [F1, F2]T .

Let X be a 2m−vector and B be a 2m× 2m matrix, it can
be concluded that

T (t)TT (t)X = X̃T (t), (3)
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and
TT (t)BT (t) = B̂TT (t), (4)

in which X̃ = diag(X) and B̂ is a 2m vector with elements
equal to the diagonal entries of B. In addition, the integral
of f(t) can be approximated as follows∫ t

0

f(s)ds ≃
∫ t

0

FTT (s)ds ≃ FTPT (t),

where P ,the operational matrix for integration, is obtained
as [28].

III. OPERATIONAL MATRIX OF FRACTIONAL
INTEGRATION

In this section, we expand integration operational matrix
of TFs to operational matrix of fractional integration.

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds =
1

Γ(α)
{tα−1 ∗ f(t)},

where 0 ≤ t < T . Also tα−1 ∗ f(t) denotes the convolution
product of tα−1 and f(t). From Eq. (2) we get,

Iαf(t) =
1

Γ(α)
{tα−1 ∗ f(t)} ≃ FT 1

Γ(α)
{tα−1 ∗ T (t)}.

We now compute 1
Γ(α){t

α−1 ∗ T (t)} as,

IαT (t) =
1

Γ(α)

∫ t

0

(t− s)α−1

(
T1(s)
T2(s)

)
ds =

(
IαT1(t)
IαT2(t)

)
.

First we obtain

1

Γ(α)
{tα−1 ∗ T1i(t)},

in which i = 0, ...,m − 1. By using the Laplase transform,
we get

Ł{IαT1i(t)} =
1

Γ(α)
Ł{tα−1}Ł{T1i(t)},

where,

Ł{tα−1} =
Γ(α)

sα
,

and

Ł{T1i(t)} = Ł
{
u(t− ih)− t− ih

h
u(t− ih)

+
t− (i+ 1)h

h
u(t− (i+ 1)h)

}
=

[e−ihs

s
− e−ihs

hs2
+

e−(i+1)hs

hs2
]
,

then,

Ł{IαT1i(t)} =
e−ihs

sα+1
− e−ihs

hsα+2
+

e−(i+1)hs

hsα+2
. (5)

Inverse Laplace transform of Eq. (5), yields

IαT1i(t) =
1

Γ(α+ 2)

(
(α+ 1)(t− ih)αu(t− ih)−

(t− ih)α+1

h
u(t− ih) +

(t− (i+ 1)h)α+1

h
u(t− (i+ 1)h)

)
.

(6)

Also, the fractional integration of T2i(t) is

IαT2i(t) =
1

Γ(α+ 2)

(
(t− ih)α+1u(t− ih)

−(t− (i+ 1)h)α+1u(t− (i+ 1)h)

−(α+ 1)(t− (i+ 1)h)αu(t− (i+ 1)h)
)
. (7)

Expansion of IαT1i(t) with respect to TFs is

IαT1i(t) ≃ [ci0, ..., cim−1]T1(t) + [di0, ..., dim−1]T2(t),

where cij = IαT1i(jh) and dij = IαT1i((j + 1)h),
j = 0, ...,m− 1, from Eq.(6), we get

cij = 0, j ≤ i,

cij =
hα

Γ(α+ 2)

(
(α+ 1)(j − i)α − (j − i)α+1+

(j − i− 1)α+1
)
, i < j,

dij = cij+1,

Finally, for i = 0, ...,m− 1, j = 0, ...,m− 1, we can write

IαT1(t) = P1αT1(t) + P2αT2(t), (8)

where P1α and P2α are m × m operational matrices of
fractional integration in TF domain. These matrices can be
computed as follow,

P1α =


0 ξ1 ξ2 . . . ξm−1

0 0 ξ1 . . . ξm−2

0 0 0 . . . ξm−3

...
...

...
. . .

...
0 0 0 . . . 0

 ,

P2α =


ξ1 ξ2 ξ3 . . . ξm
0 ξ1 ξ2 . . . ξm−1

0 0 ξ1 . . . ξm−2

...
...

...
. . .

...
0 0 0 . . . ξ1

 ,

where, ξr = hα

Γ(α+2)

(
(α+ 1)rα − rα+1 + (r − 1)α+1

)
.

In the same way, the following approximation can be
achieved for T2 .

IαT2(t) ≃ P3αT1(t) + P4αT2(t), (9)

where,

P3α =


0 ζ1 ζ2 . . . ζm−1

0 0 ζ1 . . . ζm−2

0 0 0 . . . ζm−3

...
...

...
. . .

...
0 0 0 . . . 0

 ,

P4α =


ζ1 ζ2 ζ3 . . . ξm
0 ζ1 ζ2 . . . ζm−1

0 0 ζ1 . . . ζm−2

...
...

...
. . .

...
0 0 0 . . . ζ1

 ,

and ζr = hα

Γ(α+2)

(
rα+1 − (r − 1)α+1 − (α + 1)(r − 1)α

)
.

By using Eqs. (8-9) fractional integration of T (t) can be
obtained as,

IαT (t) =

(
IαT1(t)
IαT2(t)

)
≃

(
P1αT1(t) + P2αT2(t)
P3αT1(t) + P4αT2(t)

)
=

(
P1α P2α
P3α P4α

)(
T1(t)
T2(t)

)
,
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so,
IαT (t) = PαT (t), (10)

where Pα, fractional integration operational matrix of T(t),
is (

P1α P2α
P3α P4α

)
.

The fractional integration of f(t) can be approximated as,

Iαf(t) ≃ FTPαT (t). (11)

IV. SOLVING LINEAR SYSTEM OF FRACTIONAL
INTEGRO-DIFFERENTIAL EQUATION

In this section, we use the obtained operational matrix of
fractional integration to solve Eq. (1). Applying the operator
Iαi , the inverse operator of Dαi , to both sides of Eq. (1)
yields

yi(t) = gi(t) + Iαi
(
fi(t) +

n∑
j=1

(
aij(t)yj(t)

+

∫ t

0

kij(t, s)yj(s)ds
))
, i = 1, .., n, (12)

where gi(t) =
∑p−1

j=0 y
(j)
i (0+) t

j

j! , α − 1 ≤ p < α. We can
approximate the functions as follows,

gi(t) ≃ GT
i T (t) = TT (t)Gi, (13)

fi(t) ≃ FT
i T (t) = TT (t)Fi, (14)

aij(t) ≃ AT
ijT (t) = TT (t)Aij , (15)

yi(t) ≃ Y T
i T (t) = TT (t)Yi, (16)

kij(t, s) ≃ TT (t)KijT (s), (17)

where 2m-vectors Gi, Yi, Fi, Aij and 2m × 2m matrix
Kij , i, j = 1, 2, .., n are TF coefficients. Integral term in
Eq. (12) can be approximated as∫ t

0

kij(t, s)yj(s)ds ≃ TT (t)Kij

∫ t

0

T (s)TT (s)Yjds =

TT (t)Kij

∫ t

0

ỸjT (s)ds = TT (t)Kij ỸjPT (t) ≃ B̂ij
T
T (t),

so
Iαi(B̂ij

T
T (t)) ≃ B̂ij

T
PαiT (t), (18)

and

Iαi(aij(t)yj(t)) ≃ Iαi(TT (t)AijY
T
j T (t)) ≃

Iαi(Âij
T
T (t)) ≃ Âij

T
Pαi

T (t). (19)

where Ỹj = diag(Yj) and B̂ij , Âij are defined in (4). By
substituting Eqs. (13-19) in Eq. (12), we get

Y T
i T (t) = GT

i T (t) + FT
i PαiT (t)+

n∑
j=1

(
Âij

T
PαiT (t) + B̂ij

T
PαiT (t)

)
, (20)

therefore, problem (20) reduces to the following problem:

Yi−PT
αi
Fi−

n∑
j=1

(
PT
αi
Âij +PT

αi
B̂ij

)
= Gi, i = 1, 2, ..., n.

(21)
A linear system of algebraic equations is achieved in Eq.
(21). Components of unknown vectors Yi can be obtained
by solving this system, using an iterative method.

V. NUMERICAL EXAMPLES

In order to illustrate the applicability of the proposed
method, we apply the presented method for the following
examples.

Example 1. Consider the following linear system of
fractional integro-differential equations [38] Dαy1(t) = 1 + t+ t2 − y1(t)−

∫ t

0
(y1(s) + y2(s))ds,

Dαy2(t) = −1− t+ y1(t)−
∫ t

0
(y1(s)− y2(s))ds,

0 < α ≤ 1,
(22)

with these supplementary conditions

y1(0) = 1, y2(0) = −1.

The exact solution is y1(t) = t + et, y2(t) = t − et.
We implemented the suggested method with m = 16 and
m = 32. The obtained numerical results are shown in Table
I and Figs 1-4. In Table I, the absolute error between the
exact solution and the approximate solution, at m = 16 (in
columns 2,3) and m = 32 (in columns 4,5) respectively,
are given. Figs. 1 and 2 show the evolution results for the
system of fractional integro differential Eqs. (22) at m = 32
when α = 1. And Figs. 2 and 4 show the behavior of
obtained approximate solution for the proposed system (22)
at m = 32 with different values of α. From Table I and
Figs. 1-2 we can conclude that our approximate solutions
are in good agreement with the exact values and with
high accuracy in comparison with the approximate solution
obtained in [38].

Example 2. The following linear system of fractional
integro differential equation is considered Dαy1(t) = 1 + t2 + sint−

∫ t

0
(y1(s) + y2(s))ds,

Dαy2(t) = −1 + t+ sint+ cost−
∫ t

0
(y2(s)− y1(s))ds,

0 < α ≤ 2,
(23)

with these supplementary conditions

y1(0) = 1, y2(0) = 0, y′1(0) = 1, y′2(0) = 2.

The exact solution for α = 2 is y1(t) = t+cos(t), y2(t) =
t + sin(t). The errors for α = 2 are obtained in Table II (
m = 16 in columns 2,3 and m = 32 in columns 4,5). Fig.5
and Fig.6 show numerical results for different values of α
with m = 32.

Example 3. Consider the following system of fractional
integro differential equations [39],

Dαy1(t) = 2 + et − 3e2t + e3t +
∫ t

0
(6y2(s)− 3y3(s))ds,

Dαy2(t) = et + 2e2t − e3t +
∫ t

0
(3y3(s)− y1(s))ds,

Dαy3(t) = −et + e2t + 3e3t +
∫ t

0
(y1(s)− 2y2(s))ds,

0 < α ≤ 1,
(24)

subject to the initial conditions

y1(0) = y2(0) = y3(0) = 1,

The exact solution of this system, when α = 1, is

y1(t) = et, y2(t) = e2t, y3(t) = e3t.
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In Table III the absolute error between the exact solution
and the approximate solution, at m = 16 (in columns 2,3,4)
and m = 32 (in columns 5,6,7) are presented respectively.
Figs. 7-12 show the evolution results for the system of
integro-differential equation (24) with m = 32. It is easy
to conclude that the solution continuously depends on the
space-fractional derivative.

Example 4. We consider the following system of integro
differential equations of fractional order,

D0.25y1(t) = f1(t) +
∫ t

0
(sinsy1(s) + y2(s))ds,

D0.5y2(t) = f2(t) +
∫ t

0
((1− 3

4 (y2(s) + y3(s))ds,

D0.75y3(t) = f3(t)−
∫ t

0
(y1(s) + y2(s) + y3(s))ds,

(25)
The exact solution of this system is

y1(t) = t, y2(t) = t2, y3(t) = t3.

and f1(t) =
1

Γ(1.75) t
3
4 +tcost−sint− t3

3 , f2(t) =
2

Γ(2.5) t
3
2 −

t3

3 + 3
16 t

5, f3(t) =
6

Γ(3.25) t
9
4 + t2

2 + t3

3 + t4

4 .
In Table IV the absolute error between the exact solution and
the approximate solution, at m = 16 (in columns 2,3,4) and
m = 32 (in columns 5,6,7) are presented respectively.

VI. CONCLUSION

In this paper, the application of TF operational matrix of
fractional order has been successfully employed to obtain
the approximate solutions for linear system of fractional
order integro-differential equations. The fractional deriva-
tive is considered in the Caputo sense. From the obtained
numerical results we can see that the obtained solution
using the suggested method are in good agreement with the
exact solution and with the presented method in [38]. It is
easy to conclude that the solution continuously depends on
the fractional derivative. The presented method provides a
technique that requires less computational work. Also the
last problems show efficiency and accuracy of the method.
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TABLE I: The absolute error between the exact solution and the approximate solution at m = 16 and m = 32.

ti |y1ex − y1app| |y2ex − y2app| |y1ex − y1app| |y2ex − y2app|
0 0 0 0 0

0.1 5.5× 10−4 5.5× 10−4 9.6× 10−5 9.6× 10−5

0.2 4.7× 10−4 4.7× 10−4 1.6× 10−4 1.6× 10−4

0.3 5.5× 10−4 5.5× 10−4 1.9× 10−4 1.9× 10−4

0.4 9.0× 10−4 9.0× 10−4 1.6× 10−4 1.6× 10−4

0.5 2.7× 10−4 2.7× 10−4 6.7× 10−5 6.7× 10−5

0.6 1.2× 10−3 1.2× 10−3 2.3× 10−4 2.3× 10−4

0.7 1.0× 10−3 1.0× 10−3 3.5× 10−4 3.5× 10−4

0.8 1.3× 10−3 1.3× 10−3 4.0× 10−4 4.0× 10−4

0.9 1.9× 10−3 1.9× 10−3 4.0× 10−4 4.0× 10−4

TABLE II: The absolute error between the exact solution and the approximate solution at m = 16 and m = 32.

ti |y1ex − y1app| |y2ex − y2app| |y1ex − y1app| |y2ex − y2app|
0 0 0 0 0

0.1 4.6× 10−4 4.5× 10−5 7.7× 10−5 8.3× 10−6

0.2 2.9× 10−4 8.9× 10−5 1.1× 10−4 2.6× 10−5

0.3 3.0× 10−4 1.1× 10−4 1.0× 10−4 5.5× 10−5

0.4 4.0× 10−4 2.7× 10−4 6.6× 10−5 1.1× 10−4

0.5 3.2× 10−5 2.6× 10−4 8.0× 10−6 2.6× 10−4

0.6 3.4× 10−4 9.3× 10−4 5.3× 10−5 7.0× 10−4

0.7 1.8× 10−4 1.6× 10−3 7.7× 10−5 1.4× 10−3

0.8 1.5× 10−3 2.9× 10−3 7.0× 10−5 2.7× 10−3

0.9 2.2× 10−3 5.2× 10−3 4.0× 10−5 5.0× 10−3

TABLE III: The absolute error between the exact solution and the approximate solution at m = 16 and m = 32.

ti |y1ex − y1app| |y2ex − y2app| |y3ex − y3app| |y1ex − y1app| |y2ex − y2app| |y3ex − y3app|
0 0 0 0 0 0 0
0.1 5.4× 10−4 2.6× 10−3 6.6× 10−3 9.3× 10−5 4.7× 10−4 1.2× 10−3

0.2 4.0× 10−4 2.8× 10−3 7.6× 10−3 1.5× 10−4 9.3× 10−4 2.5× 10−3

0.3 3.8× 10−4 3.9× 10−3 1.0× 10−2 1.5× 10−4 1.3× 10−3 3.6× 10−3

0.4 5.0× 10−4 7.3× 10−3 2.0× 10−2 6.8× 10−5 1.4× 10−3 3.9× 10−3

0.5 4.6× 10−4 4.9× 10−3 1.0× 10−2 1.1× 10−4 1.2× 10−3 2.4× 10−3

0.6 5.8× 10−5 1.3× 10−2 3.8× 10−2 8.3× 10−5 2.9× 10−3 7.8× 10−3

0.7 9.2× 10−4 1.7× 10−2 4.3× 10−2 1.5× 10−4 4.8× 10−3 1.3× 10−2

0.8 1.8× 10−3 2.3× 10−2 5.6× 10−2 3.7× 10−4 6.5× 10−3 1.8× 10−2

0.9 2.6× 10−3 3.5× 10−2 9.8× 10−2 7.6× 10−4 8.0× 10−4 1.9× 10−2

TABLE IV: The absolute error between the exact solution and the approximate solution at m = 16 and m = 32.

ti |y1ex − y1app| |y2ex − y2app| |y3ex − y3app| |y1ex − y1app| |y2ex − y2app| |y3ex − y3app|
0 0 0 0 0 0 0
0.1 1.6× 10−3 2.6× 10−3 6.5× 10−4 4.3× 10−4 7.9× 10−4 1.8× 10−4

0.2 7.4× 10−4 1.8× 10−3 8.9× 10−4 3.6× 10−4 5.4× 10−4 3.0× 10−4

0.3 8.1× 10−4 1.1× 10−3 1.1× 10−3 9.3× 10−4 2.1× 10−4 3.9× 10−4

0.4 1.8× 10−3 1.2× 10−4 2.0× 10−3 2.4× 10−3 1.8× 10−3 4.2× 10−4

0.5 4.1× 10−3 3.1× 10−3 8.7× 10−4 5.5× 10−3 4.7× 10−3 3.7× 10−4
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Fig.1 results for Example 1 . Fig.2 results for Example 1.

Fig.3 results for Example 1. Fig.4 results for Example 1.

Fig.5 results for Example 2. Fig.6 results for Example 2.
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Fig.7 results for Example 3. Fig.8 results for Example 3.

Fig.9 results for Example 3. Fig.10 results for Example 3.

Fig.11 results for Example 3 Fig.12 results for Example 3 .
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