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Abstract—This paper presents a numerical method for solv-
ing the stochastic nonlinear volterra-fredholm integral equation
(SNVFIE) driven by a standard Brownian motion (SBM). The
method is illustrated via a stochastic operational matrix (SOM)
based on the triangular functions (TFs) in combination with
the collocation method. With using this approach, the SNVFIE
reduces to a stochastic nonlinear system of 3m + 3 equations
and 3m + 3 unknowns. In addition, the error analysis and
some numerical examples are provided to demonstrate the
applicability and accuracy of this method.

Index Terms—Triangular functions; Standard Brownian
motion; Stochastic operational matrix; Stochastic nonlinear
volterra-fredholm integral equation; Collocation method.

I. INTRODUCTION

IN many fields of science and engineering there are a large
number of problems which are intrinsically nonlinear

equations, involving stochastic excitations of a Gaussian
white noise type. The Gaussian white noise mathematically
described as a formal derivative of a Brownian motion
process, all such problems are mathematically modeled by
stochastic equations, or in more complicated cases, described
by stochastic integral equations [5, 7, 9, 10, 11, 12, 13].

In this work, we consider

X(t) = X0 +

∫ 1

0

α(s,X(s))ds+

∫ t

0

β(s,X(s))ds

+

∫ t

0

γ(s,X(s))dB(s), t ∈ (0, T ), (1)

where α(s,X(s)), β(s,X(s)), γ(s,X(s)) : (0, T )×R −→
R and X(s) are the unknown stochastic processes defined on
a complete probability space (Ω,z, {Ft}t≥0, P ) with natural
filtration {Ft}t≥0. Also, B(s) be the SBM defined on same
probability space.

These kinds of equations can not be solved analytically.
Also, there is the numerical method for solving the stochastic
volterra-fredholm integral equations by using properties of
the block pulse functions (BPFs) [10]. Hence, it is important
to provide their numerical solutions. Our main motivation
for considering Eq. (1) is that it has played important role in
mathematical finance, biology, medical and social [2, 12].
In this paper, we use from the SOM based on properties of
the TFs without integration. The advantage of this method
is simple calculations by using conversion of the SNVFIE
to the stochastic nonlinear system of 3m+ 3 equations and
3m+ 3 unknowns.
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The result of the paper is organized as follows: In Section
2, we state some essential preliminaries which play fun-
damental role in our method. In Section 3, we solve Eq.
(1) by the SOM based on the TFs in combination with the
collocation technique. In Sections 4 and 5, we provide the
error analysis and some numerical examples to demonstrate
the applicability and accuracy of presented method. Finally,
in Section 6, is given a brief conclusion.

II. BASIC DEFINITIONS

A. Stochastic concepts

In this section, we review the basic properties of the SBM
that are essential for this work. For more details see [2, 12].

Let the functions α(t,X), β(t,X) and γ(t,X) hold
in lipschitz conditions and linear growth, i.e. there are
constants k1, k2, k3, k4, k5 > 0 and k6 > 0 such that:

A1.

 |α(t,X)− α(t, Y )| ≤ k1|X − Y |, (Lipschitz
continuity),
|α(t,X)| < k2(1 + |X|), (Linear growth).

A2.

 |β(t,X)− β(t, Y )| ≤ k3|X − Y |, (Lipschitz
continuity),
|β(t,X)| < k4(1 + |X|), (Linear growth).

A3.

 |γ(t,X)− γ(t, Y )| < k5|X − Y |, (Lipschitz
continuity),
|γ(t,X)| < k6(1 + |X|), (Linear growth).

For X , Y ∈ R and t ∈ (0, T ).

Theorem II.1. Let α(t,X(t)), β(t,X(t)) and γ(t,X(t))
hold in conditions A1, A2, A3 and E | X0 |2< ∞. Then,
there exists a unique solution for Eq. (1).

Proof. See [2].

Definition II.2. {B(t), t ≥ 0} be the SBM with the main
properties as follows:

1. The SBM has independent increments for 0 ≤ t0 ≤
t1 ≤ ... ≤ tn ≤ T .

2. B(t+h)−B(t) be normally distribution with mean
0 and variance h, for all t ≥ 0, h > 0 .

3. B(t) be the continuous function.

Definition II.3. Let ν = ν(S, T ) be the class of functions
α(t, ω) : [0,∞)× Ω −→ R such that:

1. The function α(t, ω) be β ×z measurable.
2. The function α(t, ω) is Ft-adapted.
3. E

[ ∫ T

S
α2(t, ω)dt] < ∞.
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Theorem II.4. (The Itô isometry). Let β ∈ ν(S, T ), then

E
[
(

∫ T

S

β(t, ω)dB(t)(ω))2
]
= E

[ ∫ T

S

β2(t, ω)dt
]
.

Proof. See [2].

Lemma II.5. (The Gronwall inequality) Let α, β ∈ [t0, T ] →
R be integral with

0 ≤ α(t) ≤ β(t) + L

∫ t

t0

α(s)ds, t ∈ [t0, T ], L > 0,

then

α(t) ≤ β(t)
(
1 + L

∫ t

t0

eL(t−s)ds
)
, t ∈ [t0, T ].

Proof. see [6].

B. Triangular functions

In this section, we introduce the basic properties of the
TFs that are essential for this paper. For more details see [1,
3, 4, 8, 13].

1. Two m-sets of TFs are defined as follows:

T 1
i (t) =

{
1− t−ih

h ih ≤ t < (i+ 1))h,
0 otherwise,

and

T 2
i (t) =

{
t−ih
h ih ≤ t < (i+ 1))h,

0 otherwise,

where h = T
m , i = 0, . . . ,m − 1,

T1(t) = [T 1
0 (t), ..., T

1
m−1(t)]

T and
T2(t) = [T 2

0 (t), ..., T
2
m−1(t)]

T .
2. Let f(x) ∈ L2

(
[0, T ]

)
, then

f(t) ≈ FT .T (t),

where F = [F1, F2]T , F1 = (F1i)1×m =
(f(ih))1×m, F2 = (F2i)1×m = (f(i + 1)h)1×m

and T (t) =

(
T1(t)
T2(t)

)
.

3. ∫ t

0

T (s)ds ≈ PT .T (t),

with
PT =

(
P1 P2
P1 P2

)
,

P1 =
h

2


0 1 1 . . . 1
0 0 1 . . . 1
0 0 0 . . . 1
...

...
...

. . .
...

0 0 0 . . . 0


m×m

,

and

P2 =
h

2


1 1 1 . . . 1
0 1 1 . . . 1
0 0 1 . . . 1
...

...
...

. . .
...

0 0 0 . . . 1


m×m

.

4. ∫ 1

0

T (s)ds ≈ PT .T (t).

5. ∫ t

0

T (s)dB(s) ≈ Ps.T (t),

with

Ps =

(
P1s P1s
P2s P2s

)
,

P1s =



α(0) β(0) β(0) . . . β(0)

0 α(1) β(1) . . . β(1)

0 0 α(2) . . . β(2)

...
...

...
. . .

...

0 0 0 . . . β(m− 2)

0 0 0 . . . α(m− 1)


m×m

,

P2s =



γ(0) ρ(0) ρ(0) . . . ρ(0)

0 γ(1) ρ(1) . . . ρ(1)

0 0 γ(2) . . . ρ(2)

...
...

...
. . .

...

0 0 0 . . . ρ(m− 2)

0 0 0 . . . γ(m− 1)


m×m

,

and

α(i) = (i+ 1)[B((i+ 0.5)h)−B(ih)]−∫ (i+0.5)h

ih
s
hdB(s),

β(i) = (i+ 1)[B((i+ 1)h)−B(ih)]−∫ (i+1)h

ih
s
hdB(s),

γ(i) = −i[B((i+ 0.5)h)−B(ih)]+∫ (i+0.5)h

ih
s
hdB(s),

ρ(i) = −i[B((i+ 1)h)−B(ih)]+∫ (i+1)h

ih
s
hdB(s).

III. USING OF THE TFS FOR SOLVING THE SNVFIE

Let  f(s) = α(s,X(s)),
g(s) = β(s,X(s)),
k(s) = γ(s,X(s)),

(2)

with substituting (2) in Eq. (1), we get

X(t) = X0 +

∫ 1

0

f(s)ds+

∫ t

0

g(s)ds+∫ t

0

k(s)dB(s). (3)

By using properties of the TFs, we can write f(s) ≈ FT .T (s),
g(s) ≈ GT .T (s),
k(s) ≈ KT .T (s),

(4)
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where

FT = (fi)2m×1 =
(
f(0), f(h), . . . , f((m− 1)h),

f(h), f(2h), . . . , f(mh)
)
2m×1

,

GT = (gi)2m×1 =
(
g(0), g(h), . . . , g((m− 1)h),

g(h), g(2h), . . . , g(mh)
)
2m×1

,

KT = (ki)2m×1 =
(
k(0), k(h), . . . , k((m− 1)h),

k(h), k(2h), . . . , k(mh)
)
2m×1

.

With substituting (4) in Eq. (3), we get

X(t) ≈ X0 +

∫ 1

0

FT .T (s)ds+

∫ t

0

GT .T (s)ds

+

∫ t

0

KT .T (s)dB(s), (5)

or

X(t) ≈ X0 + FTPTT (t) +GTPTT (t) +

KTPsT (t), (6)

by substituting Eq. (6) in Eq. (2), we obtain

f(t) ≈ α(t,X0 + FTPTT (t) +GTPTT (t)+
KTPsT (t)),

g(t) ≈ β(t,X0 + FTPTT (t) +GTPTT (t)+
KTPsT (t)),

k(t) ≈ γ(t,X0 + FTPTT (t) +GTPTT (t)+
KTPsT (t)).

(7)

Now, with replacing ≈ by =, the relation (7) is approximated
via the collocation method in m + 1 nodes tj = j

1
T m+1

(j = 0, 1, . . . ,m), as follows:

f(tj) = α(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

g(tj) = β(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

k(tj) = γ(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

(8)

or

FTT (tj) = α(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

GTT (tj) = β(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

KTT (tj) = γ(tj , X0 + FTPTT (tj) +GTPTT (tj)+
KTPsT (tj)),

(9)
where be the nonlinear system of 3m + 3 equations and
3m+ 3 unknowns. After solving Eq. (9), we conclude that

X(t) ≈ Xm(t) = X0 + FTPTT (t) +GTPTT (t) +

KTPsT (t). (10)

IV. ERROR ANALYSIS

Theorem IV.1. Let f(t) be a continuous function, twice
differentiable and |f ′′(t)| < M on (0, 1). Also, let f̂(t) be
the TFs and e(t) = f(t)− f̂(t), then

|e(t)|2 ≤ O(h2), t ∈ (0, 1). (11)

Proof. See [13].
Let  fm(t) = α(t,Xm(t)),

gm(t) = β(t,Xm(t)),
km(t) = γ(t,Xm(t)),

(12)

and 
f̂(t) = α̂(t,Xm(t)),

ĝ(t) = β̂(t,Xm(t)),

k̂(t) = γ̂(t,Xm(t)),

(13)

where f̂(t), ĝ(t) and k̂(t) are approximated by using the
properties of the TFs. Also, let Xm(t) be numerical solution
of Eq. (1) defined in Eq. (10).

Theorem IV.2. Let Xm(t) be the approximation solution of
Eq. (1) defined in Eq. (10) and conditions A1, A2, A3 and
E | X0 |2< ∞ hold. Then,

∥ X(t)−Xm(t) ∥2≤ O(h2), t ∈ (0, 1), (14)

where ∥ X ∥2= E[X2].

Proof

X(t)−Xm(t) =

∫ 1

0

(f(s)− f̂(s))ds+

∫ t

0

(g(s)−

ĝ(s))ds+

∫ t

0

(k(s)− k̂(s))dB(s), (15)

via
(
x+ y+ z

)2 ≤ 3
(
x2 + y2 + z2

)
and the property of the

Itô isometry for the SBM, we can write

∥ X(t)−Xm(t) ∥2≤ 3
(
∥
∫ 1

0

(f(s)− f̂(s))ds ∥2 +

∥
∫ t

0

(g(s)− ĝ(s))ds ∥2 + ∥
∫ t

0

(k(s)− k̂(s))dB(s) ∥2

)
≤ 3

( ∫ 1

0

∥ f(s)− f̂(s) ∥2 ds+

∫ t

0

∥ g(s)− ĝ(s) ∥2

ds+ ∥
∫ t

0

(k(s)− k̂(s))ds ∥2
)
≤ 3[

∫ 1

0

∥ f(s)− f̂(s)

∥2 ds+

∫ t

0

∥ g(s)− ĝ(s) ∥2 ds+

∫ t

0

∥ k(s)− k̂(s) ∥2

ds] ≤ 3
(
2

∫ 1

0

∥ f(s)− fm(s) ∥2 ds+ 2

∫ 1

0

∥ fm(s)

−f̂(s) ∥2 ds+ 2

∫ t

0

∥ g(s)− gm(s) ∥2 ds+ 2

∫ t

0

∥

gm(s)− ĝ(s) ∥2 ds2

∫ t

0

∥ k(s)− km(s) ∥2 ds+ 2∫ t

0

∥ km(s)− k̂(s) ∥2 ds
)
≤ 6

( ∫ 1

0

∥ f(s)− fm

(s) ∥2 ds+

∫ 1

0

∥ fm(s)− f̂(s) ∥2 ds+

∫ t

0

∥ g(s)

−gm(s) ∥2 ds+

∫ t

0

∥ gm(s)− ĝ(s) ∥2 ds+

∫ t

0

∥

k(s)− km(s) ∥2 ds+

∫ t

0

∥ km(s)− k̂(s) ∥2 ds
)
. (16)
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By using Theorem (IV.1), we have ∥ fm(s)− f̂(s) ∥2≤ l1h
2,

∥ gm(s)− ĝ(s) ∥2≤ l2h
2,

∥ km(s)− k̂(s) ∥2≤ l3h
2.

(17)

Also, by using conditions A1, A2 and A3, we have

∫ 1

0
∥ f(s)− fm(s) ∥2 ds ≤ k1

∫ 1

0
∥ X(s)−

Xm(s) ∥2 ds,∫ t

0
∥ g(s)− gm(s) ∥2 ds ≤ k3

∫ t

0
∥ X(s)−

Xm(s) ∥2 ds,∫ t

0
∥ k(s)− km(s) ∥2 ds ≤ k5

∫ t

0
∥ X(s)−

Xm(s) ∥2 ds,

by the mean value theorem

∫ 1

0
∥ f(s)− fm(s) ∥2 ds ≤ k1

∫ 1

0
∥ X(s)−

Xm(s) ∥2 ds ≤ k1 ∥ X(t)−Xm(t) ∥2,∫ t

0
∥ g(s)− gm(s) ∥2 ds ≤ k3

∫ t

0
∥ X(s)−

Xm(s) ∥2 ds,∫ t

0
∥ k(s)− km(s) ∥2 ds ≤ k5

∫ t

0
∥ X(s)−

Xm(s) ∥2 ds.

(18)

With substituting (17) and (18) in (16), we obtain

∥ X(t)−Xm(t) ∥2≤ 6
(
l1h

2 + k1 ∥ X(t)−Xm(t) ∥2

+l2h
2 + k3

∫ t

0

∥ X(s)−Xm(s) ∥2 ds+ l3h
2 + k5∫ t

0

∥ X(s)−Xm(s) ∥2 ds
)
, (19)

or

η(t) ≤ µ+ λ

∫ t

0

η(s)ds,

where µ = 6l1h
2+6l2h

2+6l3h
2

1−6k1
, λ = 6k3+6k5

1−6k1
and η(s) =∥

X(s) − Xm(s) ∥2. Furthermore, from Gronwall inequality,
we get

η(t) ≤ µ
(
1 + λ

∫ t

0

exp
(
λ(t− s)

)
ds
)
, t ∈ (0, 1),

so
∥ X(t)−Xm(t) ∥2≤ O(h2). 2

V. NUMERICAL EXAMPLES

Example 1. Consider the SNVFIE as follows:

X(t) =
−1

3
+

∫ 1

0

s4(X(s))2ds+

∫ t

0

s2(X(s))2ds

+
−1

300

∫ t

0

s2X(s)dB(s). (20)

Let m = 16, T = 0.25 and
f(s) = s4(X(s))2,
g(s) = s2(X(s))2,

k(s) = −s2X(s)
300 ,

(21)

with substituting (21) in Eq. (20), we get

X(t) = X0+

∫ 1

0

f(s)ds+

∫ t

0

g(s)ds+

∫ t

0

k(s)dB(s). (22)

By using properties of the TFs and the presented method
in the section 3, we can write

X(t) ≈ X0 +

∫ 1

0

FT .T (s)ds+

∫ t

0

GT .T (s)ds

+

∫ t

0

KT .T (s)dB(s), (23)

or

X(t) ≈ X0 +FTPTT (t) +GTPTT (t) +KTPsT (t), (24)

by substituting Eq. (24) in Eq. (21), we obtain

f(t) ≈ t4(X0 + FTPTT (t) +GTPTT (t)
+KTPsT (t))

2,

g(t) ≈ t2(X0 + FTPTT (t) +GTPTT (t)
+KTPsT (t))

2,

k(t) ≈ −t2(X0+FTPTT (t)+GTPTT (t)+KTPsT (t))
300 .

(25)

Now, with replacing ≈ by =, the relation (25) is approx-
imated via the collocation method in 17 nodes tj = j

65
(j = 0, 1, . . . , 16), as follows:

FTT (tj) = t4j (X0 + FTPTT (tj) +GTPTT (tj)
+KTPsT (tj))

2,

GTT (tj) = t2j (X0 + FTPTT (tj) +GTPTT (tj)
+KTPsT (tj))

2,

KTT (tj) =
−t2j (X0+FTPTT (tj)+GTPTT (tj)+KTPsT (tj))

300 ,

where be the nonlinear system of 51 equations and 51
unknowns.
Results have been shown in Figures (1-3) via a comparison
between numerical solution of stochastic model and numer-
ical solution of deterministic. Also, numerical solution of
deterministic has been approximated via properties of the
TFs and the BPFs in Figures (2-3).

Example 2. Consider the SNVFIE as follows:
X(t) = X0 +

∫ 1

0
sX(s)−

∫ t

0
sX(s)ds− 1

5000

∫ t

0
s4

X(s)dB(s),

X0 = −t2 − 1 + 1
4 + 1

4 t
4 − 1

2 t
2,

(26)
Let m = 16, T = 0.25 and

f(s) = sX(s),
g(s) = −sX(s),

k(s) = −s4X(s)
5000 ,

(27)

with substituting (27) in Eq. (26), we get

X(t) = X0 +

∫ 1

0

f(s)ds+

∫ t

0

g(s)ds+∫ t

0

k(s)dB(s). (28)

By using properties of the TFs and the presented method
in the section 3, we can write

X(t) ≈ X0 +

∫ 1

0

FT .T (s)ds+

∫ t

0

GT .T (s)ds

+

∫ t

0

KT .T (s)dB(s), (29)
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or

X(t) ≈ X0 + FTPTT (t) +GTPTT (t) +

KTPsT (t), (30)

by substituting Eq. (30) in Eq. (27), we obtain

f(t) ≈ t(X0 + FTPTT (t) +GTPTT (t)+
KTPsT (t)),

g(t) ≈ −t(X0 + FTPTT (t) +GTPTT (t)+
KTPsT (t)),

k(t) ≈ −t4(X0+FTPTT (t)+GTPTT (t)+KTPsT (t))
5000 .

(31)

Now, with replacing ≈ by =, the relation (31) is approx-
imated via the collocation method in 17 nodes tj = j

65
(j = 0, 1, . . . , 16), as follows:

FTT (tj) = tj(X0 + FTPTT (tj) +GTPTT (tj)
+KTPsT (tj)),

GTT (tj) = −tj(X0 + FTPTT (tj) +GTPTT (tj)
+KTPsT (tj)),

KTT (tj) =
−t4j (X0+FTPTT (tj)+GTPTT (tj)+KTPsT (tj))

5000 ,
(32)

where be the nonlinear system of 51 equations and 51
unknowns.
Results have been shown in Figures (4-5) via a comparison
between numerical solution of stochastic model and numer-
ical solution of deterministic. Also, numerical solution of
deterministic has been approximated via properties of the
TFs.

VI. CONCLUSION

The purpose of this paper is to present a numerical
method for solving the SNVFIE driven by the SBM and
comparison between numerical solution of deterministic
and numerical solution of stochastic model. The advantages
of this method are simple calculations, conversion of the
SNVFIE to the stochastic nonlinear system and convergence
faster than the other methods. Also, the numerical results
demonstrate accuracy of presented method.
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Fig.3 results for deterministic model via the BPFs.
Fig.1 results for stochastic model. Fig.2 results for deterministic model (TFs). Fig.3 results for deterministic model (BPFs).

Fig.4 results for stochastic model. Fig.5 results for deterministic model (TFs).
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